

www.springer.com/12272

Phenolic Constituents of Acorus gramineus

Cheol Hyeong Park¹, Ki Hyun Kim¹, Il Kyun Lee¹, Seung Young Lee¹, Sang Un Choi², Jei Hyun Lee³, and Kang Ro Lee¹

¹Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea, ²Korea Research Institute of Chemical Technology, Teajeon 305-600, Korea, and ³College of Oriental Medicine, Dongguk University, Gyeong Ju 780-714, Korea

(Received January 3, 2011/Revised April 15, 2011/Accepted April 26, 2011)

The purification of a MeOH extract from the rhizome of Acorus gramineus (Araceae) using column chromatography furnished two new stereoisomers of phenylpropanoid, acoraminol A (1) and acoraimol B (2). It also furnished 17 known phenolic compounds, β -asarone (3), asaraldehyde (4), isoacoramone (5), propioveratrone (6), (1'R,2'S)-1',2'-dihydroxyasarone (7), (1'S,2'S)-1',2'-dihydroxyasarone (8), 3',4'-dimethoxycinnamyl alcohol (9), 3',4',5'-trimethoxycinnamyl alcohol (10), kaempferol 3-methyl ether (11), 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3propanediol (12), hydroxytyrosol (13), tyrosol (14), (2S,5S)-diveratryl-(3R,4S)-dimethyltetrahydrofuran (15), (7S,8R)-dihydrodehydrodiconiferyl alcohol (16), 7S,8S-threo-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan (17), 7S,8R-erythro-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan (18), and dihydroyashsbushiketol (19). The structures of the new compounds were elucidated by analysis of spectroscopic data including 1D and 2D NMR data. The absolute configurations of 1 and 2 were determined using the convenient Mosher ester procedure. Compounds 5-19 were isolated for the first time from this plant source. The isolated compounds were tested for cytotoxicity against four human tumor cell lines *in vitro* using a Sulforhodamine B (SRB) bioassay.

Key words: Acorus gramineus, Araceae, Acoraminol A, Acoraminol B, Cytotoxicity

INTRODUCTION

Acorus gramineus (Araceae), which is distributed throughout Korea, Japan, and China, has been used as a Korean traditional medicine for learning and memory improvement, sedation and analgesia (Liao et al., 1998). Moreover, this herb has long been used for the treatment of stomach ache (Tang and Eisenbrand, 1992) and swelling as well as for the extermination of insects (Wang et al., 1998). Several pharmacologically active phenolics, such as β -asarone, α -asarone and phenylpropenes have been reported from this rhizome (Greca et al., 1989). Previous pharmacological studies on *A. gramineus* found that its extracts showed neuroprotective (Chun et al., 2008) and antibacterial

Correspondence to: Kang Ro Lee, Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea

Tel: 82-31-290-7710, Fax: 82-31-290-7730 E-mail: krlee@skku.ac.kr activities (Lee et al., 2004).

In our continuing study on bioactive natural products from Korean traditional medicinal plants, we investigated the rhizomes of *A. gramineus*. In this study, we isolated two new stereoisomers of phenylpropanoid, acoraminol A (1) and acoraminol B (2), along with seventeen known phenolic compounds (3-19) including four lignan derivatives (15-18) from its MeOH extract. Their structures were elucidated by spectroscopic data including 1D and 2D NMR and comparisons with reported data. The isolated compounds were tested for cytotoxicity against four human tumor cells *in vitro* using a Sulforhodamine B (SRB) bioassay. This paper describes the isolation and structural elucidation of 1 and 2, and the cytotoxic activity of all the compounds (1-19).

MATERIALS AND METHODS

General experimental procedure

Melting points were determined on a Gallenkamp

melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO P-1020 Polarimeter. IR spectra were recorded on a Bruker IFS-66/S FT-IR spectrometer. UV spectra were recorded with a Schimadzu UV-1601 UV-Visible spectrophotometer. NMR spectra were recorded on a Varian UNITY INOVA 500 NMR spectrometer. EIMS and FABMS data were obtained on a JEOL JMS700 mass spectrometer, and HR-ESIMS data were obtained on an Agilent 1100LC/MSD trap SL LC/MS. Preparative HPLC was performed using a Gilson 306 pump with a Shodex refractive index detector and Apollo Silica 5 µ column $(250 \times 10 \text{ mm})$ or Econosil RP-18 10 μ column $(250 \times$ 10 mm). Silica gel 60 (Merck, 70~230 mesh and 230~ 400 mesh) was used for column chromatography. TLC was performed using Merck precoated Silica gel F₂₅₄ plates and RP-18 F_{254s} plates. The packing material for molecular sieve column chromatography was Sephadex LH-20 (Pharmacia Co.). Low-pressure liquid chromatography was performed over Merck LiChroprep Lobar-A Si 60 (240 × 10 mm) or LiChroprep Lobar-A RP-18 (240 \times 10 mm) columns with a FMI QSY-0 pump (ISCO).

Plant materials

The rhizome parts of *A. gramineus* were collected on Jeju Island, Korea in March 2009, and identified by one of us (K.R.Lee). A voucher specimen (SKKU-NPL-0910) of the plant was deposited in the herbarium of the School of Pharmacy, Sungkyunkwan University, Suwon, Korea.

Extraction and isolation

The rhizome parts of A. gramineus (15 kg) were extracted at room temperature with 80% MeOH to give a MeOH extract (825 g). The extract was dissolved in water (2 L) and then successively partitioned with *n*-hexane, CHCl₃, EtOAc, and *n*-BuOH, yielding 166, 14, 5, and 47 g of residues, respectively. The hexanesoluble fraction (62 g) was separated over a silica gel column with n-hexane-EtOAc (11:1) to yield eight fractions (H1-H8). Fraction H3 (24 g) was separated over an RP-C₁₈ silica gel column with 80% MeOH and was purified by a silica gel prep. HPLC using nhexane-EtOAc (10:1) to yield compounds 3 (2 g) and 4(19 mg). Fraction H5 (1 g) was subjected to Sephadex LH-20 column chromatography (CH_2Cl_2 -MeOH = 1:1) and was purified by an RP-C $_{18}$ prep. HPLC (60% MeOH) to give compound 6 (5 mg). Fraction H6 (606 mg) was subjected to Sephadex LH-20 column chromatography (CH_2Cl_2 -MeOH = 1:1) and was purified by using a silica gel prep. HPLC using *n*-hexane-EtOAc (2:1) to yield compounds 5 (4 mg) and 15 (6

mg). The $CHCl_3$ fraction (14 g) was separated over an RP- C_{18} silica gel column with 50% MeOH to give seven fractions (C1-C7). Fraction C1 (800 mg) was subjected to a silica gel column chromatography (CHCl₃-MeOH = 40:1) and was purified by an RP- C_{18} prep. HPLC (55% MeOH) to obtain compounds 7 (8 mg) and 8 (63 mg). Fraction C2 (497 mg) was subjected to a silica Lobar A-column (CHCl₃-MeOH = 40:1) to give four subfractions (C21-C24). Subfraction C21 (157 mg) was subjected to Sephadex LH-20 column chromatography $(CH_2Cl_2-MeOH = 1:1)$ and was purified by an RP-C₁₈ prep. HPLC (65% MeOH) to yield compounds 1 (6 mg), 2 (3 mg), 9 (9 mg) and 10 (3 mg). Subfraction C24 (84 mg) was purified by an RP- C_{18} prep. HPLC (55%) MeOH) to yield compound 17 (40 mg). Fraction C3 (544 mg) was subjected to a silica gel column (CHCl₃-EtOAc-MeOH = 10:1:1) and was purified by an RP- C_{18} prep. HPLC (55% MeOH) to give compound 16 (5 mg). The EtOAc fraction (5 g) was separated over an RP- C_{18} silica gel column using a solvent system of 50% MeOH to give eight fractions (E1-E8). Fraction E2 (800 mg) was subjected to a silica gel column (CHCl₃-MeOH = 20:1) and was purified by an RP- C_{18} prep. HPLC (30% MeOH) to afford compound 13 (9 mg). Fraction E3 (807 mg) was subjected to a silica gel column (CHCl₃-MeOH = 20:1) to give five subfractions (E31-E35). Subfraction E32 (53 mg) was subjected to Sephadex LH-20 column chromatography (MeOH 80%) and was purified by a silica gel prep. HPLC using CHCl₃-MeOH (35:1) to yield compound 14 (5 mg). Subfraction E33 (53 mg) was subjected to Sephadex LH-20 column chromatography (MeOH 80%) and was purified by a silica gel prep. HPLC using CHCl₃-MeOH (25:1) to give compounds 18 (5 mg) and 19 (5 mg). Subfraction E33 (53 mg) was subjected to Sephadex LH-20 column chromatography (MeOH 80%) and was purified by an RP-C₁₈ prep. HPLC (45% MeOH) to afford compound 12 (5 mg). Fraction E7 (90 mg) was subjected to a silica Lobar A-column (CHCl₃-MeOH = 25:1) and was purified by a silica gel prep. HPLC using a solvent system of CHCl₃-MeOH (40:1) to yield compound 11 (9 mg).

Acoraminol A (1)

White oil; $[\alpha]_D^{25}$ –12.3° (*c* 0.30, CHCl₃); IR v_{max} cm⁻¹: 3410, 2937, 1608, 1512, 1460, 1206; UV (MeOH) λ_{max} nm: 209, 231, 291; HR-ESI-MS *m/z*: 279.1202 [M + Na]⁺ (calcd for C₁₃H₂₀NaO₅, 279.1208); ¹H- (CDCl₃, 500 MHz) and ¹³C-NMR (CDCl₃, 125 MHz): see Table I.

Acoraminol B (2)

Yellow oil; $[\alpha]_D^{25}$ –14.3° (*c* 0.15, CHCl₃); IR v_{max} cm⁻¹: 3419, 2971, 1618, 1512; UV (MeOH) λ_{max} nm: 207, 230,

290; HR-ESI-MS m/z: 279.1203 [M + Na]⁺ (calcd for C₁₃H₂₀NaO₅, 279.1208); ¹H- (CDCl₃, 500 MHz) and ¹³C-NMR (CDCl₃ 125 MHz): see Table I.

β-Asarone (3)

Yellow oil; $[\alpha]_D^{25} - 14.0^\circ$ (c 1.85, CHCl₃); IR ν_{max} cm⁻¹: 2937, 2834, 1608, 1512, 1463, 1209; FAB-MS m/z: 208 $[M]^+$; ¹H-NMR (CDCl₃ 500 MHz): δ 1.83 (3H, dd, J = 7.0, 1.8 Hz, H-3'), 3.74 (3H, s, -OCH₃), 3.79 (3H, s, -OCH₃), $3.83 (3H, s, -OCH_3), 5.76 (1H, dq, J = 10.6, 6.8 Hz, H-$ 2'), 6.47 (1H, dq, J = 10.6, 1.8 Hz, H-1'), 6.53 (1H, s, H-3), 6.84 (1H, s, H-6); ¹³C-NMR (CDCl₃, 125 MHz): δ 14.9 (C-3'), 56.3 (-OCH₃), 56.5 (-OCH₃), 56.7 (-OCH₃), 97.9 (C-3), 114.5 (C-6), 118.4 (C-5), 124.5 (C-2'), 125.3 (C-1'), 142.7 (C-1), 148.9 (C-2), 151.8 (C-4).

Asaraldehyde (4)

Colorless oil; $[\alpha]_D^{25}$ +39.3° (c 0.95, CHCl₃); IR ν_{max} cm⁻¹: 2942, 2833, 1664, 1607, 1514, 1213; FAB-MS m/z: 197 $[M + H]^+$; ¹H-NMR (CDCl₃, 500 MHz): δ 3.88 (3H, s, -OCH₃), 3.90 (3H, s, -OCH₃), 3.95 (3H, s, -OCH₃), 6.48 (1H, s, H-6), 7.30 (1H, s, H-3), 10.29 (1H, s, H-1'); ¹³C-NMR (CDCl₃ 125 MHz): δ 56.4 (-OCH₃×2), 56.5 (-OCH₃), 96.3 (C-6), 109.3 (C-3), 117.6 (C-2), 143.8 (C-4), 156.0 (C-1), 158.9 (C-5), 188.2 (C-1').

Isoacoramone (5)

Colorless oil; $[\alpha]_{D}^{25}$ -17.0° (c 0.20, CHCl₃); IR ν_{max} cm⁻¹: 2945, 2832, 1453; ESI-MS m/z: 225 [M + H]⁺; ¹H-NMR $(CDCl_3 500 \text{ MHz}): \delta 1.16 (3H, t, J = 7 \text{ Hz}, \text{H-3'}), 2.99$ (2H, q, J = 7 Hz, H-2'), 3.88 $(3H, s, -OCH_3)$, 3.91 (3H, s)s, -OCH₃), 3.95 (3H, s, -OCH₃), 6.50 (1H, s, H-3), 7.43 (1H, s, H-6); ¹³C-NMR (CDCl₃ 125 MHz): δ 8.8 (C-3'), 37.3 (C-2'), 56.3 (-OCH₃), 56.4 (-OCH₃), 56.5 (-OCH₃), 96.8 (C-3), 113.0 (C-6), 119.5 (C-1), 143.3 (C-5), 153.8 (C-4), 155.3 (C-2), 200.9 (C-1').

Propioveratrone (6)

Colorless gum; $[\alpha]_{D}^{25}$ -10.7° (c 0.25, CHCl₃); IR ν_{max} cm⁻¹: 3386, 2940, 1595, 1418; FAB-MS *m*/*z*: 195 [M + H]⁺; ¹H-NMR (CDCl₃ 500 MHz): δ 1.22 (3H, t, J = 7.0 Hz, H-3'), 2.96 (2H, q, J = 7.2 Hz, H-2'), 3.94 (6H, s, -OCH₃×2), 6.88 (1H, d, J = 8.5 Hz, H-5), 7.54 (1H, s, H-2), 7.58 (1H, d, J = 8.0 Hz, H-6); ¹³C-NMR (CDCl₃) 125 MHz): 8 8.7 (C-3'), 31.5 (C-2'), 56.2 (-OCH₃), 56.3 (-OCH₃), 110.2 (C-5), 110.5 (C-2), 122.7 (C-6), 130.4 (C-1), 149.3 (C-3), 153.3 (C-4), 199.7 (C-1').

(1'R, 2'S)-1', 2'-Dihydroxyasarone (7)

Colorless gum; $[\alpha]_{D}^{25}$ +31.0° (c 0.40, CHCl₃); IR ν_{max} cm⁻¹: 3379, 2943, 2834, 1207; FAB-MS *m/z*: 242 [M]⁺; ¹H-NMR (CDCl₃ 500 MHz): δ 1.32 (3H, d, J = 6.5 Hz, H-3'), 3.83 (3H, s, -OCH₃), 3.86 (3H, s, -OCH₃), 3.90 (3H, s, -OCH₃), 4.08 (1H, m, H-2'), 4.88 (1H, br s, H-1'), 6.53 (1H, s, H-3), 6.98 (1H, s, H-6); ¹³C-NMR (CDCl₃, 125 MHz): δ 17.8 (C-3'), 56.4 (-OCH₃×2), 56.8 (-OCH₃), 70.6 (C-2'), 73.8 (C-1'), 97.6 (C-3), 112.2 (C-6), 120.2 (C-1), 143.5 (C-5), 149.3 (C-4), 151.1 (C-2).

(1'S,2'S)-1',2'-Dihydroxyasarone (8)

Yellow oil; $[\alpha]_D^{25}$ +78.7° (c 1.10, CHCl₃); IR ν_{max} cm⁻¹: 3389, 2939, 1513, 1207; FAB-MS m/z: 242 [M]⁺; ¹H-NMR (CDCl₃ 500 MHz): δ 1.07 (3H, d, J = 6.5 Hz, H-3'), 3.83 (3H, s, -OCH₃), 3.86 (3H, s, -OCH₃), 3.90 (3H, s, -OCH₃), 3.98 (1H, m, H-2'), 4.56 (1H, br s, H-1'), 6.52 (1H, s, H-3), 6.86 (1H, s, H-6); ¹³C-NMR (CDCl₃, 125 MHz): δ 18.9 (C-3'), 56.4 (-OCH₃×2), 56.8 (-OCH₃), 71.5 (C-2'), 75.6 (C-1'), 97.7 (C-3), 112.4 (C-6), 120.7 (C-1), 143.4 (C-5), 149.4 (C-4), 151.3 (C-2).

3',4'-Dimethoxycinnamyl alcohol (9)

Colorless oil; $[\alpha]_D^{25}$ +18.6° (c 0.45, CHCl₃); IR ν_{max} cm⁻¹: 3361, 2944, 2833; FAB-MS m/z: 195 [M + H]⁺; ¹H-NMR (CDCl₃ 500 MHz): δ 3.89 (3H, s, -OCH₃), 3.90 (3H, s, -OCH₃), 4.32 (2H, br s, H-3'), 6.26 (1H, dt, J = 15.7, 5.8 Hz, H-2'), 6.56 (1H, br d, J = 15.7 Hz, H-1'), 6.83 (1H, d, J = 8.0 Hz, H-6), 6.92 (1H, d, J = 8.0 Hz, H-5), 6.95 (1H, s, H-2); ¹³C-NMR (CDCl₃, 125 MHz): δ 56.1 (-OCH₃), 56.2 (-OCH₃), 64.1 (C-3'), 109.2 (C-5), 111.4 (C-2), 119.9 (C-6), 126.8 (C-2'), 130.0 (C-1), 131.4 (C-1'), 149.2 (C-3), 149.3 (C-4).

3',4',5'-Trimethoxycinnamyl alcohol (10)

Colorless oil; $[\alpha]_D^{25}$ +10.3° (c 0.15, CHCl₃); IR ν_{max} cm⁻¹: 3385, 1604; ESI-MS m/z: 225 [M + H]⁺; ¹H-NMR (CDCl₃) 500 MHz): δ 3.85 (3H, s, -OCH₃), 3.86 (3H, s, -OCH₃), $3.87 (3H, s, -OCH_3), 4.33 (2H, dd, J = 5.6, 1.4 Hz, H-$ 3'), 6.29 (1H, dt, J = 15.8, 5.6 Hz, H-2'), 6.52 (1H, br d, J = 15.8 Hz, H-1'), 6.63 (2H, s, H-2, H-6); ¹³C-NMR (CDCl₃, 125 MHz): δ 56.3 (-OCH₃×2), 61.1 (-OCH₃), 63.9 (C-3'), 103.8 (C-2, C-6), 128.3 (C-2'), 131.4 (C-1'), 132.6 (C-1), 138.2 (C-4), 153.6 (C-3, C-5).

Kaempferol 3-methyl ether (11)

Yellow powder; m.p. 270-275°C; $[\alpha]_D^{25}$ +14.0° (c 0.45, CH₃OH); IR ν_{max} cm⁻¹: 3378, 1606; UV (MeOH) λ_{max} nm: 203, 267, 280, 349; ESI-MS m/z: 301 [M + H]⁺; ¹H-NMR (CD₃OD, 500 MHz): δ 3.78 (3H, s, -OCH₃), 6.19 (1H, d, J = 2.0 Hz, H-6), 6.39 (1H, d, J = 2.0 Hz, H-8),6.91 (2H, d, J = 9.0 Hz, H-3', H-5'), 7.96 (2H, d, J = 9.0 Hz, H-2', H-6'); ¹³C-NMR (CD₃OD, 125 MHz): δ 59.4 (-OCH₃), 93.6 (C-8), 98.6 (C-6), 104.7 (C-10), 115.4 (C-3', C-5'), 121.4 (C-1'), 130.2 (C-2', C-6'), 138.3 (C-3), 156.9 (C-2), 157.3 (C-9), 160.5 (C-4'), 161.9 (C-5), 164.8 (C-7), 178.8 (C-4).

2-[4-(3-Hydroxypropyl)-2-methoxyphenoxy]-1,3propanediol (12)

Colorless gum; $[\alpha]_D^{25}$ +18.4° (*c* 0.25, MeOH); IR v_{max} cm⁻¹: 3382, 1602; ESI-MS *m/z*: 257 [M + H]⁺; ¹H-NMR (CD₃OD, 500 MHz): δ 1.79-1.84 (2H, m, H-2'), 2.63 (2H, t, *J* = 7.7 Hz, H-1'), 3.55 (2H, t, *J* = 6.6 Hz, H-3'), 3.74 (4H, d, *J* = 5.1 Hz, H-1", H-3"), 3.84 (3H, s, -OCH₃), 4.15 (1H, q, *J* = 5.1 Hz, H-2"), 6.73 (1H, dd, *J* = 8.1, 2.2 Hz, H-6), 6.85 (1H, d, *J* = 2.2 Hz, H-2), 6.99 (1H, d, *J* = 8.1 Hz, H-5); ¹³C-NMR (CD₃OD, 125 MHz): δ 31.5 (C-1'), 34.4 (C-2'), 55.3 (-OCH₃), 60.9 (C-1", C-3"), 61.0 (C-3'), 82.2 (C-2"), 112.9 (C-2), 118.3 (C-5), 120.7 (C-6), 137.1 (C-1), 145.7 (C-4), 152.0 (C-3).

Hydroxytyrosol (13)

Brown oil; $[\alpha]_D^{25}$ +30.6° (*c* 0.02, MeOH); IR v_{max} cm⁻¹: 3375, 2946, 1606, 1447; FAB-MS *m/z*: 154 [M]⁺; ¹H-NMR (CD₃OD, 500 MHz): δ 2.66 (2H, t, *J* = 7.3 Hz, H-1'), 3.67 (2H, t, *J* = 7.3 Hz, H-2'), 6.52 (1H, dd, *J* = 8.0, 2.1 Hz, H-6), 6.59 (1H, d, *J* = 2.1 Hz, H-2), 6.67 (1H, d, *J* = 8.0 Hz, H-5); ¹³C-NMR (CD₃OD, 125 MHz): δ 38.5 (C-1'), 63.4 (C-2'), 115.1 (C-2), 115.9 (C-5), 120.0 (C-6), 130.6 (C-1), 143.4 (C-4), 145.0 (C-3).

Tyrosol (14)

Brown oil; $[\alpha]_D^{25}$ +32.6° (*c* 0.37, MeOH); IR v_{max} cm⁻¹: 3359, 2940, 1514, 1444; FAB-MS *m/z*: 138 [M]⁺; ¹H-NMR (CD₃OD, 500 MHz): δ 2.71 (2H, t, *J* = 7.0 Hz, H-1'), 3.67 (2H, t, *J* = 7.3 Hz, H-2'), 6.70 (2H, dd, *J* = 8.0, 2.1 Hz, H-3, H-5), 7.02 (2H, dd, *J* = 8.0, 2.1 Hz, H-2, H-6); ¹³C-NMR (CD₃OD, 125 MHz): δ 38.2 (C-1'), 63.4 (C-2'), 114.9 (C-3, C-5), 129.7 (C-2, C-6), 130.7 (C-1), 155.6 (C-4).

(2*S*,5*S*)-Diveratryl-(3*R*,4*S*)-dimethyltetrahydrofuran (15)

Colorless oil; $[\alpha]_D^{25} - 16.6^{\circ}$ (c 0.30, CHCl₃); IR ν_{max} cm⁻¹: 3381, 2968, 1600; UV (MeOH) λ_{max} nm: 206, 276, 393; ESI-MS *m/z*: 373 [M + H]⁺; ¹H-NMR (CDCl₃ 500 MHz): δ 0.60 (1H, d, J = 7.0 Hz, H-9'), 1.01 (1H, d, J = 6.3 Hz, H-9), 2.45 (2H, m, H-8, H-8'), 3.87 (3H, s, -OCH₃), 3.88 (3H, s, -OCH₃), 3.89 (3H, s, -OCH₃), 3.90 (3H, s, -OCH₃), 3.88 (3H, s, -OCH₃), 3.90 (3H, s, -OCH₃), 4.66 (1H, d, J = 9.1 Hz, H-7), 5.46 (1H, d, J = 5.4 Hz, H-7'), 6.82-6.87 (4H, m, H-5, H-5', H-6, H-6'), 6.92 (1H, d, J = 1.3 Hz, H-2'), 6.96 (1H, d, J = 1.8 Hz, H-2); ¹³C-NMR (CDCl₃, 125 MHz): δ 9.7 (C-9'), 12.1 (C-9), 43.7 (C-8), 47.8 (C-8'), 56.1 (-OCH₃×2), 56.2 (-OCH₃×2), 85.0 (C-7'), 85.9 (C-7), 109.4 (C-2), 109.7 (C-2'), 111.1 (C-5'), 111.2 (C-5), 118.3 (C-6'), 118.7 (C-6), 133.5 (C-1'), 135.9 (C-1), 148.0 (C-4), 148.7 (C-3), 149.0 (C-4'), 149.4 (C-3').

(7S,8R)-Dihydrodehydrodiconiferyl alcohol (16)

Colorless oil; $[\alpha]_D^{25}$ +14.2° (c 0.50, MeOH); IR ν_{max} cm⁻¹: 3371, 2939, 1607, 1517, 1460; UV (MeOH) λ_{max} nm: 212, 282; FAB-MS *m*/*z*: 360 [M]⁺; ¹H-NMR (CD₃OD, 500 MHz): δ 1.80 (2H, m, H-8'), 2.62 (2H, t, J = 7.2 Hz, H-9'), 3.45 (1H, m, H-8), 3.46 (1H, dd, J = 11.2, 6.4 Hz, H-9), 3.56 (2H, t, J = 6.4 Hz, H-9'), 3.74 (1H, dd, J =11.2, 5.6 Hz, H-9), 3.79 (3H, s, -OCH₃), 3.82 (3H, s, $-OCH_3$, 5.47 (1H, d, J = 6.2 Hz, H-7), 6.72 (1H, d, J =8.0 Hz, H-5), 6.78 (2H, s, H-2', H-6'), 6.83 (1H, dd, J = 8.0, 1.6 Hz, H-6), 6.95 (1H, d, J = 1.6 Hz, H-2); ¹³C-NMR (CD₃OD, 125 MHz): δ 31.7 (C-7'), 34.6 (C-8'), 54.2 (C-8), 55.2 (-OCH₃), 55.6 (-OCH₃), 61.1 (C-9), 63.8 (C-9), 87.8 (C-7), 109.4 (C-2), 113.0 (C-2'), 115.0 (C-5), 116.8 (C-6'), 118.6 (C-6), 128.6 (C-5'), 133.6 (C-1), 135.7 (C-1'), 144.0 (C-3'), 146.3 (C-4), 146.4 (C-4'), 147.9 (C-3).

7S,8S-threo-4,7,9,9'-Tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan (17)

Colorless gum; $[\alpha]_D^{25}$ +10.2° (*c* 0.25, MeOH); IR v_{max} cm⁻¹: 3386, 1604; UV (MeOH) λ_{max} nm: 207, 228, 280; ESI-MS *m/z*: 401 [M + Na]⁺; ¹H-NMR (CD₃OD, 500 MHz): δ 1.80 (1H, m, H-8'), 2.62 (2H, t, *J* = 7.0 Hz, H-7'), 3.55 (2H, t, *J* = 6.5 Hz, H-9'), 3.79 (3H, s, -OCH₃), 3.80 (3H, s, -OCH₃), 4.19 (1H, m, H-8), 4.87 (1H, d, *J* = 6.0 Hz, H-7), 6.68-7.02 (6H, m, H-2, H-5, H-6, H-2', H-5', H-6'); ¹³C-NMR (CD₃OD, 125 MHz): δ 31.5 (C-7), 34.4 (C-8'), 55.2 (-OCH₃), 55.4 (-OCH₃), 60.7 (C-9), 61.0 (C-9'), 73.0 (C-7), 86.6 (C-8), 110.6 (C-2), 112.8 (C-2'), 114.7 (C-5), 118.5 (C-5'), 119.6 (C-6), 120.9 (C-6'), 132.6 (C-1), 137.1 (C-1'), 145.8 (C-4), 146.0 (C-4'), 147.7 (C-3), 150.5 (C-3').

7*S*,8*R-erythro*-4,7,9,9'-Tetrahydroxy-3,3'-dimethoxy-8-*O*-4'-neolignan (18)

Colorless gum; $[\alpha]_D^{25}$ +16.6° (*c* 0.25, MeOH); IR ν_{max} cm⁻¹: 3375, 1513; UV (MeOH) λ_{max} nm: 209, 227, 280; ESI-MS *m/z*: 401 [M + Na]⁺; ¹H-NMR (CD₃OD, 500 MHz): δ 1.80 (1H, m, H-8'), 2.60 (2H, t, *J* = 7.0 Hz, H-7'), 3.54 (2H, t, *J* = 6.5 Hz, H-9'), 3.79, (3H, s, -OCH₃), 3.80 (3H, s, -OCH₃), 4.28 (1H, m, H-8), 4.83 (1H, d, *J* = 4.0 Hz, H-7), 6.65-7.02 (6H, m, H-2, H-5, H-6, H-2', H-5', H-6'); ¹³C-NMR (CD₃OD, 125 MHz): δ 31.5 (C-7'), 34.3 (C-8'), 55.2 (-OCH₃), 55.3 (-OCH₃), 61.0 (C-9), 62.3 (C-9'), 73.0 (C-7), 85.5 (C-8), 110.7 (C-2), 112.9 (C-2'), 114.5 (C-5), 118.5 (C-5'), 119.8 (C-6), 120.7 (C-6'), 133.0 (C-1), 136.9 (C-1'), 145.8 (C-4), 146.1 (C-4'), 147.5 (C-3), 150.7 (C-3').

Dihydroyashsbushiketol (19)

Colorless needle; $[\alpha]_D^{25} - 215.3^\circ$ (*c* 0.10, MeOH); IR ν_{max} cm⁻¹: 3394, 2923, 1604, 1424; FAB-MS *m/z*: 283 [M + H]⁺; ¹H-NMR (CDCl₃, 500 MHz): δ 1.65-1.81 (2H, m,

H-8'), 2.55 (4H, t, J = 7.0 Hz, H-7, H-7'), 2.74 (2H, m, H-8), 2.90 (2H, m, H-10), 4.03 (1H, q, J = 7.0 Hz, H-9'), 7.19 (10H, br s, H-1, H-2, H-3, H-4, H-5, H-1', H-2', H-3', H-4', H-5'); ¹³C-NMR (CDCl₃, 125 MHz): δ 29.8 (C-7'), 32.0 (C-7), 38.3 (C-8'), 45.3 (C-8), 49.5 (C-10), 67.1 (C-9'), 126.1 (C-4), 126.5 (C-4'), 128.5 (C-2, C-6), 128.7 (C-2', C-6', C-3', C-5'), 128.8 (C-3, C-5), 140.9 (C-1'), 142.0 (C-1), 211.3 (C-9).

Preparation of the (R)- and (S)-MTPA ester derivatives of 1 and 2

Compound 1 (1.5 mg) in deuterated pyridine (0.75 mL) was transferred to a clean NMR tube. (S)-(+)- α methoxy-α-(trifluoromethyl)phenylacetyl (MTPA) chloride (10 μ L) was added to the NMR tube immediately under a N_2 gas stream. The NMR tube was then shaken carefully to thoroughly mix the sample and the MTPA chloride. The NMR reaction tube was left at room temperature overnight. The reaction was then completed to afford the (R)-MTPA ester derivative (1r)of 1. Treatment of 1 (1.5 mg) with (R)-MTPA-Cl (10 μ L) as described above yielded the corresponding (S)-MTPA ester 1s. Similarly, treatment of 2 with (S)and (R)-MTPA-Cl afforded the respective Mosher esters 2r and 2s. The ¹H-NMR spectra of 1r, 1s, 2r, and 2s were measured directly in the NMR reaction tubes.

1s. ¹H-NMR (pyridine- d_{5} , 500 MHz): δ 1.168 (3H, d, J = 6.5 Hz, H-3'), 3.261 (3H, s, -OCH₃), 3.688 (3H, s, -OCH₃), 3.704 (3H, s, -OCH₃), 3.767 (3H, s, -OCH₃), 4.207 (1H, dq, J = 8.0, 6.5 Hz, H-2'), 5.681 (1H, d, J = 8.0 Hz, H-1'), 6.717 (1H, s, H-3), 7.175 (1H, s, H-6).

1r. ¹H-NMR (pyridine- d_5 , 500 MHz): δ 1.218 (3H, d, J = 6.5 Hz, H-3'), 3.249 (3H, s, -OCH₃), 3.688 (3H, s, -OCH₃), 3.704 (3H, s, -OCH₃), 3.752 (3H, s, -OCH₃), 4.202 (1H, dq, J = 8.0, 6.5 Hz, H-2'), 5.364 (1H, d, J = 8.0 Hz, H-1'), 6.717 (1H, s, H-3), 7.175 (1H, s, H-6).

2s. ¹H-NMR (pyridine- d_{5} , 500 MHz): δ 1.271 (3H, d, J = 6.5 Hz, H-3'), 3.334 (3H, s, -OCH₃), 3.691 (3H, s, -OCH₃), 3.735 (3H, s, -OCH₃), 3.769 (3H, s, -OCH₃), 4.365 (1H, dq, J = 6.5, 4.5 Hz, H-2'), 5.753 (1H, d, J = 4.5 Hz, H-1'), 6.704 (1H, s, H-3), 7.176 (1H, s, H-6).

2r. ¹H-NMR (pyridine- d_{5} , 500 MHz): δ 1.324 (3H, d, J = 6.5 Hz, H-3'), 3.320 (3H, s, -OCH₃), 3.676 (3H, s, -OCH₃), 3.720 (3H, s, -OCH₃), 3.762 (3H, s, -OCH₃), 4.345 (1H, dq, J = 6.5, 4.5 Hz, H-2'), 5.697 (1H, d, J = 4.5 Hz, H-1'), 6.700 (1H, s, H-3), 7.141 (1H, s, H-6).

Test for cytotoxicity in vitro

Sulforhodamine B bioassays (SRB) were used as cytotoxicity screening methods (Skehan et al., 1990). Cytotoxicity assays for each compound were done *in vitro* at the Korea Research Institute of Chemical Technology against four cultured human tumor cell lines: A549 (non-small cell lung adenocarcinoma), SK-OV-3 (ovarian cancer cells), SK-MEL-2 (skin melanoma), and HCT15 (colon cancer cells). Doxrubicin was used as a positive control. The cytotoxicity of doxorubicin against A549, SK-OV-3, SK-MEL-2, and HCT15 cell lines were IC₅₀ 0.02, 0.01, 0.01, and 0.04 μ M, respectively.

RESULTS AND DISCUSSION

Compound 1 was obtained as white oil. The HR-ESI-MS ($[M + Na]^+$ at m/z 279.1202, calcd for 279.1208) and ¹H- and ¹³C-NMR spectral data of 1 gave the molecular formula of $C_{13}H_{20}O_5$. The IR spectrum of 1 indicated the presence of an OH (3410 cm⁻¹) and an aromatic system (1608 cm⁻¹). The ¹H-NMR spectrum of 1 (Table I) showed two aromatic protons at δ 6.54 (1H, s) and 6.83 (1H, s), one methyl proton at δ 1.01 (3H, d, J = 6.5 Hz) and four methoxy protons at δ 3.24 (3H, s, alcoholic OMe), 3.82 (3H, s), 3.85 (3H, s), and 3.91 (3H, s). The ¹³C-NMR spectrum of **1** indicated 13 carbon resonances, which were classified by DEPT and HMQC experiments as six aromatic carbons at δ 97.6, 111.0, 118.5, 143.8, 149.4, and 152.7, a methyl at δ 17.9, two oxygenated methines at δ 71.7 and 81.8, and four methoxy carbons at δ 56.3, 56.7, 56.8, and 56.9. Further analysis showed that the data of 1 were very similar to those of the known compound, 1-(2,4,5-

Table I. ¹H- (500 MHz) and ¹³C-NMR (125 MHz) spectral data of compounds 1-2 in $CDCl_3$ (δ in ppm)

Position	1		2	
	δ_{H}	δ_{C}	$\delta_{\rm H}$	$\delta_{\rm C}$
1		118.5		117.9
2		152.7		152.3
3	6.54 (s)	97.6	6.54 (s)	97.6
4		149.4		149.3
5		143.8		143.7
6	6.83 (s)	111.0	6.92 (s)	111.4
1'	4.42 (d, 8.0)	81.8	4.60 (d, 4.5)	80.9
2'	3.82 (dq, 8.0, 6.5)	71.7	3.98 (dq, 6.5, 4.5)	71.7
3'	1.01 (d, 6.5)	17.9	1.09 (d, 6.5)	18.1
2-OCH_3	3.91 (s)	56.9^{a}	3.90 (s)	57.4^{b}
$4-OCH_3$	3.85 (s)	56.8^{a}	3.86 (s)	56.8^{b}
5-OCH_3	3.82 (s)	56.7^{a}	3.81 (s)	56.5^{b}
1'-OCH ₃	3.24 (s)	56.3	3.30 (s)	56.3

Assignments were based on 2D NMR methods, including HMQC and HMBC. Well-resolved couplings are expressed with coupling patterns and coupling constants (in Hz) given in parentheses.

*NMR assignments with the same superscript may be interchanged.

Fig. 1. The structures of compounds isolated from A. gramineus

trimethoxyphenyl)-1-methoxypropan-2-ol, whose absolute configuration has not been confirmed (Nawamaki and Kuroyanagi, 1996). The structure of 1 was unambiguously confirmed by the HMBC experiment, which showed correlations of H-1' (δ 4.42)/C-1 (δ 118.5), C-2 (§ 152.7), and C-6 (§ 111.0), H-3' (§ 1.01)/C-2' (§ 71.7) and C-1' (\delta 81.8), and H-6 (\delta 6.83)/C-1' (\delta 81.8). The absolute configuration of 1 was established on the basis of the convenient Mosher ester procedure (Su et al., 2002). Treatment of 1 with (R)- and (S)- α -methoxy- α -(trifluoromethyl)phenylacetyl (MTPA)-Cl gave the (S)- and (R)-MTPA esters 1s and 1r, respectively. Diagnostic ¹H-NMR chemical shift differences between the MTPA esters of 1 [$\delta_S - \delta_R$] (Fig. 2) revealed the absolute configuration at C-2' to be S. The coupling constant (J = 8.0 Hz) for H-1' and H-2' suggested that

these protons have a *cis*-orientation and, thus the absolute configuration at C-1' was confirmed to be S (Herrera Braga et al., 1984). On the basis of the above evidence, the structure of **1** was established as shown in Fig. 1 and named acoraminol A.

Compound **2**, obtained as yellow oil, had a molecular formula of $C_{13}H_{20}O_5$, as obtained from the HR-ESI-MS ([M + Na]⁺ at m/z 279.1203, calcd for 279.1208) and ¹H- and ¹³C-NMR spectral data of **2**. The IR spectrum of **2** indicated the presence of an OH (3419 cm⁻¹) and an aromatic system (1618 cm⁻¹). Inspection of the ¹H- and ¹³C-NMR data of **2** (Table I) revealed that these data were very similar to those of **1**, except for the chemical shifts from C-1' to C-3' [δ 4.60 (1H, d, J = 4.5 Hz, H-1'), 3.98 (1H, dq, J = 6.5, 4.5 Hz, H-2'), and 1.09 (3H, d, J = 6.5 Hz, H-3'); δ 80.9 (C-1'), 71.7

Fig. 2. Values of δ_S - δ_R (data obtained in pyridine- d_5) of the MTPA esters of 1

Fig. 3. Values of δ_S - δ_R (data obtained in pyridine- d_5) of the MTPA esters of 2

(C-2'), and 18.1 (C-3') in 2; δ 4.42 (1H, d, J = 8.0 Hz, H-1'), 3.82 (1H, dq, J = 8.0, 6.5 Hz, H-2'), and 1.01 (3H, d, J = 6.5 Hz, H-3'); δ 81.8 (C-1'), 71.7 (C-2'), and 17.9 (C-3') in 1]. Analysis of the 2D NMR data of 2 (HMQC, HMBC, and NOESY) led to unambiguous ¹H- and ¹³C-NMR assignments (Table I), and confirmed 2 to be the stereoisomer of 1. As described for 1, the absolute configuration of 2 was determined using the convenient Mosher ester procedure (Su et al., 2002), which proved the S-configuration for C-2' (Fig. 3). In addition, the coupling constant (J = 4.5 Hz) for H-1' and H-2' indicated that these protons have a trans-orientation and, thus the absolute configuration at C-1' was determined to be R (Herrera Braga et al., 1984). Based on the above considerations, the structure of 2 was established as shown in Fig. 1 and named acoraminol B.

Compounds 3-19 were identified by comparing their ¹H-, ¹³C-NMR, and MS spectra with the literature to be β -asarone (3) (Patra and Mitra, 1981), asaraldehyde (4) (Nawamaki and Kuroyanagi, 1996), isoacoramone (5) (Santos and Chaves, 1999), propioveratrone (6) (Joshi et al., 2005), (1'R,2'S)-1',2'-dihydroxyasarone (7) (Freire et al., 2005), (1'S,2'S)-1',2'-dihydroxyasarone (8) (Freire et al., 2005), 3',4'-dimethoxycinnamyl alcohol (9) (Feliciano et al., 1986), 3',4',5'-trimethoxycinnamyl alcohol (10) (Feliciano et al., 1986), kaempferol 3-methyl ether (11) (Valesi, 1972), 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (12) (Kouno et al., 1992). hydroxytyrosol (13) (Capasso et al., 1992), tyrosol (14) (Capasso et al., 1992), (2S,5S)-diveratryl-(3R,4S)-dimethyltetrahydrofuran (15) (Prasad et al., 1995), (7S, 8R)-dihydrodehydrodiconiferyl alcohol (16) (Kuang et al., 2009), 7S,8S-threo-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan (17) (Matsuda and Kikuchi, 1996), 7S,8R-erythro-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan (18) (Matsuda and Kikuchi, 1996), and dihydroyashsbushiketol (19) (Asakawa, 1970). Compounds 5-19 were isolated for the first time from this plant source.

The isolated compounds were tested for cytotoxicity against four human tumor cells *in vitro* using a SRB bioassay. Compound **11** exhibited good cytotoxic activity against A549, SK-OV-3, SK-MEL-2, and HCT15 cell lines (IC₅₀: 11.37, 5.74, 7.19 and 9.06 μ M, respectively). Compound **15** showed moderate cytotoxic activity against A549, SK-OV-3, SK-MEL-2, and HCT15 cells (IC₅₀: 14.05, 19.27, 32.14 and 12.86 μ M, respectively). The other compounds showed little cytotoxicity (IC₅₀ > 30 μ M).

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Do Kyun Kim,

Dr. Eun Jung Bang, and Dr. Jung Ju Seo at the Korea Basic Science Institute for the NMR and MS spectra measurements. This work was supported by grant No. 09112KFDA890 from the Korea Food & Drug Administration in Korea.

REFERENCES

- Asakawa, Y., Chemical constituents of *Alnus firma*. Bull. Chem. Soc. Jpn., 43, 2223-2229 (1970).
- Capasso, R., Cristinzio, G., Evidente, A., and Scognamiglio, F., Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters. *Phytochemistry*, 31, 4125-4128 (1992).
- Chun, H. S., Kim, J. M., Choi, E. H., and Chang, N., Neuroprotective effects of several korean medicinal plants traditionally used for stroke remedy. *J. Med. Food*, 11, 246-251 (2008).
- de Silva Filho, A. A., Albuquerque, S., Silva, M. L., Eberlin, M. N., Tomazela, D. M., and Bastos, J. K., Tetrahydrofuran lignans from *Nectandra megapotamica* with trypanocidal activity. J. Nat. Prod., 67, 42-45 (2004).
- Feliciano, A. S., Medarde, M., Lopez, J. L., and Miguel del Corral, J. K., Two new cinnamyl isovalerate derivatives from *Juniperus thurifera* leaves. J. Nat. Prod., 49, 677-679 (1986).
- Freire, F., Seco, J. M., Quinoa, E., and Riguera, R., Determining the absolute stereochemistry of secondary/secondary diols by ¹H NMR: basis and applications. J. Org. Chem., 70, 3778-3790 (2005).
- Greca, M. D., Monaco, P., Previtera, L., Aliotta, G., Pinto, G., and Pollio, A., Allelochemical activity of phenylpropanes from *Acorus gramineus*. *Phytochemistry*, 28, 2319-2321 (1989).
- Herrera Braga, A. C., Zacchino, S., Badano, H., González Sierra, M., and Rúveda, E. A., ¹³C NMR spectral and conformational analysis of 8-O-4' neolignans. *Phytochemistry*, 23, 2025-2028 (1984).
- Joshi, B. P., Sharma, A., and Sinha, A. K., Microwave- and ultrasound-assisted semisynthesis of natural methoxylated propiophenones from isomeric mixture of phenylpropenes in minutes. *Can. J. Chem.*, 83, 1826-1832 (2005).
- Kouno, I., Yanagida, Y., Shimono, S., Shintomi, M., and Yang, C.-S., Phenylpropanoids from the barks of *Illicium* difengpi. Chem. Pharm. Bull., 40, 2461-2464 (1992).
- Kuang, H. X., Xia, Y. G., Yang, B. Y., Wang, Q. H., and Lü, S. W., Lignan constituents from *Chloranthus japonicus* sieb. Arch. Pharm. Res., 32, 329-334 (2009).
- Lee, J. Y., Lee, J. Y., Yun, B. S., and Hwang, B. K., Antifungal activity of β-asarone from rhizomes of Acorus gramineus. J. Agric. Food Chem., 52, 776-780 (2004).
- Liao, J. F., Huang, S. Y., Jan, Y. M., Yu, L. L., and Chen, C. F., Central inhibitory effects of water extract of *Acori* graminei rhizoma in mice. J. Ethnopharmacol., 61, 185-193 (1998).

- Matsuda, N. and Kikuchi, M., Studies on the constituents of Lonicera Species. X. Neolignan glycosides from the leaves of Lonicera gracilipes var. glandulosa MAXIM. Chem. Pharm. Bull., 44, 1676-1679 (1996).
- Nawamaki, K. and Kuroyanagi, M., Sesquiterpenoids from Acorus calamus as germination inhibitors. *Phytochemistry*, 43, 1175-1182 (1996).
- Prasad, A. K., Tyagi, O. D., Wengel, J., Boll, P. M., Olsen, C. E., Bisht, K. S., Singh, A., Sarangi, A., Kumar, R., Jain, S. C., and Parmar, V. S., Neolignans and a lignan from *Piper clarkii*. *Phytochemistry*, 39, 655-658 (1995).
- Patra, A. and Mitra, A. K., Constituents of Acorus calamus. J. Nat. Prod., 44, 668-669 (1981).
- Santos, B. V. O. and Chaves, M. C. O., 2,4,5-trimetoxypropiophenone from *Piper marginatum*. Biochem. Sys. Ecol., 27, 539-541 (1999).
- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon,

J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R., New colorimetric cytotoxicity assay for anticancer-drug screening. *J. Natl. Cancer Inst.*, 82, 1107-1112 (1990).

- Su, B. N., Park, E. J., Mbwambo, Z. H., Santarsiero, B. D., Mesecar, A. D., Fong, H. H., Pezzuto, J. M., and Kinghorn, A. D., New chemical constituents of *Euphorbia quinquecostata* and absolute configuration assignment by a convenient Mosher ester procedure carried out in NMR tubes. J. Nat. Prod., 65, 1278-1282 (2002).
- Tang, W. and Eisenbrand, G., Chinese Drugs of Plant Origin. Springer, New York, pp. 45-46, (1992).
- Valesi, A. G., Methylated flavonols in Larrea cuneifolia. Phytochemistry, 11, 2821-2826 (1972).
- Wang, H. Z., Cheng, Y. G., and Fan C. S., Review of studies on chemical constituents and pharmacology of genus *Actorus. Acta Bot. Yunnanica*, 5, 96-100 (1998).