Cobalt-Catalyzed Direct C–H Carbonylative Synthesis of Free (*NH*)-Indolo[1,2-*a*]quinoxalin-6(5*H*)-ones

Qian Gao, Jia-Ming Lu, Lingyun Yao, Siqi Wang, Jun Ying,* and Xiao-Feng Wu*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c03900 **Read Online** ACCESS Metrics & More Article Recommendations s Supporting Information осно CoCl₂, Ag₂CO₃ 'nн Ben, PivOH, Et₃N R dioxane, 130 °C č осно онсо R² D2 TFBen up to 88% yields

ABSTRACT: A cobalt-catalyzed direct C-H carbonylative reaction of N-(2-(1H-indol-1-yl)phenyl)picolinamides for the synthesis of (*NH*)-indolo[1,2-*a*]quinoxalin-6(5H)-one skeletons has been developed. Using benzene-1,3,5-triyl triformate (TFBen) as the CO source and picolinamide as the traceless directing group, various free (*NH*)-indolo[1,2-*a*]quinoxalin-6(5H)-ones were obtained in good yields (up to 88%). Additionally, a series of product derivatizations were demonstrated, and the core fragment of PARP-1 inhibitor C can be readily constructed by this protocol.

yrrolo[1,2-*a*]quinoxalin-4(5*H*)-ones have been considered as a class of privileged scaffolds that are ubiquitous in a wide range of pharmaceuticals and bioactive compounds.¹ For instance, as shown in Scheme 1, compound A represents a type of anti-HIV agent by inhibiting the non-nucleoside reverse transcriptase.¹ Compound B was found to exhibit remarkable cytotoxic activity against a broad range of human tumor cell lines as a potent tubulin polymerization and topoisomerase I inhibitor.² Compound C serves as a poly(ADP-ribose)polymerase-1 (PARP-1) inhibitor with good enzymatic and cellular potency for cancer therapy.³ Moreover, indolo [1,2-a] quinoxalin-6(5H)-ones comprise the core framework of pyrrolo[1,2-a]quinoxalin-4(5H)-ones and have also attracted the interests of many scientists due to their diverse biological activities.⁴ To assemble the complicated indolo[1,2-a]quinoxalin-6(5H)-one scaffolds, a few synthetic methods have been realized.^{5–8} The common methods involve the intramolecular condensation of amino carboxylates in multiple steps.⁵

On the contrary, transition-metal-catalyzed C–H bond activation and carbonylation offer a direct and efficient

Scheme 2. C–H Carbonylative Synthesis of Indolo[1,2a]quinoxalin-6(5H)-ones

Pd-catalyzed carbonylative indolo[1,2-a]quinoxalin-6(5*H*)-ones synthesis a) Xu and co-workers

Co-catalyzed carbonylative indolo[1,2-a]quinoxalin-6(5H)-ones synthesis

Received: November 25, 2020

^aReaction conditions: 1a (0.2 mmol), Co catalyst (30 mol %), Ag₂CO₃ (2.5 equiv), TFBen (3.0 equiv), additive (2.0 equiv), solvent (2.0 mL), 130 °C, 20 h, isolated yield. ^bAg₂CO₃ (4.0 equiv). ^cEt₃N (0.5 equiv). ^dPivOH (4.0 equiv). ^eCoCl₂ (20 mol %).

approach to access carbonyl-containing compounds.^{9,10} There are very limited reports on the direct C-H carbonylative synthesis of indolo [1,2-a]quinoxalin-6(5H)-ones.^{11,12} In 2019, Xu and coworkers developed a palladium/copper-cocatalyzed C-H activation/N-dealkylative carbonylation of o-indolyl-N,N-dimethylarylamines under 1 atm $(CO/O_2 = 1/3)$ mixed gas of CO and oxygen for the synthesis of various N-methyl indolo[1,2-a]quinoxalin-6(5H)-ones (Scheme 2, eq a).^{11a} Recently, Sankararaman disclosed a palladium-catalyzed C-H carbonylation of N-substituted 2-(1H-indol-1-yl)anilines that proceeded well under a CO atmosphere to give Nsubstituted indolo[1,2-a]quinoxalin-6(5H)-ones (Scheme 2, eq b).^{11b} It is important to mention that although oxygen or air is an ideal oxidant from an atom efficiency and sustainability point of view, the risk of explosion when combining CO and O_2 gases at a certain ratio should be kept in mind.¹³ As a part of our continued interest in C–H carbonylation,¹⁴ we now report a cobalt-catalyzed C-H bond carbonylative synthesis of free (NH)-indolo[1,2-a]quinoxalin-6(5H)-ones from N-(2-(1H-indol-1-yl)phenyl)picolinamides and TFBen (Scheme 2, eq c).

At the outset, the N-(2-(1H-indol-1-yl)phenyl)picolinamide 1a was chosen as the model substrate and was reacted with TFBen (3.0 equiv) in the presence of $CoCl_2$ (30 mol %) as the catalyst, Ag₂CO₃ (2.5 equiv) as the oxidant, and PhCOOH (2.0 equiv) as the additive at 130 °C for 20 h. To our delight, the desired product 2a was achieved in 30% yield (Table 1, entry 1). The reaction with $Co(acac)_2$ and $Co(OAc)_2 \cdot 4H_2O$ as the catalyst gave lower yields of 2a (Table 1, entries 2 and 3). Then, a couple of additives were examined (Table 1, entries 4-6), and the yield was increased to 45% when PivOH was employed (Table 1, entry 6). Furthermore, using other solvents such as toluene, DMF, and DMSO gave reduced yields of 2a (Table 1, entries 7–9). Notably, the reaction yield was enhanced to 60% when the amount of Ag₂CO₃ was increased (Table 1, entry 10). It was found that the addition of Et₃N could slightly promote the reaction to furnish 2a in 66%

Scheme 3. Scope of N-(2-(1H-Indol-1yl)phenyl)picolinamides^a

^{*a*}Reaction condition: 1 (0.2 mmol), CoCl₂ (30 mol %), Ag₂CO₃ (4.0 equiv), TFBen (3.0 equiv), PivOH (4.0 equiv), Et₃N (0.5 equiv), dioxane (2.0 mL), 130 °C, 20 h, isolated yield. ^{*b*}150 °C, 20 h. ^{*c*}130 °C, 30 h.

yield (Table 1, entry 11). Gratifyingly, utilizing an increased loading of PivOH (4.0 equiv) significantly improved the yield of **2a** to 85% (Table 1, entry 12). Finally, a lower reaction yield (53%) was obtained when the catalyst loading was reduced (Table 1, entry 13). It is important to mention that $Cu(OAc)_2$, TBHP, and $Mn(OAc)_3$ were tested as oxidants in place of Ag_2CO_3 as well, but no target product could be detected from these tests.

Next, a series of N-(2-(1H-indol-1-yl)phenyl)picolinamides 1 were investigated under optimal reaction conditions, and the Scheme 4. Scale-up Reaction and Derivatization of the Product 2a

Scheme 5. Construction of the Core Skeleton 9 of PARP-1 Inhibitor C^a

^{*a*}Reagents and conditions: (a) Cs_2CO_3 , DMF, 60 °C, 4 h. (b) Fe, NH₄Cl, H₂O, 4 h. (c) DMAP, picolinic acid, EDCI, DCM, 12 h. (d) CoCl₂, Ag₂CO₃, PivOH, TFBen, Et₃N, dioxane, 130 °C, 20 h.

results are shown in Scheme 3. For compounds bearing either electron-donating or -withdrawing substituents at the C4 position of the benzene ring, the reaction afforded the desired products 2b-d in 57-65% yields. It was found that the reaction of compounds with substituents at the C5 position proceeded well to give the products 2e-f in high yields. Surprisingly, only trace product 2g was observed when the substrate 1g with a methyl group at the C6 position was tested. Here one possible reason for this phenomenon is the steric effect from the ortho-methyl group, which makes the indole ring and the aniline not in the same plane and leads to difficulty in forming a new C-N bond. In addition, when compounds had substituents such as Me, OMe, Cl, and COOMe at the C6 position of the indole ring, the reaction gave the corresponding products 2h-k in moderate to good yields (48-88%). It was shown that good yields (65-88%) of the products 21-o were obtained when substrates with functional groups at the C5 position were subjected to the reaction system. Also, C4-substituted compounds could undergo the reaction smoothly to give the products 2p-r in high yields (56-82%). Furthermore, the C3-Me-substituted

Scheme 6. Plausible Mechanism

compound 1s was successfully transformed to the product 2s in 76% yield. However, the reaction failed when the C3 position of the indole ring was substituted with a phenyl ring. Notably, the substrate 1t containing a 6-azaindole unit could be converted to the expected product 2t in 58% yield as well.

Then, a scale-up reaction and a series of derivatization of the product **2a** were performed to demonstrate the utility of this method (Scheme 4). When the *N*-(2-(1*H*-indol-1-yl)phenyl)-picolinamide **1a** (1.0 mmol) was subjected to the standard reaction conditions, a 72% yield of the product **2a** was achieved smoothly. The treatment of **2a** with NaH at 0 °C followed by the addition of alkyl halides could provide various *N*-alkyl-substituted indolo[1,2-*a*]quinoxalin-6(5*H*)-ones **3**. The reaction of **2a** with methyl iodide gave a good yield (77%) of compound **3a**. When **2a** was reacted with allyl bromide and propargyl bromide, compounds **3b** and **3c** were obtained in 62 and 65% yield, respectively.

Furthermore, the core skeleton of PARP-1 inhibitor C can be easily established by this protocol as well (Scheme 5). The coupling reaction of pyrrole 4 and the fluoride 5 led to the formation of the nitro compound 6 in 65% yield. The subsequent reduction of 6 with iron gave an excellent yield (90%) of the amine 7, which was then reacted with picolinic acid to access the picolinamide 8 in 75% yield. Gratifyingly, the direct C-H carbonylative reaction of 8 under our standard conditions could successfully construct the crucial pyrrolo[1,2a]quinoxalin-4(5H)-one skeleton 9 in 63% yield. Finally, according to the known procedures,³ PARP-1 inhibitor C can be synthesized via the reduction of 9 followed by amination.

On the basis of our results and previous reports,^{14,15} a plausible mechanism for this cobalt-catalyzed C–H carbonylation of N-(2-(1H-indol-1-yl)phenyl)picolinamides is proposed as shown in Scheme 6. Initially, the coordination of the Co(II) catalyst with the N-(2-(1H-indol-1-yl)phenyl)picolinamide **1a** followed by the oxidation of the Ag(I) salt forms the Co(III) species A'. Then, C–H bond activation at the C2 position of A' generates the Co(III) complex B'. Subsequently, the insertion of CO that is released from TFBen gives the acyl Co(III) intermediate C', which can be converted to the Co(I) complex D' via reductive elimination. Finally, the hydrolysis of D' leads to the formation of the target product 2a and releases the Co(I) species. The Co(I) species is then oxidized by the Ag(I) salt to regenerate the active Co(II) catalyst for the next catalytic cycle.

In conclusion, we have developed a facile and convenient approach to access free (NH)-indolo[1,2-a]quinoxalin-6(5H)-ones via a cobalt-catalyzed C-H carbonylation of N-(2-(1H-indol-1-yl)phenyl)picolinamides with TFBen as the CO source and picolinamide as the traceless directing group. This method also provides an efficient alternative for the establishment of the core skeleton of PARP-1 inhibitor C.

ASSOCIATED CONTENT

3 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c03900.

General information, procedures, analytic data, and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Jun Ying Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Email: yingjun@zstu.edu.cn
- Xiao-Feng Wu Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Leibniz-Institut für Katalyse e. V. an der Universität Rostock, 18059 Rostock, Germany; ◎ orcid.org/0000-0001-6622-3328; Email: xiao-feng.wu@catalysis.de

Authors

- Qian Gao Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- Jia-Ming Lu Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- Lingyun Yao Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China Siqi Wang – Department of Chemistry, Zhejiang Sci-Tech
- University, Hangzhou 310018, People's Republic of China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c03900

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge financial support from the Joint Funds of Zhejiang Natural Science Foundation and Taizhou (LTY21B020001) and the National Natural Science Foundation of China (21772177).

REFERENCES

(1) Campiani, G.; Aiello, F.; Fabbrini, M.; Morelli, E.; Ramunno, A.; Armaroli, S.; Nacci, V.; Garofalo, A.; Greco, G.; Novellino, E.; Maga, G.; Spadari, S.; Bergamini, A.; Ventura, L.; Bongiovanni, B.; Capozzi, M.; Bolacchi, F.; Marini, S.; Coletta, M.; Guiso, G.; Caccia, S. Quinoxalinylethylpyridylthioureas (QXPTs) as potent non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors. further SAR studies and identification of a novel orally bioavailable hydrazine-based antiviral agent. J. Med. Chem. 2001, 44, 305–315. (2) Diana, P.; Martorana, A.; Barraja, P.; Montalbano, A.; Dattolo, G.; Cirrincione, G.; Dall' Acqua, F.; Salvador, A.; Vedaldi, D.; Basso, G.; Viola, G. Isoindolo[2,1-*a*]quinoxaline derivatives, novel potent antitumor agents with dual inhibition of tubulin polymerization and topoisomerase I. *J. Med. Chem.* **2008**, *51*, 2387–2399.

(3) Miyashiro, J.; Woods, K. W.; Park, C. H.; Liu, X.; Shi, Y.; Johnson, E. F.; Bouska, J. J.; Olson, A. M.; Luo, Y.; Fry, E. H.; Giranda, V. L.; Penning, T. D. Synthesis and SAR of novel tricyclic quinoxalinone inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). *Bioorg. Med. Chem. Lett.* **2009**, *19*, 4050–4054.

(4) Desplat, V.; Moreau, S.; Belisle-Fabre, S.; Thiolat, D.; Uranga, J.; Lucas, R.; de Moor, L.; Massip, S.; Jarry, C.; Mossalayi, D. M.; Sonnet, P.; Déléris, G.; Guillon, J. Synthesis and evaluation of the antiproliferative activity of novel isoindolo[2,1-*a*]quinoxaline and indolo[1,2-*a*]quinoxaline derivatives. *J. Enzyme Inhib. Med. Chem.* **2011**, *26*, 657–667.

(5) (a) Yuan, Q.; Ma, D. A one-pot coupling/hydrolysis/ condensation process to pyrrolo[1,2-*a*]quinoxaline. *J. Org. Chem.* **2008**, 73, 5159–5162. (b) Chicharro, R.; de Castro, S.; Reino, J. L.; Arán, V. J. Synthesis of tri- and tetracyclic condensed quinoxalin-2ones fused across the C-3-N-4 bond. *Eur. J. Org. Chem.* **2003**, 2003, 2314–2326. (c) Beach, M. J.; Hope, R.; Klaubert, D. H.; Russell, R. K. Two step synthesis of substituted indolo[1,2-*a*]-quinoxalin-6-ones. *Synth. Commun.* **1995**, 25, 2165–2183.

(6) Kong, L.; Sun, Y.; Zheng, Z.; Tang, R.; Wang, M.; Li, Y. Chemoselective N-H or C-2 arylation of indole-2-carboxamides: controllable synthesis of indolo[1,2-*a*]quinoxalin-6-ones and 2,3'-spirobi[indolin]-2'-ones. *Org. Lett.* **2018**, *20*, 5251–5255.

(7) Gogoi, A.; Sau, P.; Ali, W.; Guin, S.; Patel, B. K. Copper(II)catalyzed synthesis of indoloquinoxalin-6-ones through oxidative Mannich reaction. *Eur. J. Org. Chem.* **2016**, 2016, 1449–1453.

(8) Balalaie, S.; Bararjanian, M.; Hosseinzadeh, S.; Rominger, F.; Bijanzadeh, H. R.; Wolf, E. Designing a sequential Ugi/Ullmann type reaction for the synthesis of indolo[1,2-*a*]quinoxalinones catalyzed by CuI/L-proline. *Tetrahedron* **2011**, *67*, 7294–7300.

(9) For selected reviews on oxidative carbonylation, see: (a) Liu, Q.; Zhang, H.; Lei, A. Oxidative carbonylation reactions: organometallic compounds (R-M) or hydrocarbons (R-H) as nucleophiles. *Angew. Chem., Int. Ed.* **2011**, *50*, 10788–10799. (b) Wu, X.-F.; Neumann, H.; Beller, M. Palladium-catalyzed oxidative carbonylation reactions. *ChemSusChem* **2013**, *6*, 229–241. (c) Gabriele, B.; Mancuso, R.; Salerno, G. Oxidative carbonylation as a powerful tool for the direct synthesis of carbonylated heterocycles. *Eur. J. Org. Chem.* **2012**, 2012, 6825–6839. (d) Díaz, D. J.; Darko, A. K.; McElwee-White, L. Transition metal-catalyzed oxidative carbonylation of amines to ureas. *Eur. J. Org. Chem.* **2007**, 2007, 4453–4465. (e) Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. Efficient synthesis of ureas by direct palladium-catalyzed oxidative carbonylation of amines. *J. Org. Chem.* **2004**, *69*, 4741–4750.

(10) For selected examples of carbonylative C–H activation, see: (a) Chen, M.; Ren, Z.-H.; Guan, Z.-H. Palladium-catalyzed regioselective carbonylation of C-H bonds of N-alkyl anilines for synthesis of isatoic anhydrides. J. Am. Chem. Soc. **2012**, 134, 17490– 17493. (b) Wen, J.; Tang, S.; Zhang, F.; Shi, R.; Lei, A. Palladium/ copper Co-catalyzed oxidative C-H/C-H carbonylation of diphenylamines: a way to access acridones. Org. Lett. **2017**, 19, 94–97. (c) Willcox, D.; Chappell, B. G. N.; Hogg, K. F.; Calleja, J.; Smalley, A. P.; Gaunt, M. J. A general catalytic β -C-H carbonylation of aliphatic amines to β -lactams. Science **2016**, 354, 851–857.

(11) (a) Mu, Q.-C.; Nie, Y.-X.; Bai, X.-F.; Chen, J.; Yang, L.; Xu, Z.; Li, L.; Xia, C.-G.; Xu, L.-W. Tertiary amine-directed and involved carbonylative cyclizations through Pd/Cu-cocatalyzed multiple C-X (X = H or N) bond cleavage. *Chem. Sci.* **2019**, *10*, 9292–9301. (b) Chandrasekhar, A.; Sankararaman, S. Synthesis of indolo- and pyrrolo[1,2-a]quinoxalinones through a palladium-catalyzed oxidative carbonylation of the C2 position of indole. *Org. Biomol. Chem.* **2020**, *18*, 1612–1622.

(12) Gao, Y.; Cai, Z.; Li, S.; Li, G. Rhodium(I)-catalyzed aryl C-H carboxylation of 2-arylanilines with CO_2 . Org. Lett. **2019**, 21, 3663–3669.

(13) Gordon, A. S.; Knipe, R. H. The Explosive Reaction of Carbon Monoxide and Oxygen at the Second Explosion Limit in Quartz Vessels. *J. Phys. Chem.* **1955**, *59*, 1160–1165.

(14) (a) Fu, L.-Y.; Ying, J.; Qi, X.; Peng, J.-B.; Wu, X.-F. Palladium-catalyzed carbonylative synthesis of isoindolinones from benzylamines with TFBen as the CO source. J. Org. Chem. 2019, 84, 1421–1429.
(b) Ying, J.; Gao, Q.; Wu, X.-F. Site-selective carbonylative synthesis of structurally diverse lactams from heterocyclic amines with TFBen as the CO source. J. Org. Chem. 2019, 84, 14297–14305. (c) Ying, J.; Fu, L.-Y.; Zhong, G.; Wu, X.-F. Cobalt-catalyzed direct carbonylative synthesis of free (NH)-benzo[cd]indol-2(1H)-ones from naphthylamides. Org. Lett. 2019, 21, 5694–5698.

(15) (a) Kommagalla, Y.; Chatani, N. Cobalt(II)-catalyzed C-H functionalization using an N,N'-bidentate directing group. *Coord. Chem. Rev.* 2017, 350, 117–135. (b) Grigorjeva, L.; Daugulis, O. Cobalt-catalyzed aminoquinoline-directed C(sp2)-H bond alkenylation by alkynes. *Angew. Chem., Int. Ed.* 2014, 53, 10209–10212.
(c) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly regioselective arylation of sp3 C-H bonds catalyzed by palladium acetate. *J. Am. Chem. Soc.* 2005, 127, 13154–13155.