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to achieve a 4-mm RMS error under identical
imaging conditions.

Reflectivity measurements with a test pattern
showed that our method provided at least 4 bits
of information; that is, 16 linear gray-scale levels
could be distinguished (figs. S6 to S9). We also
tested the repeatability of our method by collect-
ing 500 independent first-photon data trials for
the mannequin. We found our first-photon im-
ager to consistently demonstrate qualitative and
quantitative improvement over pointwise process-
ing (movie S2). Its performance was also repro-
ducible with other real-world scenes composed
of multiple distinct objects at different ranges
(figs. S10 to S12).

For completeness, we compared our imager
with image-denoising techniques. One such meth-
od median filters the pointwise estimates (Fig. 2,
A to C). Its reduction of noise resulting from anom-
alous detections comes at the expense of image
oversmoothing, which leads to loss of perceptual
information contained in edges, reflectivity, and
structural variations. State-of-the-art denoising
algorithms, like BM3D (21), exploit spatial cor-
relations to mitigate high levels of noise, but they
fail to match the performance of our imager be-
cause first-photon detection statistics differ from
the conventional noise models that such algo-
rithms presume (figs. S13 and S14).

Our computational first-photon imaging tech-
nique achieves its high-quality performance by
using spatial correlations to suppress Poisson
noise in reflectivity images and censor range anom-
alies from arrival-time data. It extracts more
information from the collection of single detec-
tions than state-of-the-art active imagers would.
Thus, it allows laser power to be reduced with-

out sacrificing image quality, something that
can be crucial for biological applications, such
as fluorescence-lifetime imaging (22, 23). It
also enables remote sensing at longer standoff
distances with power-limited transmitters and
could be combined with techniques for detecting
multiple depths per pixel (24). The system we
have demonstrated can be improved with better
background-light suppression (25), range gating
(26), and advances in single-photon detector tech-
nology (27, 28).
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Direct Stereospecific Synthesis of
Unprotected N-H and N-Me Aziridines
from Olefins
Jawahar L. Jat,1 Mahesh P. Paudyal,1 Hongyin Gao,1 Qing-Long Xu,1 Muhammed Yousufuddin,2

Deepa Devarajan,3 Daniel H. Ess,3*† László Kürti,1*† John R. Falck1*†

Despite the prevalence of the N-H aziridine motif in bioactive natural products and the clear
advantages of this unprotected parent structure over N-protected derivatives as a synthetic building
block, no practical methods have emerged for direct synthesis of this compound class from
unfunctionalized olefins. Here, we present a mild, versatile method for the direct stereospecific
conversion of structurally diverse mono-, di-, tri-, and tetrasubstituted olefins to N-H aziridines
using O-(2,4-dinitrophenyl)hydroxylamine (DPH) via homogeneous rhodium catalysis with no
external oxidants. This method is operationally simple (i.e., one-pot), scalable, and fast at
ambient temperature, furnishing N-H aziridines in good-to-excellent yields. Likewise, N-alkyl
aziridines are prepared from N-alkylated DPH derivatives. Quantum-mechanical calculations
suggest a plausible Rh-nitrene pathway.

Aziridines, the triangular, comparably high-
ly strained nitrogen analogs of epoxides,
are important synthetic intermediates (i.e.,

building blocks) en route to structurally complex

molecules because of their versatility in myriad
regio- and stereoselective transformations (ring
openings and expansions, as well as rearrange-
ments) (1–6). The aziridine structural motif,

predominantly N-H and to a lesser extent N-alkyl,
also appears in biologically active natural products
(e.g., azinomycins and mitomycins) (7–9). As a
result, the synthesis and chemistry of aziridines
have been the subject of intense research during
the past 25 years, resulting in multiple aziridina-
tion methods (10–23). Most of these methods rely
either on the transfer of substituted nitrenes, which
are generated by using strong external oxidants, to
the C=C bond of olefins or the transfer of sub-
stituted carbenes to the C=N bond of imines. Nor-
mally, the result is an aziridine bearing a strongly
electron-withdrawingN-protecting group (e.g., Ts:
para-toluenesulfonyl; Ns: para-nitrophenylsulfonyl);
removal of these N-sulfonyl protecting groups is
problematic as it often results in the undesired
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opening of the aziridine ring. In addition, the high
reactivity of N-protected nitrenes might give rise
to nonproductive allylic C-H amination products,
as well as the loss of stereospecificity. Clearly, the
direct synthesis of N-H (i.e., N-unprotected) and
N-alkyl aziridines would alleviate the above prob-
lems.However, a practical, functional group-tolerant
and environmentally benign direct preparation of
N-H aziridines from structurally diverse olefins has
so far eluded synthetic chemists (24–31). Here,
we report an operationally simple, inherently safe,
chemoselective and stereospecific conversion of a
wide range of olefins to the corresponding N-H or
N-Me aziridines via a rhodium-catalyzed pathway
free of external oxidants.

Recently, we developed a metal-free protocol
for primary amination of arylboronic acids using
onlyO-(2,4-dinitrophenyl)hydroxylamine (DPH,
1a, Fig. 1) as the stoichiometric aminating agent
(32). The transformation proceeds under neutral
or basic conditions and can be conducted on a
multigram scale to provide structurally diverse
primary arylamines. The versatility and robust-
ness of 1a prompted us to explore other uses of
this aminating agent, specifically for the direct
functionalization of readily available and in-
expensive olefins. Our investigations began by
subjecting 1:1.5 mixtures of cis-methyl oleate
(7)/1a, as well as styrenes (3a and 3b)/1a, to a
vigorous screening with various transition metal
complexes (tables S1 and S2). This initial screen
identified Rh2(OAc)4 as a promising catalyst for
vic-amino-oxyarylation of olefins. Further evalu-
ation of dimeric rhodium dicarboxylate complexes
(table S3) revealed that just 1mol% loading ofDu
Bois’ catalyst (33–36) (2, Fig. 1) in acetonitrile
(MeCN) leads to amino-oxyarylated styrenes 4a
and 4b at room temperature in 56% and 75% iso-
lated yields, respectively. These promising results
prompted us to conduct a thorough solvent screen.

In methanol, we observed the incorporation
of the MeO group at the benzylic position (5) in
addition to the amino-oxyarylated product 4b; these
compounds were isolated in a combined yield of
78%. At this juncture, we reasoned that a highly
polar, hydroxylic, and nonnucleophilic solvent such
as 2,2,2-trifluoroethanol (CF3CH2OH, TFE) would
completely avoid the incorporation of solvent
into the products. Indeed, 3b was cleanly amino-
oxyarylated in TFE, and 4b was isolated in 66%
yield. It was unclear whether the transformation
3b→4b involved the opening of a highly reactive
aziridine (6) or an alternative process. Surpris-
ingly, when 7was reacted in trifluoroethanol as
solvent, cis-N-H aziridine 8 was isolated in excel-
lent yield (83%) instead of the expected amino-
oxyarylated product. The transformation proceeded
with complete stereospecificity as no traces of
the trans-N-H aziridine were detected by 1H- and
13C–nuclear magnetic resonance (13C-NMR) anal-
ysis (≤2% sensitivity).

Encouraged by this unexpected result, we
initiated a systematic study using representative
aliphatic olefins with a wide range of substitution
patterns and functionalities (Fig. 2). Terminal ali-

phatic olefin substrates (entries 1 to 3, Fig. 2)
either did not react or reacted sluggishly (i.e., days)
when 1 mol % of catalyst 2 was used; however,
increasing the catalyst loading to 5 mol % led to
rapid conversion at room temperature to the cor-
responding N-H aziridines (10a to 10c). We em-
pirically found that in some of the reactions (i.e.,
entries 4, 5, 7, 9, 11, 14, and 20), addition of the
catalyst in several 1 mol % portions minimized
decomposition of both the catalyst and aminating
agent and invariably led to higher isolated yield
of product. Notably, the N-H aziridination took
place efficiently in the presence of a labile termi-
nal epoxide (10c), as well as an unprotected primary
alcohol (10a); these functionalities typically inter-
fere with currently used aziridination protocols. In
case of the transformation 9c→10c, only the pro-
duct was detected in the crude reaction mixture by
NMR analysis. In the presence of 1 mol % of cat-
alyst 2, both cis- and trans-1,2-disubstituted ali-
phatic olefins (entries 4 to 10, Fig. 2) underwent
smooth and stereospecific N-H aziridination at
room temperature as established by 13C-NMR
analysis (≤2% sensitivity). The presence of an
unprotected secondary alcohol in substrate 9i
(entry 9) did not influence the stereochemical
outcome of the N-H aziridination and 10i was
isolated as a 1:1 mixture of diastereomers.

Benzoyloxy and acetyloxy cis-olefins 9k and
9m (entries 11 and 14), when exposed to 1mol%
of catalyst 2 and 1.2 equivalents of aminating
agent 1a at 50°C, were smoothly aziridinated
followed by an in situ aziridine ring-opening (via
transacylation) to yield the corresponding trans-

2,3- disubstituted furans 10kk and 10mm in 84%
and 61% yields, respectively. By contrast, when
olefin 9k was exposed to 5 mol % loading of
catalyst 2 and 1.2 equivalents of 1a at 25°C, the
expectedN-H aziridine 10k (entry 12)was formed
in just 2 hours and isolated in 69% yield. As
anticipated, when the rate of N-H aziridination is
slow and elevated temperatures are used, sec-
ondary processes (i.e., intramolecular annulation)
that consume the initially formed N-H aziridines
can dominate. Apparently, a fivefold increase
in catalyst loading increased the rate of N-H
aziridination sufficiently that it could take place
rapidly at ambient temperature.

Cyclohexene 9n (entry 15) was aziridinated
at room temperature to afford cyclic N-H aziridine
10n; no traces of allylic C-H amination (i.e.,
1-amino-2-cyclohexene) could be detected by
1H-NMR analysis (≤2% sensitivity), in sharp con-
trast with other metal nitrene-based aziridination
methods (37). Geraniol (9o, entry 16) and geranyl
acetate (9q, entry 18), which incorporate two
trisubstituted C=C double bonds, were N-H
aziridinated regioselectively, favoring the double
bond at the D6,7-position over the D2,3-position
in both cases.

The shift of the regioisomeric ratio from 1:5
in 10o to 1:14 in 10q suggests a subtle directing
effect of the free allylic alcohol and/or an induc-
tive deactivation by the acetate; perhaps the ex-
tent of H-bonding in the solvent also plays a role.
Entry 17 stands as a testament to the extraordi-
narily mild reaction conditions as trisubstituted
olefin 9p, which possesses a highly sensitive epoxy

A Initial screening of catalytic systems:

R

3a (R = H); 3b (R = OMe)

R
OAr

NH2

OAr = 2,4-dinitrophenoxy

DPH (1a) (1.5 equiv)
Rh2(esp)2 (1 mol%), MeCN, rt

Me

Me
O

O
O

Me Me

ORh
O

Me Me

O

Me

O

Rh

O
Me

Du Bois' catalyst 2, Rh2(esp)2

4a (56%); 4b (75%)

DPH (1a)
(1.5 equiv)
Rh2(esp)2
(5 mol%)
MeOH
rt, 6 h

MeO
OMe

NH2

5 (56%)
+4b (22%)

MeO
OAr

NH2

DPH (1a) (1.5 equiv)
Rh2(esp)2 (1 mol%)
CF3CH2OH, rt, 2 h

4b (66%)
single product

B Formation of an N-H aziridine:

Me
( )7 OMe

O

( )7

7, cis-methyl oleate

DPH (1a) (1.2 equiv)
Rh2(esp)2 (1 mol%)

CF3CH2OH [0.1 M], rt, 3 h
Me

( )7 OMe

O

( )7

8 (83%), cis-N-H Aziridinei

H
N

MeO NH

6

O

NO2

O2N

HN R

1a, (R = H; DPH)
1b, (R = Me; N-Me-DPH)

Fig. 1. Exploration ofDPH (1a) as a versatile aminating agent. (A) Rh2(esp)2 is an effective catalyst
for olefin difunctionalization. (B) In 2,2,2-trifluoroethanol (TFE or CF3CH2OH), 7 undergoes direct
aziridination to N-H aziridine 8 in excellent isolated yield.

3 JANUARY 2014 VOL 343 SCIENCE www.sciencemag.org62

REPORTS



alcohol, was aziridinated rapidly and efficiently to
epoxy N-H aziridine 10p in excellent yield. The
transformation 9q→10q (entry 18) could be readily
scaled up (6 mmol) with minimal erosion of the
isolated yield to provide gram quantities of 10q.
N-H aziridination of limonene 9r (entry 19) fa-
vored the trisubstituted ring double bond with
9:1 regioselectivity; however, the chiral center had
no evident influence on the diastereoselectivity
(1:1 drdr, diastereomeric ratio). In contrast with the
lack of stereoselectivity in 9i, cholesterol 9s (entry
20) exclusively yielded the b-N-H aziridine 10s in
71% yield; this unexpected stereochemical out-

come, confirmed by single-crystal x-ray analysis
of 10ss (a crystalline derivative of 10s), suggests a
directing effect by the adjacent C(3)-b-alcohol
not observed in conformationally more mobile
acyclic molecules such as 9i. The success with
cholesterol and other natural products (7, 9h, 9i, 9o
and 9r; Figs. 1 and 2) highlights the prospective
utility of this method in the straightforward
elaboration of molecules of biomedical interest
(e.g., for 15N-labeling studies).

Next, we turned our attention to the direct
N-H aziridination of di-, tri- and tetrasubstituted
styrenes and stilbene (entries 21 to 28, Fig. 3A).

In general, styrenes were more reactive than ali-
phatic olefins, and often lower temperatures (–10° to
25°C) were adequate. Conspicuously, cis-b-methyl
styrene 11d furnished the corresponding cis-2-Ph-
3-Me N-H aziridine (12d, entry 24) without isom-
erization. Similarly, trans-b-methyl styrene 11c
readily furnished trans-2-Ph-3-Me N-H aziridine
(12c, entry 23) even on a 1- to 8-mmol scale. The
N-H aziridine derived from 2-Me indene (12h,
entry 28) was not isolated owing to its high re-
activity, but instead reduced in situ to amine 12hh.
Evaluation of the effect of catalyst loading on the
reaction 11f→12f (entry 26) revealed that the

(18): 10q

1a (1.2 eq.), 2 (1 mol%), 25 oC, 3 h
81% [1:14 regiosel. favoring 6,7]

72% of 10p on 6 mmol scale

50 oC, 96 h

84%

Structure of N-H Aziridines
(Entry): Compound #; T (oC), t (h), Isolated Yield (%), Regio - and diastereoselectivity [ratios]

O

NO2

O2N
CF3CH2OH [0.1 M]

2, Rh2(esp)2
+

R1

R4

R1

R4N

H

(1.0 equiv)
NH2

1a9a-s 10a-s
0.5 mmol scale

(8): 10h
1a (1.2 equiv), 2 (1 mol%)

25 oC, 2 h; 91%

Me

O

OMe

HN OH

Me

O

OMe

H
N

TBDPSO
OH

H
N

Me
Me NHOAc

MeMe

Me
HN 2

36

7

Ph

O

OMe

HN

CHMe2

Me
Me

Me

HO
H

H

H

HN

OH

HN

(9): 10i
1a (1.2 equiv), 2 (3x1 mol%)

25 oC, 6 h; 82% [1:1 dr]

( )6 ( )5

OH

MeMe

Me
HN 2

36

7

(16): 10o

1a (1.2 eq.), 2 (1 mol%)
25 oC, 5 h; 71%

[1:5 regiosel. favoring 6,7]

OMe

H
N

(5): 10e

1a (1.2 equiv), 2 (3x1 mol%)
25 oC, 36 h; 78%

Ph

TBS
O

Me

HN

(6): 10f
1a (1.2 equiv), 2 (1 mol%)

25 oC, 4 h; 72%

O
Me

H
N

TBS

(7): 10g
1a (1.2 equiv), 2 (2 x 1 mol%)

25 oC, 29 h; 55%

(10): 10j
1a (1.2 equiv), 2 (1 mol%)

25 oC, 1 h; 86% + 4% of 10jj

O
Me

H
N

Ph

O

O
Me

H
N

(12): 10k
Ph

O

Me

O

OMe

HN

(13): 10l
1a (1.2 equiv), 2 (1 mol%)

25 oC, 1.5 h; 83%

(19): 10r

1a (1.2 eq.), 2 (1 mol%)
0 to 25 oC, 12 h; 72%
[1:1 dr]; 9:1 regiosel.

(20): 10s
1a (2.2 equiv)
2 (2x1 mol%)
THF:TFE (1:1)

25 oC, 48 h; 71%
Converted to

10ss for x-ray
10ss m.p. =
157-158 oC

( )7

( )7 ( )7

O
Me

H
N

Ph

O

10jj

(4): 10d

1a (1.2 equiv), 2 (2x1 mol%)
25 oC, 3 h; 64%

(1): 10a

1a (1.2 equiv), 2 (5mol%)
25 oC, 2 h; 59%

OTBS

HN

(2): 10b

1a (1.2 equiv), 2 (5 mol%)
25 oC, 2 h; 72%

HN

(3): 10c

1a (2 equiv), 2 (5 mol%)
25 oC, 5 h; 77%

O

N-H Aziridination of aliphatic mono-, di-, and tri-substituted olefins:

NH

(15): 10n

1a (1.2 equiv), 2 (1 mol%)
25 oC, 3 h; 71%

( )3

OH

MeMe

Me
HN 2

36

7

(17): 10p

1a (1.2 eq.), 2 (1 mol%)
0-5 oC, 4 h; 84%

[1:1 dr]

O

( )2

( )2

R2

R3

R2

R3

O
Me

Ph

O

(11): 10kk

1a (1.2 equiv)
2 (4 x 1 mol%)

9k

1a (1.2 equiv), 2 (5 mol%)

25 oC, 2 h; 69% O
Me

Me

O

50 oC, 51 h

61%
O

Me

H
N

Me

O

(14): 10mm

1a (1.2 equiv)
2 (4 x 1 mol%)

9m

CHMe2

Me
Me

Me

O
H

H

H

N
Ts
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Fig. 2. Direct and stereospecific N-H aziridination of olefins. Reactions were conducted at 0.1 M using 2,2,2-trifluoroethanol as solvent and at 0.5-mmol
scale unless otherwise indicated. To obtain crystalline material, 10s was O-acetylated and N-tosylated (Ts, para-toluenesulfonyl) to afford derivative 10ss.
(TBS, tert-butyl-dimethylsilyl; TBDPS, tert-butyl-diphenylsilyl)
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lowest practical loading of catalyst 2, without de-
creasing the isolated yield or drastically increasing
the reaction time, was 0.5 mol %. This low cat-
alyst loading renders the process economical and
environmentally friendly. A further fivefold reduc-
tion in catalyst loading (from 0.5 to 0.1 mol %)
resulted in a 25-fold increase in reaction time and
a 30% drop in the isolated yield of 12f. Tetra-
substituted olefin 11g (entry 27) was easily N-H
aziridinated at room temperature; 12g was iso-
lated in 70% yield. The attempted direct N-H
aziridination of 1-Ph-1-cyclopropylethene (11b)
yielded only amino-oxyarylated product 12b; the
complete lack of cyclopropane ring-opening pro-
ducts corroborate an aziridination pathway that
does not involve long-lived radical or carbocation
intermediates (see more detailed discussion of the
mechanism in the computation section and inFig. 4).

The practicality and broad scope of the pre-
ceding direct and stereospecific N-H aziridination
of olefins (Fig. 2 and Fig. 3A) prompted an in-
vestigation of direct N-Me aziridination. Toward

this end, several di- and trisubstituted aliphatic
olefin and styrene substrates (entries 29 to 33,
Fig. 3B) were examined in the presence of 1b as
the stoichiometric aminating agent and 1 to 2mol
% of catalyst 2. TheN-Me aziridination of olefins
also proceeded stereospecifically (entries 29 and
30) and, in the case of geraniol acetate 9q, the
regioselectivity increased from 1:14 (in 10q) to
>1:30 (in 13c), favoring the D6,7-olefin in both
cases.

Two of the N-H aziridine products (12c and
12f) were subjected to ring-opening transforma-
tions (Fig. 3C). Upon catalytic hydrogenation,
aziridine 12c afforded a 94% yield of ampheta-
mine 15, the active pharmaceutical ingredient in
Adderall, an approved medication for attention
deficit hyperactivity disorder, as well as narco-
lepsy, that is marketed as a mixture of enantio-
mers. Under acidic conditions, at slightly elevated
temperature (40°C) in MeOH, 12c was converted
to O-Me-norephedrine 14 with complete regiose-
lectivity and in nearly quantitative yield. Likewise,

the ring-opening of trisubstituted N-H aziridine 12f
with sodium azide furnished azidoamine 16 in 79%
yield. These transformations by example illustrate
how readily a nitrogen atom can be introduced into
molecules.

We also examined prospective reactionmech-
anisms using quantummechanical density-functional
theory calculations (Fig. 4). Our (U)M06 calcu-
lations were carried out in Gaussian 09 (38) using
a polarizable conductor continuum solvent model
for trifluoroethanol. Details of calculated transi-
tion states and intermediates are given in the sup-
plementary materials.

We first examined plausible rhodium nitrene
pathways. Generation of a rhodium nitrene in-
termediate is possible if the amino group of 1a
coordinates to Rh2(esp)2 followed by loss of
dinitrophenol (pathway A, Fig. 4). Calculations
suggest that the triplet-spin state of the nitrene
(317) is more than 8 kcal/mol lower in energy
than the open-shell singlet, and reaction pathways
identified on the triplet-spin energy surface were
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Fig. 3. Direct and stereospecific N-H and N-Me aziridination of olefins. Reactions were conducted at 0.1 M using 2,2,2-trifluoroethanol as solvent and
at 0.5-mmol scale unless otherwise indicated. CSA, camphorsulfonic acid.
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found to be lower in energy than reaction path-
ways on the singlet-spin energy surface (39, 40).
Because the Rh2(esp)2 catalyst and aziridine
product have singlet-spin ground states, the re-
action pathway must involve spin interconversion.
The mechanism outlined in Fig. 4 provides a
route for stereospecific aziridination if 317 re-
acts with alkenes by forming the first C–N bond
via triplet transition state TS1 followed by spin
interconversion along the pathway to diradical
intermediate 19 or fast spin interconversion at
the diradical intermediate (41). After spin inter-
conversion, the second C–N bond is formed by
the coupling of singlet-paired electrons without
a barrier and leads directly to aziridine 20.

As alternatives to nitrene pathways, we also
explored polar mechanisms involving Rh-amine
and Rh-alkene coordination modes (see supple-
mentary materials). One of several possible polar
mechanisms is outlined as pathway B in Fig. 4.
This pathway is akin to the mechanism proposed
for amination of aryl boronic acids with 1a (32).
Although this mechanism may account for amino-
oxyarylated products (e.g., 4a and 4b) observed
under some experimental conditions, the calculated
barrier for this mechanism, as well as alternative
polarmechanisms, is higher in energy than the nitrene
mechanism presented in pathway A.
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