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Abstract: Madangamines are a group of bioactive marine
sponge alkaloids, embodying an unprecedented diazapenta-
cyclic skeletal type. The enantioselective total synthesis of
madangamine D has been accomplished, and represents the
first total synthesis of an alkaloid of the madangamine group. It
involves the stereoselective construction of the diazatricyclic
ABC core using a phenylglycinol-derived lactam as the starting
enantiomeric scaffold and the subsequent assembly of the
peripheral macrocyclic rings. The synthesis provides, for the
first time, a pure sample of madangamine D and confirms the
absolute configuration of this alkaloid family.

Sponges of the order Haplosclerida have proven to be a rich
source of structurally diverse but biogenetically related
alkaloids,[1] most of which display significant biological
activities. These marine alkaloids comprise a great variety
of unusual skeletal types, including an array of complex
polycyclic diamine structures bearing macrocyclic rings, such
as saraines, ingenamines, manzamines, nakadomarin A, and
madangamines.[2] Madangamines are one of the least studied
of these alkaloids from a synthetic standpoint,[3] and no total
synthesis on this series has been reported so far.[4] The first
isolation of an alkaloid of this group was madangamine A,
which was reported by Andersen and co-workers in 1994[5] to
have been found in the marine sponge Xestospongia ingens,
collected in Papua New Guinea. A few years later the same
team described[6] four new related alkaloids, madangami-
nes B–E,[7] from the same organism, and more recently,
Berlinck and co-workers reported the isolation of madanga-
mine F from the Brazilian sponge Pachychalina alcaloidi-
fera.[8] Madangamines A and F have shown significant in vitro
cytotoxicity against a number of tumor cell lines. However, no
bioactivity data have been reported for madangamines B–E,
and further pharmacological research on this alkaloid group
has been thwarted by the minute amounts of alkaloid samples
available from natural sources.

Structurally, madangamines are pentacyclic alkaloids with
an unprecedented skeletal type, characterized by a diazatri-
cyclic core (ABC rings) bearing three contiguous stereogenic
centers, one of them quaternary, and two linear carbon
bridges which connect N7 to C9 (D ring) and N1 to C3
(E ring). The peripheral macrocyclic ring D is different in
each madangamine, in size as well as in degree and position of
unsaturation, whereas ring E is identical in madangamines A–
E but different in madangamine F, which also incorporates
a C4 hydroxy group (Figure 1).

We present herein the enantioselective synthesis of
(+)-madangamine D, and it provides, for the first time,
a pure sample[7] of this natural product and constitutes the
first total synthesis of an alkaloid of the madangamine group.
By using a phenylglycinol-derived bicyclic lactam[9] as the
starting enantiomeric scaffold,[10] our approach involves the
initial construction of the bridged diazatricyclic ABC core
common to all madangamines,[11] and the subsequent building
of the macrocyclic D and E rings (Figure 2).

The starting enantiopure lactam 2 was easily accessible[12]

by cyclocondensation of the oxoester 1 with (R)-phenyl-
glycinol, a process which installs the first stereocenter (C5 in
the madangamine numbering)[13] by dynamic kinetic resolu-
tion of the racemic substrate. The key functionalized diaza-
tricyclic intermediates would be prepared from an unsatu-
rated lactam, derived from 2, by successive construction of the
carbocyclic C and piperidine A rings. Crucial stereochemical
issues are the generation of the required B/C cis ring junction,
by a stereoselective conjugate addition reaction followed by
a ring-closing metathesis process, and the control of the C9

Figure 1. Alkaloids of the madangamine group.
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stereochemistry in the alkylation step. Finally, the assembly of
the macrocyclic rings would be accomplished by a ring-closing
metathesis reaction (ring D) and a Wittig olefination followed
by macrolactamization (ring E).

The overall synthetic sequence is shown in Scheme 1. The
lactam 2 was converted in excellent overall yield to the
unsaturated lactam 3, through an epimeric mixture of
intermediate seleno derivatives. A stereoselective, stereo-
electronically controlled,[14] conjugate addition of an allyl
residue led to the cis-diallyl-substituted lactam 4, from which
the carbocyclic C ring was constructed by a ring-closing
metathesis reaction to give the cis-octahydroisoquinolone
derivative 5. A stereoselective alkylation from the most
accessible face of the b-ketoester moiety of 5 generated the
quaternary C9 stereocenter in 6 and installed a C9 function-
alized carbon chain. At this point, the removal of the
phenylethanol moiety from the chiral auxiliary was achieved
by successive treatment of 6 with Na in liquid NH3, which
caused the cleavage of the benzylic C�N bond, and LiAlH4,
which brought about the reduction of the resulting unstable a-
oxylactam. Under the latter conditions, the lactam and ester
carbonyl functions were also reduced to give an N-unsub-
stituted piperidine-3-methanol derivative, which was imme-
diately protected as the N-Boc piperidine 7. In this way, the
tert-butoxycarbonyl group not only provided activation
towards the conjugate addition step and allowed the stereo-
selective alkylation of the 1,3-dicarbonyl intermediate 5, but
also serves as the precursor of the aminomethyl chain
required for the closure of the piperidine A ring. The latter

was accomplished by a stereocontrolled cascade amino-
hydroxylation. To this end, once 7 was converted into the
azide 8 via a mesylate, and the cyclohexene double bond was
epoxidized, a Staudinger reduction of 9 led to an intermediate
amino epoxide, which underwent a smooth in situ cyclization.
A subsequent protection of the resulting diazatricyclic alcohol
led to the N-tosyl derivative 10.

With the functionalized diazatricyclic derivative 10 in
hand, the next phase of the synthesis was the construction of
the western 14-membered D ring.[15] After benzylation of the
C3 hydroxy group, selective deprotection of N7 in the
resulting orthogonally protected diamino derivative, followed
by acylation with 7-octenoyl chloride, led to the tricyclic
amide 11. Hydrolysis of the acetal function and Wittig
methylenation of the resulting aldehyde gave the required
dialkene derivative 12. A ring-closing metathesis reaction of
12 under dilute conditions using the first-generation Grubbs
catalyst provided the expected tetracyclic alkene 13 (2:1
mixture of Z/E isomers). A subsequent catalytic hydrogena-
tion, which led to both the reduction of the carbon–carbon
double bond and the removal of the benzyl ether protecting
group, followed by Dess–Martin periodinane oxidation of the
resulting alcohol led to the ketone 14, which served as
a platform to construct the eastern 11-membered E ring.

The (Z,Z)-unsaturated eight-carbon fragment required to
complete the synthesis of madangamine D was incorporated
in a straightforward manner by a Wittig reaction using the
ylide generated from the phosphonium salt 15[16] under strictly
anhydrous conditions. Removal of the tosyl substituent in the
resulting diastereoisomeric mixture of alkenes 16 (2.2:1 Z/E
ratio),[17] followed by hydrolysis of the ester function and
macrolactamization, led to the pentacyclic dilactam 17. A
final LiAlH4 reduction provided madangamine D. The 1H and
13C NMR data of our synthetic madangamine were coincident
with those reported[6] for the natural product (see Tables in
the Supporting Information).

To date, the absolute configuration of madangamines has
only been inferred by correlation with that of their presu-
med[1,2b,d, 3a,b] biosynthetic precursors, ingenamines.[18] Given
that our synthetic madangamine D, having unambiguous 2S,
5S, 9R, 12R absolute configuration, has a specific rotation
{[a] =+ 101.3 (c = 0.29, CHCl3)} with the same sign as in the
closely related madangamines A–C,[19] our synthesis confirms
the absolute configuration of this alkaloid family.

Madangamine D showed significant in vitro cytotoxic
activity against human colon HT29 (GI50 4.4 mgmL�1) and
pancreas PSN1 (GI50 7.4 mgmL�1) cancer cell lines, but was
inactive against lung NSCLC A549 and breast MDA-MB-231
cancer cell lines at the highest assayed concentration
(10 mgmL�1).

By using appropriately C9-substituted diazatricyclic
derivatives, the strategy we have developed could be applied
to the synthesis of other members of the madangamine
group.[20]
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Figure 2. Synthetic strategy.
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Total Synthesis of (+)-Madangamine D

Mad about madangamines : The first total
synthesis of an alkaloid of the madang-
amine group has been accomplished.
Using a phenylglycinol-derived lactam as
the starting enantiomeric scaffold, the
synthesis of (+)-madangamine D
involves the successive construction of

the six-membered carbocyclic C and
heterocyclic A rings to generate the
functionalized diazatricyclic ABC inter-
mediates and the subsequent assembly
of the peripheral macrocyclic D and
E rings. Ts = 4-toluenesulfonyl.
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