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- High efficiency & green chemistry
- Up to 99% yield
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Abstract Hydroxybenzoquinones and hydroxynaphthoquinones react
with methyl coumalate and 5-cyanopyrone to generate anthraquinones
and naphthoquinones in good to excellent yields.

Key words anthraquinone, naphthoquinone, pyrone, base-promot-
ed, synthesis

Direct and sustainable routes to quinones are important
to a number of sectors, including the polymer and pharma-
ceutical sectors. Anthracene diesters have been employed
as monomers for poly(ethylene anthracenates) (PEAs). PEAs
such as 2,6-PEA (1) have barrier properties and UV-block-
ing ability that are superior to polyethylene terephthalate
(PET; 2) (Figure 1).1 As a result, the structure-function rela-
tionships of PEAs, a necessary foundation for the rational
design of commercially viable specialty polymers, is of cur-
rent interest. In the pharmaceutical sector, natural products
such as AM5221 (3), and tomichaedin (4) are naphthoqui-
nones.2

Scheme 1 shows our approach to anthracene 5 from an-
thraquinone 6 which, in turn, might be derived from meth-
yl coumalate and a benzoquinone (7). Although only the di-
methoxy version of 5 is shown, this strategy will permit the
ready synthesis of tunable monomers with different alkyl
groups and thus different properties. Methyl coumalate is
available from malic acid in a one-pot process.3 We evaluat-
ed a variety of X groups in benzoquinone 7, including me-
thoxyl (7a), morpholinyl (7b), and hydroxyl (7c). Only dihy-
droxybenzoquinone reacted to give 6. Previous routes to 6
have utilized starting materials derived from petroleum
sources and some routes involved multistep pathways.4 Im-
portantly, the monomers described herein are derived from

renewable sources, aligning well with the current sustain-
able plastics initiatives and the goals of the recent OECD
global forum on plastics in a circular economy.5

Scheme 1  Retrosynthetic analysis of 6

Figure 1  Structures of 2,6-PEA, PET, AM5221 and tomichaedin
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After screening solvents and conditions (Table 1), the
addition of base was found to be essential for the conver-
sion of 7 into 6. The dimethoxyquinone 7a and dimor-
pholinylquinone 7b did not show any Diels–Alder reactivity
under thermal conditions. The best result was obtained by
reacting methyl coumalate with dihydroxyquinone 7c, with
a catalytic amount of triethylamine in acetonitrile under re-
flux for one day:

Table 1  Screening for Optimal Conditions

Dimethyl 2,6-anthraquinonedicarboxylate 6 was ob-
tained in 98% yield. Conducting the reaction in the absence
of oxygen was critical for excellent yields. Taking advantage
of the low solubility of the anthraquinone diester, the crude
material was isolated on a 20-gram scale simply by heating
to reflux in ethyl acetate followed by filtration. Since base
promotion is essential, these reactions are likely not con-
certed cycloadditions in the Diels–Alder mode and seem to
be mechanistically different from the classic quinone cyc-
loaddition chemistry of Jung, Houk and Hendrickson.6 We
believe that the reaction occurs via an intermolecular Mi-
chael addition followed by an intramolecular aldol reaction
and loss of water and carbon dioxide.

With the optimal conditions in hand, other hydroxyqui-
nones and substituted pyrones were tested as substrates.
Some of them showed good reactivities with a moderate
yield (Scheme 2). The corresponding products 9a–c were
isolated as a single regioisomer. The reaction of methyl

coumalate with 5-methoxy-2-hydroxybenzoquinone 8 re-
quired a stoichiometric amount of triethylamine as base at
a lower temperature for the best result. It is worth mention-
ing that the reaction between methyl 3-propynylcoumalate
with corresponding quinone afforded the product 9c,
wherein the intermediate alkyne was transformed into a
methyl ketone through a hydration process.

Scheme 2  Scope of the reaction (naphthoquinone)

Base-promoted reactions were carried out under the
same conditions using lawsone (10) as the substrate. The
reaction with methyl coumalate and 5-cyanopyrone afford-
ed anthraquinones 11a and 11b in moderate yield (Scheme 3).

Scheme 3  Scope of the reaction (anthraquinone)

Tomichaedin methyl ester, readily derived from chaeto-
midin, was previously prepared by Thomson in a nine-step
route.7 Our synthesis used naphthoquinone 9a. Cleavage of
the methyl ether with AlCl3 followed by methylation using
paraformaldehyde with formic acid afforded tomichaedin
methyl ester in two steps from 9a, as illustrated in Scheme 4.

Scheme 4  Total synthesis of tomichaedin methyl ester

To conclude, methyl coumalate and 5-cyanopyrone re-
act readily with hydroxyquinones under slightly basic con-
ditions.8 Dimethyl 2,6-anthraquinone dicarboxylate can be

Entry Reactant Solvent Temp (°C) Base Yield

 1 7a MeCN  80 – no reaction

 2 7a toluene  80 – no reaction

 3 7b MeCN  80 – no reaction

 4 7b DMF  80 – no reaction

 5 7b DMSO 150 – 0a

 6 7c toluene  80 – no reaction

 7 7c CH2Cl2  40 – no reaction

 8 7c MeCN  80 – no reaction

 9 7c MeCN  80 NEt3 67

10 7c MeCN (Ar)  80 NEt3 98

11 7c DMF  80 NEt3 <5

12 7c DMSO  80 NEt3 trace

13 7c water 100 NEt3 0a

a Full decomposition of starting materials.
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obtained on a 20-gram scale. Tomichaedin methyl ester was
synthesized in three steps from commercially available
compounds.
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5,8-dihydronaphthalene-2-carboxylate (9a)
To a solution of methyl coumalate (555 mg, 3.6 mmol, 0.9 equiv)
and hydroxyquinone 8 (552 mg, 4.0 mmol, 1.0 equiv) in aceto-
nitrile (20 mL), triethylamine (405 mg, 4.0 mmol, 1.0 equiv) was
added, and the solution turned dark-red immediately. The
mixture was stirred under argon at 45 °C for 24 hours (moni-

tored by 1H NMR) then was cooled to ambient temperature.
0.5 M HCl solution was added, and the mixture was extracted
with ethyl acetate three times. The organic phase was washed
with brine and was dried over Na2SO4. Purification by column
chromatography gave the product 9a (45% yield) as a light-
brown solid. 1H NMR (400 MHz, CDCl3):  = 8.75 (d, J = 1.6 Hz,
1 H), 8.39 (dd, J = 8.0, 1.5 Hz, 1 H), 8.16 (d, J = 8.1 Hz, 1 H), 6.23
(s, 1 H), 3.98 (s, 3 H), 3.93 (s, 3 H). 13C NMR (101 MHz, CDCl3):
 = 184.2, 179.5, 165.6, 160.9, 135.2, 134.9, 134.8, 131.3, 128.2,
126.8, 110.4, 56.8, 53.0. HRMS (ESI-QTOF): m/z [M + H]+ calcd
for C13H10O5: 247.0601; found: 247.0600.
Synthesis of Tomichaedin Methyl Ester
Methyl 7-Hydroxy-5,8-dioxo-5,8-dihydronaphthalene-2-car-
boxylate (12)
Under argon, a suspension of methoxy quinone 9a (180 mg,
0.73 mmol, 1.0 equiv) and AlCl3 (195 mg, 1.46 mmol, 2.0 equiv)
in DCE (5 mL) was stirred under reflux for 1 hour. The reaction
mixture was allowed to cool, 0.5 M HCl was added, and the
mixture was extracted with ethyl acetate three times, and the
organic phase was dried over Na2SO4. Filtration through a thin
silica pad followed by removal of solvent afforded the product
12 as a solid, which was pure enough to use in the next step.
1H NMR (400 MHz, CDCl3):  = 8.75 (d, J = 1.7 Hz, 1 H), 8.44 (dd,
J = 8.0, 1.7 Hz, 1 H), 8.20 (d, J = 8.0 Hz, 1 H), 7.39 (s, 1 H), 6.43 (s,
1 H), 4.00 (s, 3 H). 13C NMR (101 MHz, CDCl3):  = 184.3, 181.4,
165.4, 156.9, 136.1, 135.7, 134.7, 129.7, 128.0, 127.3, 111.4,
53.1. HRMS (ESI-QTOF): m/z [M]– calcd for C12H8O5: 232.0370;
found: 232.0323.
Tomichaedin Methyl Ester (13)
To a stainless-steel reactor, hydroxy quinone 12 (68 mg, 0.3
mmol, 1.0 equiv) was dissolved in a mixture of ethanol/water
(1:1 ratio, 2 mL), and paraformaldehyde (40 mg, 1.2 mmol, 4.0
equiv) was added. The reactor was sealed under air, and was
heated to 200 °C for 3 hours. After cooling, the mixture was
diluted with 0.5 M HCl, and extracted with ethyl acetate. Filtra-
tion through a thin silica pad (the compound was found to be
unstable on silica) afforded tomichaedin methyl ester 13 (40%
over two steps) as a light-yellow solid. 1H NMR (400 MHz,
CDCl3):  = 8.71 (d, J = 1.7 Hz, 1 H), 8.39 (dd, J = 8.0, 1.8 Hz, 1 H),
8.20 (d, J = 8.0 Hz, 1 H), 3.99 (s, 3 H), 2.13 (s, 3 H). 13C NMR (101
MHz, CDCl3):  = 184.5, 180.6, 165.5, 153.7, 135.8, 135.7, 134.5,
129.7, 127.6, 127.3, 121.5, 53.0, 9.0. HRMS (ESI-QTOF): m/z
[M – H]– calcd for C13H9O5: 245.0455; found: 245.0456.
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