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ABSTRACT
In this protocol, a series of 3-benzyloxyflavone derivatives have been designed, synthesized, characterized
and investigated in vitro as cholinesterase inhibitors. The findings showed that all the synthesized target
compounds (1–10) are potent dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE) enzymes with varying IC50 values. In comparison, they are more active against AChE than BChE.
Remarkably, amongst the series, the compound 2 was identified as the most active inhibitor of both
AChE (IC50 ¼ 0.05±0.01lM) and BChE (IC50 ¼ 0.09±0.02lM) relative to the standard Donepezil (IC50 ¼
0.09±0.01 for AChE and 0.13±0.04lM for BChE). Moreover, the derivatives 5 (IC50 ¼ 0.07±0.02lM) and
10 (0.08±0.02lM) exhibited the highest selective inhibition against AChE as compared to the standard.
Preliminary structure-activity relationship was established and thus found that cholinesterase inhibitory
activities of these compounds are highly dependent on the nature and position of various substituents
on Ring-B of the 3-Benzyloxyflavone scaffolds. In order to find out the nature of binding interactions of
the compounds and active sites of the enzymes, molecular docking studies were carried out.

HIGHLIGHTS

1. 3-benzyloxyflavone analogues were designed, synthesized and characterized.
2. The target molecules (1–10) were evaluated for their inhibitory potential against AChE and BChE

inhibitory activities.
3. Limited structure-activity relationship was developed based on the different substituent patterns

on aryl part.
4. Molecular docking studies were conducted to correlate the in vitro results and to identify possible

mode of interactions at the active pocket site of the enzyme.

Abbreviations: AChE: Acetylcholinesterase; Ala: Alanine; AD: Alzheimer disease; AFO:
Algar–Flynn–Oyamada; AI: Amyloid-including protein; BChE: Butyrylcholinesterase; DMF:
Dimethylformamide; DMSO: Dimethyl sulfoxide; ESI: Electrospray ionization; EtOH: Ethanol; FTIR:
Fourier transformed infrared radiations; His: Histamine; H2O2: Hydrogen peroxide; IR: Infrared; K2CO3:
Potassium carbonate; Leu: Leucine; MeOH: Methanol; Met: Methionine; NaOH: Sodium hydroxide; NMR:
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Nuclear magnetic resonance; Pas: Peripheral anionic site; PBD: Protein drug bank; Phe: Phenylalanine;
Pro: Proline; Ser: Serine; SAR: Structure-activity relationship; TLC: Thin-layer chromatography; Trp:
Tryptophan; Tyr: Tyrosine; UV-VIS: Ultraviolet-Visible

Introduction

Flavonoids represent a group of polyphenolic compounds
which are widely distributed throughout the higher plants.
They are recognized by possessing 2-phenyl-c-benzopyrone
(C6-C3-C6) as a characteristic skeleton. They are further div-
ided into various sub-classes such as aurones, anthocyanins,
chalcones, flavones, flavonols, and isoflavones depending on
the saturation level and the absence or presence of the cen-
tral pyran ring (Patel & Shah, 2017; Sashidhara et al., 2012).
Studies performed on these compounds have confirmed that
they belong to the class of secondary plant metabolites
(Harborne & Williams, 2000; Hostetler et al., 2017) and are
well known for having a vast variety of bioactivities such as
anti-oxidant (Rice-Evans, 2001), anxiolytic and anti-cancer (Liu
et al., 2010), analgesic, anti-inflammatory and anti-microbial
(Mishra & Tiwari, 2011), anti-ulcer and thrombosis (Bhatt
et al., 2016).

Flavonols (3-hydroxy-2-phenyl-4H-chromen-4-ones) (Figure
1) constitute one of the most important sub-classes of flavo-
noids. Owing to the structural diversity of flavonols (3-
hydroxyflavones) and their ubiquitous occurrence in fruits
and vegetables, they have attracted the attention of medi-
cinal chemists because of their importance in a variety of
important pharmacological activities including health bene-
fits (Bozdag-Dundar et al., 2005; Graf et al., 2005; Tapas et al.,
2008). However, most of the flavonols have not been devel-
oped as clinical drugs because of poor bioavailability (less
than 5%), toxicity, limited occurrence in nature and induction
or inhibition of some metabolic enzymes (Jin et al., 2019; Li
et al., 2017).

To overcome those problems, the development of new
synthetic methods to produce structurally modified flavones
is now considered as an important goal in exploring their
diverse roles. This reason has increased the interest of medi-
cinal chemists to further study flavones as lead molecules to
treat various diseases. In this context, recently researchers
have focused on the synthesis and biological evaluation of
flavone-based ethers (D�ıaz et al., 2017; Imran et al., 2016; Jin
et al., 2019; Li et al., 2017; Nhu et al., 2015; Wang et al.,
2018). However, the reported natural and synthetic flavone
derivatives containing ether linkage mostly present at ring A
or ring B, and such motifs have been reported to possess
potent enzyme inhibition activities (Imran et al., 2016).
Therefore, to the best of our knowledge, exploring the syn-
thesis and inhibitory potential of 3-O-benzylflavonol scaffolds
against cholinesterase enzymes remain an interesting goal.

Senile Alzheimer’s disease (AD) is a severe neurodegenera-
tive disorder with progressive cognitive impairments among
the older people in developed and some developing coun-
tries that eventually leads to death. AD is responsible for
protein aggregation, inflammation, amyloid-including protein
(AI), oxidative stress, and acetylcholine signalling dysfunction

in the basal forebrain. The development of chemical agents
for the treatment of AD has been of great interest for several
years (Rampa et al., 1998). The enzymes such as AChE and
BChE were identified as essential targets for efficient AD
management by increasing the production of acetylcholine
in the brain and reducing the AI deposition as each of these
enzymes play an essential role at the beginning of geriatric
plaque development (Mughal et al., 2018; 2019). Deposition
of b-amyloid in the brain is hypothesized as the main cause
of neuronal cell death in AD patients, thus preventing the
accumulation of b-amyloid represents an alternative thera-
peutic strategy that specifically targets AD pathogenesis.
Several small molecules can interact with the mechanism of
b-amyloid aggregation and the functionalization of small aro-
matic molecules can be used as the logical nature of inhibi-
tors of aggregation. Although there is a significant amount
of literature reporting on AChE and BChE inhibitors (Agbo
et al., 2019; Asghar et al., 2020; Bajda et al., 2011; Barai et al.,
2019; Cavdar et al., 2019; Chen et al., 2017; Mughal, Sadiq,
Khan, et al., 2017; Mughal, Sadiq, Murtaza, et al., 2017; Faraji
et al., 2019; Mathew et al., 2019; Mishra et al., 2017;
Mphahlele et al., 2018; Mughal et al., 2018; Mughal et al.,
2019; €Ozil et al., 2019; Saxena & Dubey, 2019; Shaik et al.,
2016; Shaikh et al., 2020; Sun et al., 2019; Xie et al., 2016;
Yerdelen et al., 2015), but it has been observed that a great
deal of attention has been paid in recent years to the hunt
for new AChE inhibitors for the treatment of AD (Loizzo
et al., 2008). In this connection, during recent years, natural
flavonoids and their synthetic analogues have been identi-
fied as potential inhibitors of cholinesterase enzymes, as they
have the benefits of being more tolerable, inexpensive and
easier to occur in the natural environment (Agbo et al., 2019;
Anand & Singh, 2013; Daglia, 2012; Mughal, Sadiq, Khan,
et al., 2017; Mughal, Sadiq, Murtaza, et al., 2017; Uriarte-
Pueyo & I Calvo, 2011). Furthermore, flavonoids and related
compounds were reported in the literature as potent anti-
microbial agents (Genoux et al., 2011; Ibrahim, 2014;
Kamlesh et al., 2017; Mahmoud et al., 2017; Mughal et al.,
2006; Sarbu et al., 2019; Shakhatreh et al., 2016). Due to their
unique ability to modulate different enzyme systems, the
envisioned compounds exhibit a great diversity in their bio-
logical activities and therapeutic functions (Dymarska et al.,
2018). Additionally, the substitution pattern in flavone deriva-
tives plays a vital role in their biochemical and pharmaco-
logical properties.

Encouraged by above-mentioned biological potential of
flavone as a privileged scaffold and following our study on
exploring new structural motifs against cholinesterase
enzymes (Mughal, Sadiq, Khan, et al.2017; Mughal, Sadiq,
Murtaza, et al., 2017; Mughal et al., 2018; Mughal et al.,
2019), we have designed and synthesized a new set of 3-O-
benzylflavonol ethers with different functional groups for
determining their inhibitory capacity against the previously
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mentioned targets. The role of synthetic flavones as possible
inhibitors of cholinesterases remains an important target and
a constant endeavour.

Materials and methods

All the commercially available reagents were obtained from
Sigma-Aldrich and Merck and used as supplied. Melting
points were determined on an Electro-thermal melting point
apparatus and uncorrected. IR spectra were taken as KBr
discs using Bio-Rad spectrophotometer. NMR (1H, 300MHz,
13C, 75MHz) spectra were recorded on a Bruker spectrometer
with TMS as the internal standard. EI-MS spectrometric ana-
lysis was obtained using a Fisons VG sector-field instrument.
The IR values and chemical shifts are expressed in �m units
and parts per million respectively. Reaction progress was
monitored using thin-layer chromatography (TLC) on silica
gel pre-coated plates and spots were detected under UV
light. The absorption spectra have been recorded on the
Jasco UV-VIS V-670 instrument using QUARTZ cell in very
dilute solutions prepared in different solvents.

General procedures for the syntheses of 3-
hydroxyflavone and 3-benzyloxyflavone derivatives

Synthesis of 3-hydroxyflavone derivatives (F1-F10)
A mixture of 20-hydroxyacetophenone (1.2mL, 10.0mmol)
and 10mL of an aqueous solution of NaOH (30%) was stirred
in MeOH (25mL) for 30min accompanied by dropwise add-
ition of substituted benzaldehyde (10.0mmol). The reaction
mixture was stirred further at ambient temperature for 5-6 h.
The progress of reaction was checked by comparative TLC.
Chalcone thus formed, in situ, was cyclized further by the
addition of 1.5mL of 35% H2O2 solution followed by stirring
for an additional 1 h at the same temperature. The reaction
mixture was neutralized by hydrochloric acid (HCl, 10%). The
precipitates formed were filtered, washed thoroughly with
water, dried and crystallized by ethanol to give pure
Flavonol (F1-F10).

Synthesis of 3-benzyloxyflavone derivatives (1–10)
The pure synthesized flavonol product (1.0mmol) was dis-
solved in dimethylformamide (5.0mL) containing anhydrous
K2CO3 (5.0mmol), and tetra-butyl ammonium bromide
(3.0mmol). After stirring the reaction mixture at 50-60 �C for

30min, benzyl chloride (2.0mmol) was added and the reac-
tion mixture was stirred further at the same temperature for
24 to 48 h. After reaction completion (analysed by TLC), the
reaction mixture was quenched by addition of water and
neutralized with HCl (10%). The phases were separated and
the aqueous phase was extracted with chloroform
(2� 25mL). The combined organic phase was washed with
brine, dried over anhydrous Na2SO4 and the solvent was
removed under reduced pressure. The crude product was
purified by recrystallization in ethanol to afford the desired
product in pure form.

Enzyme inhibition assay

AChE and BChE inhibition activities were measured spectro-
photometrically by the Ellman method with minor adjust-
ment. Five different concentrations of standard and test
compounds were prepared by diluting their stock solutions
immediately before use. 100mL of each sample was com-
bined with 50 mL AChE/BChE enzyme and allowed to stand
for 10min. 50 mL of substratum i.e. acetylthiocholine iodide
(0.71mM) for acetylcholinesterase or butyrylthiocholine chlor-
ide (0.2mM) for butyrylcholinesterase, 50 mL (0.5mM) of
DTNB and 500 mL phosphate buffer of pH 8 were added to
the above-mentioned mixture and the mixture was incu-
bated at retention time for 15min at 37 ˚C. The solution
becomes yellow due to the hydrolysis of substrate causing
the formation of 5-thio-2-nitrobenzoate anion. The substrate
hydrolysis was determined using spectrophotometer by
measuring the increase in absorbance at 400 nm and 412 nm
for acetylcholinesterase and butyrylcholinesterase, respect-
ively. The percent enzyme inhibition (%) was calculated using
the following equation:

%ð Þ Inhibition ¼ B�A
B

� 100

Here A¼ enzyme absorbance with test sample;
B¼ enzyme absorbance without test sample. Every experi-
ment was performed in triplicate and the average value was
taken. IC50 values were estimated by linear regression ana-
lysis. Donepezil was used as a standard (Agbo et al., 2019;
Asghar et al., 2020; Barai et al., 2019; Mughal, Sadiq, Khan,
et al., 2017; Mughal, Sadiq, Murtaza, et al., 2017; Faraji et al.,
2019; Mishra et al., 2017; Mphahlele et al., 2018; Mughal
et al., 2018; Mughal et al., 2019; €Ozil et al., 2019; Shaikh
et al., 2020; Sun et al., 2019).

Figure 1. Representative structures of Flavonol (A) and 3-O-benzylflavonol or 3-benzyloxyflavone (B).
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Molecular docking studies

Docking assay was conducted to determine the enzyme-lig-
and interactions. AChE (PDB ID: 4BDT) and BChE (PDB ID:
4BDS) crystal structures were obtained from ACDz
Chemsketch protein database (RCSB) and 3D Pro 12.0 was
used to optimize the compounds in 3D orientation and
processed as SYBYL mol 2 file format. The AutoDock software
v1.5.6 has been used for docking purposes. Discovery Studio
Visualizer v 4.0 was used to represent the most active and
best position of compounds under analysis (Mughal, Sadiq,
Khan, et al.2017; Mughal, Sadiq, Murtaza, et al., 2017; Mughal
et al., 2018; Mughal et al., 2019).

Results and discussion

Chemistry

Given the extensive literature on the Algar–Flynn–Oyamada
(AFO) reaction and the reported synthesis of close analogues
to those we required (Mughal et al., 2018; Nhu et al., 2015),
our initial attempts to prepare 3-O-Benzylated flavonol deriv-
atives (1–10) employed the conventional two-step one-pot
approach: generation of the requisite 20-hydroxychalcone as
key intermediates via the Claisen–Schmidt condensation, and
subsequent oxidative cyclization with basic hydrogen perox-
ide (35%) solution (Scheme 1). In the event, 20-hydroxychal-
cones were obtained through base-catalysed condensation
of 20-hydroxyacetophenone with different aryl aldehydes in
methanol-sodium hydroxide solution. The resultant 20-
hydroxychalcone derivatives were then subjected to conven-
tional AFO conditions (hydrogen peroxide and sodium
hydroxide) in the same solvent to produce the flavonols (F1-
F10) as outlined in Scheme 1. These intermediate compounds
were purified through recrystallization by ethanol and there-
after analysed by FTIR, UV-Vis and NMR spectroscopic techni-
ques only. The desired compounds (1–10) were synthesized
through a single-step reaction of 3-hydroxyflavone (flavonol)
with benzyl chloride in the presence of K2CO3 dissolved in
DMF. All 3-benzyloxyflavone derivatives (1–10) were
obtained in moderate to good yields and purified by recrys-
tallization in EtOH.

The structures of all newly synthesized compounds were
deduced from various spectroscopic techniques (UV-Vis, FTIR,
NMR spectroscopic techniques). Their molecular masses were
confirmed by Electrospray Ionization (ESI) method. For
instance, in the IR spectrum, there are signs of a successful
benzyl group attachment with chromone part by the dis-
appearance of peak around 3300 cm�1 due to the 3-OH and
the appearance of new peak around 1300 cm�1 due to ben-
zylic moiety. Similarly, the count of a number of protons and
the number of carbon resonances in their 1H-NMR and 13C-
NMR spectra, respectively, were also in agreement with the
suggested molecular formulas. There is one characteristic
singlet peak because of oxymethylene (-OCH2-) group
appearing around d 5.00 ppm in 1H-NMR spectra of the envi-
sioned compounds. Additionally, the 1H NMR spectra showed
downfield peaks for aromatic protons ranging from 8.23 to
7.15 ppm. Furthermore, their 13C NMR spectra manifested

two characteristics signals around d 173.0 ppm and 75.0 ppm
for ketonic and oxymethylene (-OCH2-) structural features,
respectively. Likewise, the structures of other derivatives
were also characterized by a similar strategy. In spite of hav-
ing all NMR data, the complete assignment of each signal
was not achieved. Nevertheless, all spectroscopic data are
in good agreement with assumed structures of the
desired compounds.

The spectral data of all the synthesized flavonols except
F2 are given in the literature as well as in supporting infor-
mation (SI) (Gunduz et al., 2012; Gupta et al., 2014; Khanna
et al., 2015; Singh et al., 2017; You et al., 2020). However, the
complete spectroscopic data of their ether derivatives (1–10)
and the flavonol (F2) are as under:

2-(4-(Diphenylamino) phenyl)-3-hydroxy-4H-chromen-4-
one (F2)

Mustard-yellow crystalline solid; Yield: 90%; m.p. 188-190 �C;
Rf (Ethyl acetate: n-hexane 1:3) ¼ 0.7; UV kmax 5 293,
393 nm (CH3OH); FTIR (cm�1): 3221, 1686, 1481, 1410, 1329,
1154, 1134, 824; 1H NMR (300MHz, CDCl3): d 9.74 (s, 1H, OH),
7.63–7.58 (m, 2H, Ar-H), 7.30–7.24 (m, 6H, Ar-H), 7.12-7.07 (m,
8H, Ar-H), 6.96 (d, J¼ 9.0 Hz, 2H, Ar-H), 13C NMR (75MHz,
CDCl3): d 181.5, 153.4, 146.1, 131.4, 129.7, 129.3, 126.3, 126.2,
125.0, 118.3, the other carbons are isochronous; accurate
mass (EI-MS) of [M]þ�: Calcd. for C27H19NO3 405.13649;
found 405.13640.

3-(Benzyloxy)-2-phenyl-4H-chromen-4-one (1) (Peres
et al., 2017)

Dark-brown crystalline solid; Yield: 86%; m.p. 116–118 �C; Rf
(Ethyl acetate: n-hexane 1:3) ¼ 0.8; UV kmax ¼ 296 nm
(EtOAc); FTIR (cm�1): 3029, 2895, 1719, 1596, 1282; 1H NMR
(300MHz, CDCl3): d 7.70–7.65 (m, 4H, Ar-H), 7.42-7.25 (m, 5H,
Ar-H), 7.25–7.15 (m, 5H, Ar-H), 5.05 (s, 2H, CH2-Ph);

13C NMR
(75MHz, CDCl3): d 175.5, 157.3, 156.0, 142.1, 136.4, 135.0,
132.4, 131.3, 130.4, 129.2, 129.0, 128.7, 128.4, 127.6, 127.3,
127.0, 125.4, 124.7, 123.8, 117.7, 73.5; accurate mass (ESI,
AcCN, þve) of [MþH]þ: Calcd. for C22H17O3 329.11776;
found 329.11770.

3-(Benzyloxy)-2-(4-diphenylamino) phenyl)-4H-chromen-
4-one (2)

Yellow crystalline solid; Yield: 80%; m.p. 147–150 �C; Rf (Ethyl
acetate: n-hexane) ¼ 0.9; UV kmax ¼ 298 nm (EtOAc); FTIR
(cm�1): 3110, 2850, 1685, 1501, 1402, 1328, 1284;1H NMR
(300MHz, CDCl3): d 7.67–7.60 (m, 4H, Ar-H), 7.40–7.26 (m, 6H,
Ar-H), 7.22–7.15 (m, 8H, Ar-H), 7.26-7.15 (m, 5H, Ar-H), 5.06 (s,
2H, CH2-Ph);

13C NMR (75MHz, CDCl3): d 179.7, 155.2, 148.3,
135.7, 133.7, 132.6, 132.1, 131.0, 130.6, 130.2, 129.8, 129.1,
128.7, 128.4, 128.1, 128.0, 126.7, 125.8, 124.7,124.2, 123.7, 123
118.4, 74.2, the other carbons are isochronous; accurate mass
(ESI, AcCN, þve) of [MþH]þ: Calcd. for C34H26NO3 496.19126;
found 496.19116.
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Scheme 1. Synthesis of flavonols (F1-F10) and 3-O-benzylflavonol derivatives (1–10).
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Scheme 1. Continued.
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3-(Benzyloxy)-2-(4-methylphenyl)-4H-chromen-4-one (3)

Off-white solid; Yield: 75%; m.p. 110–112 �C; Rf (Ethyl acetate:
n-hexane 1:3) ¼ 0.85; UV kmax ¼ 316 nm (EtOAc); FTIR (cm�1):
3031, 2995, 2887, 1718, 1597, 1293; 1H NMR (300MHz, CDCl3):
d 8.23 (dd, J¼ 3.0, 9.0 Hz, 1H, Ar-H), 7.91–7.86 (m, 2H, Ar-H),
7.64–7.57 (m, 1H, Ar-H), 7.46–7.43 (m, 1H, Ar-H), 7.36–7.27 (m,
3H, Ar-H), 7.23-7.15 (m, 5H, Ar-H), 5.05 (s, 2H, CH2-Ph), 2.36 (s,
3H, Me); 13C NMR (75MHz, CDCl3): d 175.0, 156.5, 155.3, 141.0,
139.7, 136.7, 133.4, 129.0, 128.93, 128.90, 128.8, 128.3, 128.2,
128.1, 125.7, 124.4, 124.2, 118.0, 74.2, 24.3,the other carbons
are isochronous; accurate mass (ESI, AcCN, þve) of [MþH]þ:
Calcd. for C23H19O3 343.13342; found 343.13328.

3-(Benzyloxy)-2-(thiophen-1-yl)-4H-chromen-4-one (4)
(Kamboj et al., 2013)

Orange solid; Yield: 80%; m.p. 154–156 �C; Rf (Ethyl acetate: n-
hexane 1:3)¼ 0.7; UV kmax¼ 340 nm (EtOAc); FTIR (cm�1): 3029,
2960, 1964, 1720, 1598, 1288, 1024; 1H NMR (300MHz, CDCl3): d
8.20–7.98 (m, 3H, Ar-H), 7.87–7.66 (m, 2H, Ar-H), 7.47–7.30 (m,
2H, Ar-H), 7.24–7.15 (m, 5H, Ar-H), 5.03 (s, 2H, CH2-Ph);

13C NMR
(75MHz, CDCl3): d 175.2, 155.1, 144.5, 135.7, 131.7, 130.5, 129.3,
129.0, 128.9, 128.7, 128.4, 128.1, 127.9, 127.4, 127.0, 125.8,
125.3, 123.5, 118.6, 74.18; accurate mass (ESI, AcCN, þve) of
[MþH]þ: Calcd. for C20H17O3S 337.08984; found 337.08971.

3-(Benzyloxy)-2-(4-chlorophenyl) -4H-chromen-4-one (5)

Off-white solid; Yield: 82%; m.p. 143–145 �C; Rf (Ethyl acetate:
n-hexane 1:3) ¼ 0.81; UV kmax ¼ 350 nm (EtOAc); FTIR
(cm�1): 3025, 2920, 1720, 1571, 1289, 752;1H NMR (300MHz,
CDCl3): d 8.24 (d, J¼ 3.0, 9.0 Hz, 1H, Ar-H), 7.88 (m, 2H, Ar-H),
7.65-7.59 (m, 1H, Ar-H), 7.46-7.43 (m, 1H, Ar-H), 7.38–7.33 (m,
3H, Ar-H), 7.25-7.15 (m, 5H, Ar-H), 5.08 (s, 2H, CH2-Ph);

13C
NMR (75MHz, CDCl3): d 175.1, 155.2, 138.1, 136.6, 135.6,
133.4, 129.7, 127.3, 125.2, 124.5, 122.0, 118.2,72.1, other car-
bons are isochronous; accurate mass (ESI, AcCN, þve) of
[MþH]þ: Calcd. for C22H16ClO3 363.07879; found 363.07865.

3-(Benzyloxy)-2-(3-nitrophenyl)-4H-chromen-4-one (6)

Light-brown solid; Yield: 74%; m.p. 123–125 �C; Rf (Ethyl acet-
ate: n-hexane) ¼ 0.6; UV kmax ¼ 298 nm (EtOAc); FTIR (cm�1):

3084, 2925, 1724, 1527, 1497, 1288; 1H NMR (300MHz,
CDCl3): d 8.80 (d, J¼ 3.0 Hz, 1H, Ar-H), 8.48 (m, 1H, Ar-H), 8.39
(t, J¼ 9.0 Hz, 1H, Ar-H), 8.00 (d, J¼ 9.0 Hz, 1H, H-5), 7.82-7.76
(m, 4H, Ar-H), 7.30-7.21 (m, 5H, Ar-H), 5.03 (s, 2H, CH2-Ph);
13C NMR (75MHz, CDCl3): d 175.5, 158.4, 155.1, 146.2, 134.7,
132.7, 131.4, 130.5, 130.0, 129.6, 128.8, 128.5, 128.3, 127.8,
127.1, 126.0 (CH, 125.5, 125.0, 124.0, 122.8, 118.1, 74.2; accur-
ate mass (ESI, AcCN, þve) of [MþH]þ: Calcd. for C22H16NO5

374.10284; found 374.10275.

3-(Benzyloxy)-2-(4-nitrophenyl)-4H-chromen-4-one (7)

Brown solid; Yield 58%; m.p. 104 �C; Rf (Ethyl acetate: n-hex-
ane 1:3) ¼ 0.65; UV kmax ¼ 274 nm (EtOAc); FTIR (cm�1):
3124, 2800, 1722, 1567, 1522, 1280; 1H NMR (300MHz,
CDCl3): d 8.38 (d, J¼ 9.0 Hz, 2H, Ar-H), 8.29 (J¼ 9.0 Hz, 2H, Ar-
H), 8.12–8.01 (m, 2H, Ar-H), 7.90–7.80 (m, 5H, Ar-H), 5.06 (s,
2H, CH2-Ph);

13C NMR (75MHz, CDCl3): d 175.4, 159.8,
156.7,148.8, 137.7, 135.1, 130.2, 129.8, 129.6, 129.0, 128.8,
128.7, 128.5, 128.1, 127.9, 127.2, 125.8, 125.5, 124.7,124.0,
118.1, 74.2; accurate mass (ESI, AcCN, þve) of [MþH]þ:
Calcd. for C22H16NO5 374.10284; found 374.10271.

3-(Benzyloxy)-2-(4-methoxyphenyl)-4H-chromen-4-one
(8) (Kavitha, 2012; Rao & Kumar, 2014)

Orange solid; Yield: 71%; m.p.135–137 �C; Rf (Ethyl acetate: n-
hexane 1:3) ¼ 0.7; UV kmax ¼ 280 nm (EtOAc); FTIR (cm�1):
3028, 2880, 1720, 1501, 1423, 1200; 1H NMR (300MHz,
CDCl3): d 8.02 (d, J¼ 9.0 Hz, 2H, Ar-H), 7.98 (d, J¼ 9.0 Hz, 2H,
Ar-H), 7.80 (m, 1H, Ar-H), 7.67–7.47 (m, 3H, Ar-H), 5.04 (s, 2H,
CH2-Ph);

13C NMR (75MHz, CDCl3): d 175.2, 160.3,159.7,155.2,
135.4, 134.3, 130.4, 129.5, 129.1, 128.8, 128.5, 128.2, 128.0,
127.5,127.3, 127.0, 126.0 125.6,124.8, 123.1,118.1, 74.3, 55.6;
accurate mass (ESI, AcCN, þve) of [MþH]þ: Calcd. for
C23H19O4 359.12833; found 359.12820.

3-(Benzyloxy)-2-(furan-2-yl)-4H-chromen-4-one (9)

Dark-brown solid; Yield: 66%; m.p. 95–97 �C; Rf (Ethyl acetate:
n-hexane 1:3) ¼ 0.6; UV kmax ¼ 329 nm (EtOAc); FTIR (cm�1):
3021, 2789, 1709, 1592, 1235, 1170; 1H NMR (300MHz,
CDCl3): d 8.35–8.25 (m, 1H, Ar-H), 8.05–7.98 (m, 2H, Ar-H),
7.77–7.50 (m, 4H, Ar-H), 7.27–7.18 (m, 5H, Ar-H), 5.05 (s, 2H,

Scheme 1. Continued.
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CH2-Ph);
13C NMR (75MHz, CDCl3): d 175.3, 155.2, 145.0,

136.1, 131.8, 131.7, 130.3, 129.1, 129.0, 128.7, 128.5, 128.2,
128.0, 127.5, 127.1, 125.7, 125.5, 123.6, 118.6, 74.2; accurate
mass (ESI, AcCN, þve) of [MþH]þ: Calcd. for C20H15O4

319.09703; found 319.09698.

3-(Benzyloxy)-2-(4-(dimethylamino)phenyl)-4H-chromen-
4-one (10)

Dark-red solid; Yield: 85%; m.p. 75–78 �C; Rf (Ethyl acetate: n-
hexane) ¼ 0.8; UV kmax ¼ 318 nm (EtOAc); FTIR (cm�1): 3021,
2750, 1710, 1650, 1603, 1203, 1047; 1H NMR (300MHz,
CDCl3): d 8.21 (d, J¼ 3.0, 9.0 Hz, 1H, Ar-H), 7.87 (m, 2H, Ar-H),
7.67–7.57 (m, 1H, Ar-H), 7.47–7.42 (m, 1H, Ar-H), 7.40–7.30
(m, 3H, Ar-H), 7.24–7.14 (m, 5H, Ar-H), 5.07 (s, 2H, CH2-Ph),
2.85 (N(CH3)2;

13C NMR (75MHz, CDCl3): d 174.8, 156.2, 139.0,
137.2, 136.8, 133.4, 129.6, 128.7, 128.5, 128.6, 128.4, 128.0,
127.7, 125.5, 124.6, 123.6, 122.8, 118.3, 74.0, 40.3, the other
carbons are isochronous; accurate mass (ESI, AcCN, þve) of
[MþH]þ: Calcd. for C24H22NO3 372.15996; found 372.15985.

In vitro cholinesterase inhibition activity

Continuing our efforts to study the enzyme inhibition
(Mughal, Sadiq, Khan, et al.2017; Mughal, Sadiq, Murtaza,
et al., 2017; Mughal et al., 2018; Mughal et al., 2019), all the
3-benzyloxyflavone derivatives (1–10) have been examined,
in vitro, for their inhibitory activity against commercially
accessible electric eel AChE and horse serum BChE enzymes.

Donepezil was used as a standard for comparing results,
and estimates of the half-maximum inhibitory concentration
(IC50) were calculated and are given in Table 1. From the
data in Table 1, several conclusions can be drawn concerning
the structure-activity relationship and the impact of the sub-
stituent in the phenyl ring (Ring B) of flavone moiety.

Structure-activity relationship

The synthesized compounds (1–10) were screened to con-
firm their importance as potent inhibitors of the cholinester-
ase enzymes. It is interesting to note that all synthesized
compounds (1–10) showed inhibition against both enzymes
(AChE and BChE). However, they are relatively more active
against acetylcholinesterase than butyrylcholinesterase.

Noteworthy, the compound 2 was recognised as the most
active inhibitor of both AChE (IC50 ¼ 0.05 ± 0.01 lM) and
BChE (IC50 ¼ 0.09 ± 0.02lM), and thus exhibited highest
inhibition against both enzymes among the series, even
more than the standard Donepezil (IC50¼ 0.09 ± 0.01 AChE
and 0.13 ± 0.04 lM BChE). This lead compound of the series
was roughly two times more active than standard regarding
in vitro AChE-inhibitory activity and one and half times more
potent against in vitro BChE-inhibitory activity. The presence
of diphenylamino group at 40 position of ring B enables the
compound 2 to show the highest inhibition activity. Owing
to the bulky size and hydrophobic nature of the diphenyla-
mino substituent, this derivative interacts strongly with active
pockets of both enzymes.

Furthermore, the compound 5 (IC50 ¼ 0.07 ± 0.02 for
AChE and IC50 ¼ 2.13 ± 0.08lM for BChE) was the second
potent selective inhibitor of AChE. The presence of only one
chloro group at para-position (Ring B) in that derivative
markedly enhance the inhibitory activity against AChE than
BChE, because this nicely fits in the active pocket of former
enzyme than latter.

In addition, the next most potent selective inhibitor of
AChE (IC50 ¼ 0.08 ± 0.02lM) was found 3-benzyloxyflavone
10, analogous to the derivative 2, relative to the standard
Donepezil (IC50 ¼ 0.09 ± 0.01 lM). The presence of a dimethy-
lamino substitution at 40 position of the phenyl ring (ring B)
and non-polar and electron-rich structural core of this com-
pound are accountable to develop strong intermolecular
interactions with the electrophilic active site of the
AChE enzyme.

The compounds bearing electron-donating groups (-OCH3,
-CH3 etc.) such as 3 (IC50 ¼ 1.95 ± 0.15 for AChE and IC50 ¼
3.25 ± 0.21lM for BChE) and 8 also displayed better inhibi-
tory activity against both enzymes. This might be attributed
to positions of those groups and effective interactions with
the pockets of enzymes. However, introducing strongly elec-
tron-withdrawing groups (-NO2) at the same position of ring
B distinctly resulted in decreased inhibitory activity, for
example, in case of the flavones 6 and 7. Interestingly, the
meta nitro substituted compound 6 (IC50 ¼ 2.85 ± 0.35 for
AChE and IC50 ¼ 9.25 ± 0.90lM for BChE) disclosed
decreased activity relative to its para analogue 7 (IC50 ¼
1.52 ± 0.15 for AChE and IC50 ¼ 14.37 ± 0.65 lM for BChE).
Perhaps, the former compound offers steric hindrance to fit
in the active site of cholinesterase enzymes. Moreover,
replacing aryl ring B with other heterocyclic rings such as thi-
ophene and furan in compound 4 (IC50 ¼ 10.02 ± 0.78 for
AChE and IC50 ¼ 27.11 ± 0.35 lM for BuChE) and 9 (IC50 ¼
11.60 ± 0.03 for AChE and IC50 ¼ 12.23 ± 0.74lM for BChE)
respectively resulted in significantly decreased inhibitory
activity as compared to the standard.

Overall, it was noted that all the compounds (1–10) are
potent inhibitors against AChE in comparison to BChE. These
findings showed that the nature and substitution pattern at
rings B & C improves the inhibitory activity of these com-
pounds against both suggested enzymes relative to unsubsti-
tuted 3-benzyloxyflavone 1 (IC50 ¼ 0.12 ± 0.02 for AChE and
IC50 ¼ 3.10 ± 0.30 lM for BChE). Although all the structural

Table 1. AChE and BchE the enzyme inhibition efficiency of the target com-
pounds (1–10).

Compound No. AChE IC50 ±SEM
a (mM) BChE IC50 ±SEM

a (mM)

1 0.12 ± 0.02 3.10 ± 0.30
2 0.05 ± 0.01 0.09 ± 0.02
3 1.95 ± 0.15 3.25 ± 0.21
4 10.02 ± 0.78 27.11 ± 0.35
5 0.07 ± 0.02 2.13 ± 0.08
6 2.85 ± 0.35 9.25 ± 0.90
7 1.52 ± 0.15 14.37 ± 0.65
8 1.01 ± 0.01 3.14 ± 0.70
9 11.60 ± 0.03 12.23 ± 0.74
10 0.08 ± 0.02 1.50 ± 0.10
DonepezilSt 0.09 ± 0.01 0.13 ± 0.04
aIC50 values (mean ± standard error of mean); StStandard inhibitor for cholin-
esterase enzymes.

8 E. U. MUGHAL ET AL.



features are actively involved in inhibitory behaviour.
However, the differentiation of various groups on the key
structural motif was in fact responsible for altering the inhibi-
tory activity. Since, all synthesized compounds have a com-
mon skeleton of 3-O-benzylflavonol in their structures, the
activity was mainly due to different functional groups
attached to the main framework of 3-benzyloxyflavone.

Based on above-mentioned findings, these multi-func-
tional 3-benzyloxyflavone derivatives (1–10) could use as
lead compounds for the designing and development of new
inhibitors against cholinesterase enzymes. The conclusions of
the SAR studies are summarized in Figure 2.

Molecular docking simulations

In an attempt to understand the enzyme inhibition activity
of the synthesized derivatives, molecular docking study was
carried out to determine the binding modes of synthesized
ligands with cholinesterase enzymes. The human X-ray struc-
tures of AChE (PDB ID: 4BDT) and BChE (PDB ID: 4BDS) were
chosen as models for this analysis. In due course, for each
conformer with best (minimum) docking score was saved in
preferences. The binding energies are listed in Table 2. The
ligand developing most stable drug-receptor complex is the
one which is having minimum docking score. The drug-
receptor complexes of some potent ligands were analysed
for various types of interactions such as hydrogen
bonding, hydrophobic type interactions and van der Waals
interactions etc.

Figure 2. Structure-activityrelationship for cholinesterase enzymes activity of 3-O-benzylflavonol derivatives. Downward red arrows indicate a decrease in activity;
upward green arrows indicate an increase in activity.

Table 2. Lowest binding energies of the compounds (1–10) against various
selective modes.

Compound
No.

h AChE Lowest
binding energy
DG (kcal/mol)

h BChE Lowest
binding energy
DG (kcal/mol)

1 �10.76 �9.32
2 �12.80 �12.37
3 �11.01 �9.60
4 �9.86 �9.42
5 �11.02 �9.85
6 �10.23 �9.65
7 �10.42 �9.41
8 �10.75 �9.35
9 �9.85 �9.01
10 �10.65 �9.45
Standard �10.00 (HUW) �6.83 (THA)
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For example, one of the under-study the most potent com-
pound 2 with binding energy (-12.80 kcal mol�1) expresses the
ability to block the active sites of AChE. It develops the hydro-
phobic p� p stacked type associations with Trp86 and Tyr337
of catalytic triad amino acid residues. Trp439, Met443, Tyr341,
Ser125, Pro88 and His447 amino acid residues of active pock-
ets of acetylcholinesterase develop hydrophobic p� p stacked,
p-sulphur, hydrogen bond and hydrophobic p-alkyl type inter-
actions, as shown in Figures 3 and 4.

Additionally, the derivative 2 reveals its inhibitory poten-
tial against BChE by forming fruitful types of electrostatic
interactions. This compound builds up hydrophobic p-alkyl
type interaction Leu286 of acyl binding pocket inside the
BChE. Trp82 of peripheral anionic site (PAS) develops the
hydrophobic p� p stacked type associations inside the active
pocket of butyrylcholinesterase. This ligand also exhibits
p-lone pair, hydrophobic p� p T-Shaped and hydrophobic
p-alkyl type associations with Pro285, Phe329 and Ala328
amino acid residues inside the pockets butyrylcholinesterase
as shown in Figures 5 and 6.

Conclusions

In conclusion, we have demonstrated the synthesis, charac-
terization and biological assessment of 3-benzyloxyflavone
derivatives. The desired 3-benzyloxyflavones (1–10) were

synthesized using precedent methodologies starting from 20-
hydroxyacetophenone and different substituted aromatic
aldehydes over three steps. All the synthesized 3-benzyloxy-
flavones (1–10) were evaluated against cholinesterase inhibi-
tory potential. All analogues were found the active dual
inhibitors of acetylcholinesterase and butyrylcholinesterase.
However, the enzyme inhibition study disclosed that most of
the compounds are comparatively more active against AChE
relative to BChE. Noteworthy, among the series, the com-
pound 2 displayed potent dual inhibitory activity (IC50 ¼
0.05 ± 0.01 for AChE and IC50 ¼ 0.09 ± 0.02lM for BChE),
demonstrating that 2 was about threefold more effective
AChE inhibitor and fourfold more effective BChE inhibitor as
compared to the reference compound, Donepezil (IC50 ¼
0.09 ± 0.01 for AChE and IC50 ¼0.13 ± 0.04lM for BChE). In sil-
ico computational studies of all compounds also augmented
the in vitro analysis, whereby these molecules exhibited
strong interactions with the target protein and formed stable
complexes with AChE and BChE. The structure-activity rela-
tionship analysis discovered that cholinesterase inhibition of
these derivatives is strongly depending on the nature and
positions of the functional group on the aromatic ring B. In
this way, a number of exciting lead compounds have been
explored as cholinesterase inhibitors and thus enabling fur-
ther development of novel drugs for the treatment of
Alzheimer’s disease.

Figure 3. Putative binding interactions between ligand 2 and AChE.
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Figure 4. Compound 2 interactions with acetylcholinesterase in 3 D orientation. Interactions with different amino acid residues are depicted in the box. The 3 D rib-
bon along with the interaction of AChE amino acids represents an enzyme-stick configuration with the lowest energy content of the inhibitor 2.

Figure 5. Putative binding interactions between ligand 2 and BchE.
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