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ABSTRACT: The mild and efficient hydroxytrifluoromethylation of alkenes with bromotrifluoromethane (CF3Br) and atmospheric 
oxygen mediated by cobalt-tertiary amine is described. This reaction proceeds with broad substrate scope and with a good 
functional group compatibility. Mechanistic studies indicate the reaction proceeds through a radical pathway, which is enabled by 
combination of the previously unexplored highly efficient N-isopropyl-N,2-dimethylpropan-2-amine with Co(II) for the single 
electron reduction of CF3Br to CF3 radical.

Organofluorine compounds are important substrates in a 
range of areas, including industrial chemicals, materials, 
agrochemicals, and pharmaceuticals.1 In the context of drug 
discovery, the replacement of a methyl with a trifluoromethyl 
group (CF3) dramatically improves the chemical and metabolic 
stability of the drug, while also increasing the lipophilicity — 
all of which are key design elements when developing and 
optimizing bioactive molecules.2 Over the past few decades, 
great strides have been made in the development of methods 
that enable the synthesis of CF3 containing molecules,3 with a 
particular emphasis on the direct trifluoromethylation of 
alkenes.4 

The most commonly used intermediate for this process is 
the trifluoromethyl radical,5 which itself most commonly 
generated by one of three major routes:6 1) single electron 
transfer (SET) reduction of electrophilic trifluoromethylating 
reagents such as CF3I,7 N-hydroxybenzimidoylchloride 
trifluoroacetate,8 Umemoto’s reagent or Togni’s reagents9 with 
photoredox or copper catalysts; 2) SET oxidation of Langlois’ 
reagent (CF3SO2Na) in the presence of the oxidants like 
peroxides or appropriate photoredox catalysts;10 3) oxidation 
of trifluoromethyl metal such as AgCF3 and CuCF3.11 Despite 
much progresses, most of the existing trifluoromethylation 
reagents suffer from drawbacks, such as: multiple step(s) for 
the preparation, instable, expensive, or some are highly 
oxidative that would cause compatibility problems. It is 
therefore highly desirable to explore new methods that could 
make use of inexpensive and mild trifluoromethylation 
reagents.

The primary starting material for the preparation of several 
trifluoromethylation reagents, including TMSCF3, Togni’s, 

Umemoto’s, and Langlois’ reagent is bromotrifluoromethane 
(CF3Br),12 an inexpensive and abundant material that is used 
as an effective fire extinguishant.13

Two common strategies have been developed in the 
transformation of CF3Br:12a 1) converting CF3Br into a 
nucleophilic CF3 with strong reducing reagents, including such 
as Zn,14 Al15 or P(NEt2)3;12b, 16 2) converting CF3Br into a CF3 
radical through electrochemical,17 sulfinatodehalogenation18 or 
transition metal induced SET reduction such as Ir under 
visible-light,19 Ni,20 Pd,21 or Pt.22 

Although with similar structure, CF3Br is less reactive than 
CF3I because of their reduction potential difference: CF3Br 
−2.07 V, CF3I −1.52 V (on a glass-carbon cathode).23 Until 
now, we find only three reports on the trifluoromethylation of 
alkenes directly with CF3Br: i) Zhang group developed a 
method of Ir catalyzed visible light induced 
hydrotrifluoromethylation of mono-substituted alkyl alkenes 
(Scheme 1. a);19 ii) Kitazume group reported an example of 
ultrasound-promoted Zn and Cp2TiCl2 mediate 
hydrotrifluoromethylation of isoprene (Scheme 1. b),24 and iii) 
Wang group realized a transformation of 1,3-enynes into 
fluoroalkylated allenes by nickel-catalyzed 1,4-
carbofluoroalkylation via a radical relay coupling (Scheme 1. 
c).20

Building upon the foundation of these studies, we 
envisioned a simultaneous installation of two functional 
groups onto a carbon–carbon double bond — such 
difunctionalization of alkenes would be a pathway to 
increasing molecular complexity and would have wide 
application. Herein, we report a cobalt/tertiary amine mediated
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Scheme 1. The reaction of CF3Br with alkenes.
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hydroxytrifluoromethylation of alkenes with CF3Br under mild 
conditions (Scheme 1. d). 
   Tertiary aliphatic amines have long been used as SET 
reductants.25 Aiming to develop practical and simple catalytic 
systems, we proposed that a combination of an appropriate 
transition metal with a tertiary aliphatic amine would reduce 
the CF3Br to CF3 radical through a SET process. In our initial 
studies, we investigated the trifluoromethylation of styrene (1-
1) with CF3Br in the presence of 1 equiv of CoCl2•6H2O and 4 
equiv of NEt3 (A1, Table 1) in CH3CN, but no product was 
observed. After screening of several commercially available 
tertiary amines, we found that when the reaction was 
performed in the presence of Hünig's base (DIPEA, A2), the 
hydroxytrifluoromethylation product 2-1 was formed in 57% 
(NMR yield), with 20% of recovered styrene. We next 
explored different metal salts with DIPEA as the tertiary 
amine, and confirmed that cobalt was the optimal among those 
screened [See Table S1 in supporting information (SI)]. These 
preliminary results led to an empirical reactivity trend of this 
reaction affected by tertiary amines: The reactivity is very 
sensitive to the steric hindrance of the tertiary amines. Less 
hindered (A1, A3, A4) and bidentate (A5), aromatic (A6) or 
too bulky amines (A7) usually gave no product; proper 
hindrance in the amine enable the reaction (A2, A9); bidentate 
methoxyl-DIPEA (A8) would inhibit the reaction totally. With 
the preliminary data and recognition of the empirical rules at 
hand, we sought to improve the activity of the system by fine-
tuning of the steric hindrance around the amine. When the 
ethyl group of DIPEA was replaced by a methyl, no product 
was produced (A10). The same result was obtained when two 
cyclohexyls replaced the two isopropyls (A11). Finally, when 
N-isopropyl-N-methyl-tert-butylamine (A12) was used, the 
yield improved to 66%. More to our surprise, neither 
removing a methyl of isopropyl (A13), nor changing a methyl 
to ethyl (A14) in A12 produced any product. No reaction was 
observed when either pyridine (A15) or bipyridine (A16) were 
used.

Table 1. Optimization of the tertiary aminesa
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aReaction conditions: 1-1 (1.0 mmol, 1.0 equiv), CF3Br (1 
atm, balloon), CoCl2•6H2O (1.0 equiv), amine (4.0 equiv), 
CH3CN (1.0 mL) in 25 mL Schlenk tube, rt. Yields in the 
brackets are the recovery of starting alkenes based on crude 1H 
NMR. bReaction conditions: 1-1 (1.0 mmol, 1.0 equiv), CF3Br 
(1 atm), CoCl2•6H2O (1.0 equiv), amine (4.0 equiv), CH3CN 
(4.0 mL) in 50 mL Schlenk flask equipped with an air balloon, 
rt. c5% NMR yield of 3,3,3-trifluoro-1-phenylpropan-1-one 
was obtained. dReaction conditions: 1-1 (1.0 mmol, 1.0 equiv), 
CF3Br (3.1 equiv), Co(BF4)2•6H2O (0.3 equiv), amine (4.0 
equiv), CH3CN (4.0 mL), H2O (76 μL) in 50 mL schlenk flask 
equipped with an air balloon, rt.

To minimize the usage of CF3Br in the reaction, a 50 mL-
flask (for 1 mmol scale) was charged with 1 atm CF3Br (~ 3.1 
mmol) and other reaction mixture first, then with an extra air 
balloon. To our surprise, a 93% yield of the product 2-1 was 
obtained in 4 mL of CH3CN solution, but no reaction with O2 
balloon. Under the same conditions, DIPEA is much less 
efficient under this optimized condition (67% yield vs. 93% 
yield). Further optimization of the reaction conditions revealed 
that Co(BF4)2•6H2O generally performs better than 
CoCl2•6H2O after compare their reactivity performance in 
different substrates (See Table S3). Finally, 0.3 equiv of 
Co(BF4)2•6H2O gave similar result (94% NMR yield) at room 
temperature. Control experiments revealed that removing of 
either the cobalt source or the tertiary amine, gave no product 
of 2-1. In addition, there is no noticeable effect of light on this 
reaction (See Table S4).

With the optimized reaction conditions developed, we 
explored the scope of the method with a range of alkenes (1-1 
~ 1-40, Table 2). The reaction exhibited broad alkene substrate 
scope: mono-, di, tri-, and even tetra-substituted alkenes 
worked well, to afford the β-CF3-alchols in moderate to 
excellent yields. The reaction also exhibits good functional 
group tolerance, proceeding smoothly with fluoride (1-7), 
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Table 2. Hydroxytrifluoromethylation of Alkenes with CF3Br: Alkene scopea

aReaction conditions: 1 (1.0 mmol), CF3Br (3.1 equiv), Co(BF4)2•6H2O (0.3 mmol, 30 mol %), A12 (4.0 mmol), H2O (76 μL), 
CH3CN (4.0 mL), rt, 24 h; Some starting alkenes were recovered based on the crude 1H NMR in some examples, see SI for details. 
b65 oC. c45 oC. dReaction conditions: 1 (1.0 mmol), CF3Br (3.1 equiv), Co(BF4)2•6H2O (0.01 mmol, 1 mol %), A12 (4.0 equiv), H2O 
(106 μL), DMF (4.0 mL), 80 oC, 24 h; efollowed by reduction with NaBH4 (1.0 equiv) in methanol. f50 ºC.
chloride (1-8), bromide (1-9), CF3 (1-10), ester (1-4, 1-11, 1-
31, 1-38, 1-39), amide (1-6, 1-32) and ketone (1-20, 1-35, 1-
38) functionality. Alkenes bearing heteroaryl, such as 
thianaphthene (1-16), indole (1-17), quinoline (1-18), and 
pyridine (1-19, 1-26), were also applicable to the reaction and 
produced the corresponding products in good to high yields. 

The alkene 1-24, comprising a cyclopropyl group, rendered 
the product in good yield without opening of the three-
membered ring. Similarly, the cyclobutyl (1-25) also tolerates 
the reaction conditions. Electron deficient acrylate (1-31) and 
acrylamide (1-32) gave moderate yields of -hydroxy-β-CF3-
ester (2-31) or amide (2-32) with slight increase of 
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temperature. It is noteworthy that good regio-selectivity could 
be reached in this reaction from a conjugated diene (1-22). 
Complex molecules with biology activities are also compatible 
with this transformation: the modified estrone (1-20, 1-34), 
dehydroepiandrosterone acetate (1-38), cholesteryl acetate (1-
39), and exemestane (1-35) each afforded the corresponding 
products in moderate to good yields.

In order to glean mechanistic insights of the reaction, 
several control experiments were performed. The cyclic 
compound 4-1a (43% yield) and an aldehyde 4-1b (12% 
yield), the ring-opening product 4-2a (4%) and unexpected 4-
2b (10%) were formed through radical clock substrate 3-1 and 
3-2 under the standard conditions demonstrating that a radical 
pathway is involved in the reaction. We reason that the 
cyclopropyl of 1-24 survived in the reaction due to the double 
stabilization of benzyl and tertiary radical. Isotope labelling 
studies with H2

18O and 18O2 confirmed that the installed 
oxygen atom was derived totally from the oxygen gas, which 
is also supports a radical mechanism [Scheme 2, (3) and (4)]. 
In order to clarify whether cobalt and tertiary amine participate 
the final reduction, hydroperoxide 5 was selected as a 
simplified model, which was efficiently transferred into 
alcohol in standard conditions without CF3Br [Scheme 2, (5)]. 
Control experiments show that when either cobalt or A12 is 
removed, the reduction is dramatically suppressed, revealing 
that both cobalt and A12 play a synergist role in the reduction.

Scheme 2. Mechanism studies

Based upon both previous reports10c, 19 and the above 
described results, a plausible mechanism for the new 
hydroxytrifluoromethylation reaction is proposed (Figure 1). 
First, the CF3Br accepts one electron from cobalt-tertiary 
amine complex Int 1 via SET, forming a cobalt-amine radical 
cation Int 2, a CF3 radical and a bromide, followed by a 

radical addition with styrene producing a trifluoropropyl 
radical intermediate Int 5. Meanwhile, Int 1 is reformed via 
ligand exchange of Int 2 with a tertiary amine. The 
intermediate Int 5 was then captured by the atmospheric O2 
from air to form peroxide radical Int 6, which abstract a 
hydrogen atom to form the hydroperoxide Int 7, followed by 
the cobalt-tertiary amine complex Int 1 mediated reduction to 
β-CF3-alchols. While the precise SET process between Int 1 
and CF3Br is not fully understood at this stage, we posit that 
the distance between cobalt center to the nitrogen in tertiary 
amine, which is predominantly determined by the steric 
hindrance of that amine, is crucial to the SET process in this 
reaction based on the results in Table 1 and this mechanism.26
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Figure 1. Proposed Mechanism for the 
hydroxytrifluoromethylation of alkene

    In conclusion, we have described an efficient 
cobalt/tertiaryamine mediated the hydroxytrifluoromethylation 
of alkenes with a broad substrate scope and functional group 
tolerance. The straightforward reaction employs CF3Br as the 
trifluoromethyl source and atmospheric dioxygen as the source 
of the hydroxyl oxygen. The reaction conditions are very mild, 
and each reagent is readily available and inexpensive. 
Mechanistic studies demonstrate that a radical reaction 
mechanism is involved, and that the oxygen atom in hydroxy 
group is derived from the atmospheric dioxygen. The 
compatibility of this reaction with complex drug molecules 
pave the way to its application in the late-stage drug 
modification, which would greatly accelerate the drug 
discovery process. In addition, we examined the reactivity of 
various tertiary amines, and proposed that the efficiency of 
cobalt-amine mediated SET process is largely determined by 
the distance between cobalt center to the nitrogen in tertiary 
amine. This understanding led to the discovery of a previously 
unexplored highly efficient SET reductant N-isopropyl-N,2-
dimethylpropan-2-amine (A12).
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