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Deuteration is essential and is widely used in the pharmaceuti-
cal industry1–3, organic synthesis4,5 and materials science6–8. 
In drug discovery, deuteration has great potential to improve 

the pharmacological profiles of lead compounds or to enable the 
tracing of metabolic pathways to elucidate a drug’s mechanism of 
action1–3 (Fig. 1a). On the other hand, the magic methyl effect has 
been extensively observed in natural products9,10 and in medicinal 
chemistry11–18 (Fig. 1a,b). For example, the incorporation of a methyl 
group into certain lead compounds can dramatically boost their 
potency15 (Fig. 1b, bottom). Thus, due to the corresponding effects 
of deuterium atoms on the absorption, distribution, metabolism and 
excretion3,19 of compounds, the robust generation of CHnD3−n (n = 0, 
1, 2) groups in covalent molecules is of high current interest. So far, 
the modular creation of differently deuterated methyl and methy-
lene groups in covalent molecules remains a fundamental chal-
lenge20–28 (Fig. 1a). Organic transition metal species are involved in 
catalytic reactions29–31 and are prevalent in medicinal chemistry14,32 
and materials science33,34. In a β-H elimination reaction, the metal 
picks up a hydrogen atom in an alkyl metallic species. The frequently 
used A-type allylic metallic species may also undergo this type of 
β-H elimination to afford 1,3-dienes, in which intermediate B35–37 is 
generated during the process of obtaining the hydrogen atom (Fig. 
1c, path a and path b). We envisioned that the hydrometallation of 
the C3=C4 bond instead of the C1=C2 bond in intermediate B would 
yield an isomeric allylic intermediate C (Fig. 1c, path c), formulating 
a concept for allylic C–H activation38–47 that eventually results in a 
metal-carried 1,4-H delivery. Challenges involve control of the regi-
oselectivity in terms of the two C=C bonds in intermediate B, and 
the realization of clear-cut, one-way transformation.

Here we report a reaction of organoboronic acids with 
2,3-allenols, co-catalysed by Rh and Cu and using air to complete 

the catalytic cycle, which affords synthetically and/or medicinally 
versatile 2-alkenals or 2-alkenones with an excellent stereoselectiv-
ity under very mild conditions (Fig. 1d, left). By applying this pro-
tocol, a deuterium atom is edited into the methyl or the methylene 
groups of versatile organic skeletons via its robust delivery from the 
C(D)OH moiety of differently deuterated, readily available allenols 
(Fig. 1d, right).

Results
Reaction discovery and optimization. Carbometallation of 
allenes has become one of the most common approaches for the 
facile formation of A-type allylic metallic species48,49. We there-
fore attempted the Rh-catalysed reaction of 2,3-butadienol 1a 
with 3-methoxyphenyl boronic acid 2a to test the concept shown 
in Fig. 1c, under the same conditions as for the syn-hydroarylation 
of propargylic alcohols50. Different from the expected hydroaryla-
tion reaction50, a new product, 3-(m-methoxyphenyl)but-2(E)-enal 
E-3aa, was formed in a highly stereoselective manner, albeit in 
12% NMR yield (Table 1, entry 1). Through careful analysis of its 
structure, we noticed that the carbon atom in the 4-position may 
indeed have received a hydrogen atom from the carbon atom in the 
1-position of 1a during this transformation. After further optimiza-
tion, we observed that 2-enal E-3aa could be formed in 77% NMR 
yield in the presence of [Cp*RhCl2]2 (where Cp* is pentamethylcy-
clopentadienyl) (2.5 mol%), Cu(OAc)2·H2O (1.2 equiv.) and NaOAc 
(20 mol%) in MeOH at room temperature in air (entry 2). Solvent 
screening showed that tetrahydrofuran (THF) was optimal (entries 
2–7). A 90% NMR yield of E-3aa was observed when the reaction 
was conducted with 1.0 equiv. of Cu(OAc)2·H2O (entry 8); how-
ever, it could also be used in catalytic amounts (entries 9 and 10). 
The efficiency decreased when the reaction was carried out in the 

Stereodefined rhodium-catalysed 1,4-H/D 
delivery for modular syntheses and deuterium 
integration
Weiyi Wang   1,4, Yibo Yu   1,4, Bao Cheng1, Huayi Fang2, Xue Zhang   3 ✉, Hui Qian1 ✉ and 
Shengming Ma   1,3 ✉

Deuterium-incorporated compounds are of high interest owing to their importance in the pharmaceutical industry, organic syn-
thesis and materials science. So far, the integration of deuterium into the inert, saturated magic methyl or methylene groups 
of covalent molecules remains challenging. Here, we present a 1,4-H delivery of allylic metallic species to provide a highly ste-
reoselective and straightforward approach to 3-methyl-2(E)-enals or -enones from readily available 2,3-allenols and organo-
boronic acids. The reaction accommodates many synthetically versatile functional groups as well as multi-pharmacophores, 
and is not limited to the formation of 3-methyl derivatives. By applying 1,4-H or D delivery, deuterium atom(s) from differently 
deuterated allenols can be edited into the methyl or methylene groups of versatile organic skeletons, resulting in the efficient 
formation of 4-monodeuterated, 1,4- and 4,4-doubly deuterated, and 4,4,4-triply deuterated 2(E)-enals or -enones. These 
powerful platform molecules can provide straightforward paths to other deuterated compounds for different purposes.

NatuRe CatalYSiS | VOL 4 | JULY 2021 | 586–594 | www.nature.com/natcatal586

mailto:xzhang@sioc.ac.cn
mailto:qian_hui@fudan.edu.cn
mailto:masm@sioc.ac.cn
http://orcid.org/0000-0002-5460-2045
http://orcid.org/0000-0001-6840-9281
http://orcid.org/0000-0001-7995-9879
http://orcid.org/0000-0002-2866-2431
http://crossmark.crossref.org/dialog/?doi=10.1038/s41929-021-00643-9&domain=pdf
http://www.nature.com/natcatal


ArticlesNaTure CaTalySiS

absence of NaOAc (entry 11), and an NMR yield of only 4% E-3aa 
was obtained in the absence of Cu(OAc)2·H2O (entry 12), indicating 
the critical roles of the acetate anion and the Cu salt. Further evalu-
ation of other Rh catalysts indicated that neither Rh(i) nor Rh(ii) 
catalysts could catalyse this transformation (entries 13–16).

Substrate scope and applications. With the optimized condi-
tions (Table 1, entry 10) in hand, we next examined the substrate 
scope for the generation of 3-methyl-substituted products (Fig. 2a). 
It is noteworthy that, in all cases, an excellent E-stereoselectivity 
was achieved without affording the Z-isomers. At first, a variety 
of commercially available arylboronic acids bearing different sub-
stituents were reacted with 2,3-butadienol 1a (Fig. 2a, top). Both 
electron-rich and electron-deficient arylboronic acids reacted to 
afford the corresponding products (E-3aa to E-3ar) in high yields, 
with the more electron-rich arylboronic acids giving the higher 
yields. Importantly, a variety of synthetically useful functional 
groups—including methoxy (E-3aa and E-3ad), bromo (E-3ae 
and E-3af), chloro (E-3ag), fluoro (E-3ah), trifluoromethyl (E-
3ai), acetyl (E-3aj), methoxycarbonyl (E-3ak), cyano (E-3al) and 

nitro (E-3am)—were tolerated. 2-Naphthyl and heteroaryl groups 
such as thienyl and furyl can also be incorporated in the products 
with decent yields (E-3ao to E-3ar). The loading of [Cp*RhCl2]2 
could be reduced to 1.0 mol% (E-3aa, E-3ac, E-3ad, E-3ae, and 
E-3al). X-ray crystallography analysis of E-3ak further confirmed 
the structure of the product and its stereochemistry. In addition 
to primary allenols, secondary allenols also worked well under the 
standard conditions, affording corresponding 2(E)-enones in high 
yields (Fig. 2a, bottom). Notably, we found that the scope of boronic 
acids was not limited to arylboronic acids: an alkenylboronic acid 
also gave the desired 2,4-dienone product (E,E)-3du, and even 
alkylboronic acids could be employed to afford the correspond-
ing ketones with good yields (E-3cv, E-3iv and 3dw). The struc-
ture and stereochemistry of the 2(E)-enone products were further 
confirmed by the single-crystal X-ray diffraction analysis of E-3ed. 
Gram-scale reaction of allenol 1f with boronic acid 2d afforded 
a 76% yield of the desired product E-3fd as single isomer under 
the standard conditions. The reaction is not limited to the synthe-
ses of 3-methyl-substituted products; 4-aryl or alkyl-substituted 
2,3-allenols were also successful in this transformation, affording 
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the desired 3-non-methyl-substituted products E-3ka, E-3lo, E-
3mb, E-3nx and E-3od in 53–70% yields (Fig. 2b).

Because α,β-unsaturated enals and enones are versatile build-
ing blocks in organic synthesis, such products have a wide range of 
synthetic applications (for details, see Supplementary Fig. 3). The 
2-enal E-3ad could undergo 1,2-addition with EtMgBr, a condensa-
tion reaction with ethyl acetate in the presence of lithium diisopro-
pylamide, and a Wittig reaction to afford the corresponding allyl 
alcohols E-4 (86% yield) and E-5 (91% yield) and the 1,3-diene 
(E,E)-6 (85% yield). The α,β-unsaturated enone E-3fd could 
undergo Suzuki coupling and reduction with NaBH4 to afford E-7 
(86% yield) and E-8fd (91% yield) in high yields.

The α,β-unsaturated carbonyl motif in these products is one of 
the common warheads of targeted covalent inhibitors51–53. Here we 
further demonstrate the scope of this reaction via the incorpora-
tion of molecular units with potential bioactivity into the enals or 
enones (Fig. 3). By applying sequential alkynylation, an allena-
tion of terminal alkyne (ATA) reaction54 and the current reaction, 
a variety of structurally complex molecules were modified using 
three different strategies. First, the alkynylation of structurally 
complex aldehydes followed by an ATA reaction afforded ter-
minal allenols (1j and 1p) or 3-substituted allenols (1q and 1r), 
which reacted with various organoboronic acids to afford corre-
sponding unsaturated aldehyde compounds (E-3qd and E-3rd) 
and ketones ((S)-E-3jt and E-3pe) (Fig. 3a). Second, structurally 
complex molecules with biological activity—such as estrone and 
glycyrrhetinic acid—were easily incorporated into the organobo-
ronic acids (2y and 2z), enabling the syntheses of corresponding 
unsaturated aldehydes (E-3ay and E-3az) by their reactions with 

2,3-butadienol 1a (Fig. 3b). Third, this strategy was used to assem-
ble multiple structurally complex, biologically active molecular 
units into one single, more complex molecule (Fig. 3c). For exam-
ple, diacetone-d-glucose and lithocholic acid could be efficiently 
incorporated into E-3saa with 80% yield. Finally, E-3uy—which 
contains bioactive units from adapalene, estrone and lithocholic 
acid—was successfully constructed.

Mechanistic investigation and divergent deuteration. To elu-
cidate the mechanism, the reaction was carried out using allenol 
1v-d1, which contains a deuterium atom at the α-position of the 
hydroxyl group. This reaction afforded E-3vd-d1 in 86% yield with 
99% deuterium incorporation at the allylic position (Fig. 4a), con-
firming the 1,4-D delivery concept shown in Fig. 1c. This 1,4-D 
delivery was further optimized to develop a controllable method 
for precise deuterium incorporation into methyl and methylene 
groups (Fig. 4b): the ATA reaction of deuterated propargylic alco-
hols (PA-d1 and PA-d2) and non-deuterated paraformaldehyde 
afforded α-deuterated allenols (1-d1 and 1-d2′), which reacted with 
organoboronic acids under the standard conditions to afford the 
corresponding β-monodeuterated methyl 2(E)-enones (d1-methyl 
products) or 1,4-doubly deuterated 2(E)-enals (d1′-methyl prod-
ucts). Similarly, starting from non-deuterated propargylic alcohols 
(PA) and fully deuterated paraformaldehyde, d2-methyl products 
(E-3-d2) were afforded. β-Trideuterated methyl enones (d3-methyl 
products) were also afforded from deuterated propargylic alcohols 
(PA-d1) and deuterated paraformaldehyde. The d3-methyl group 
could also be successfully incorporated into the structurally com-
plex and potentially bioactive molecules E-3iy-d3 and E-3daa-d3. 

Table 1 | Optimization of the reaction conditions

O+

Rh catalyst (x mol%)
NaOAc (20 mol%)

1a 2a (1.5 equiv.) E-3aa

•
OH Cu(OAc)2·H2O (y)

Solvent, r.t., air balloon
12 h

OMe

B(OH)2

MeO

H
H4

?

H1 H

H4 = H1?

entry Rh catalyst x y Solvent NMR yielda 
(%)

1b [Cp*RhCl2]2 2.5 0 MeOH 12

2 [Cp*RhCl2]2 2.5 1.2 equiv. MeOH 77

3 [Cp*RhCl2]2 2.5 1.2 equiv. Dioxane 79

4 [Cp*RhCl2]2 2.5 1.2 equiv. Toluene 75

5 [Cp*RhCl2]2 2.5 1.2 equiv. THF 86

6 [Cp*RhCl2]2 2.5 1.2 equiv. MeCN 81

7 [Cp*RhCl2]2 2.5 1.2 equiv. Dichloromethane 51

8 [Cp*RhCl2]2 2.5 1.0 equiv. THF 90

9 [Cp*RhCl2]2 2.5 20 mol% THF 85

10 [Cp*RhCl2]2 2.5 5 mol% THF 86

11c [Cp*RhCl2]2 2.5 5 mol% THF 62

12 [Cp*RhCl2]2 2.5 0 THF 4

13 Rh(PPh3)3Cl 5 5 mol% THF 0

14 [Rh(cod)Cl]2 2.5 5 mol% THF 2

15 [Rh(C2H4)2Cl]2 2.5 5 mol% THF 1

16 [Rh(OAc)2]2 2.5 5 mol% THF 0

17 RhCl3 5 5 mol% THF 0

The reaction was conducted with 0.5 mmol 1a, 0.75 mmol 2a, x mol% Rh catalyst, 20 mol% NaOAc and y equivalents or mol% Cu(OAc)2·H2O in 2.5 ml solvent at room temperature for 12 h with an air 
balloon. aThe yield was determined by 1H NMR analysis using dibromomethane as the internal standard. bThe reaction was conducted with 15 mol% AgBF4 under argon for 4 h. cThe reaction was conducted 
without NaOAc.
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Furthermore, this powerful approach could also realize controllable 
deuteration of the methylene group, as shown in the syntheses of 
E-3wa-d1 and E-3wa-d2.

To further disclose the mechanism, we performed reactions 
with allenol 1f (Fig. 5a, reaction 1) and allyl alcohol E-8fd (Fig. 5a, 
reaction 2) under the standard conditions. Both reactions failed to 
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afford the related ketones 9 and E-3fd, which excludes the possibil-
ity of 9 and E-8fd as intermediates. Thus, the mechanism involving 
rhodium alkoxide intermediates B′1 and B′2—which occurs in the 

Rh-catalysed isomerization of allylic alcohol55–57—can be excluded. 
We determined the kinetic isotope effect to be approximately 1.0 
(Fig. 5b), which demonstrated that the C–H bond cleavage was 
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not the rate-determining step. To pursue a further understanding 
of the mechanism, we performed density functional theory calcu-
lations at the M06/6-311+G(d,p)-SDD/IEFPCM(THF)//M06/6-

31G(d)-LANL2DZ level of theory to investigate the reaction energy 
profiles, using 2,3-butadienol 1a and phenyl boronic acid 2b as the 
model substrates (for more detailed information, see Supplementary 
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Methods). The Gibbs energies incorporate the solvent effect of THF. 
As shown in Fig. 5c, the transmetallation of [Cp*RhOAc]+ INT1 
with 2b proceeds via TS1, which requires an activation energy of 

5.3 kcal mol−1, resulting in the formation of INT3. The subsequent 
dissociation of B(OAc)(OH)2 and the coordination of the allene 
moiety of 1a provides the metal-η2-allene intermediates: both C=C 
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bonds of 2,3-butadienol 1a could coordinate with the Rh(iii) cen-
tre to generate the intermediates INT4_a or INT4_b, in which the 
hydroxyl group also coordinates to the Rh(iii) centre. INT4_a is 
found to be lower in free energy than INT4_b by 4.6 kcal mol−1. 
The subsequent insertion of the coordinated allenic C=C double 
bond into the Rh–C bond via TS2_a or TS2_b would provide the 
same π-allyl Rh(iii) complex INT5, which could easily isomerize 
to a more stable π-allyl Rh(iii) complex INT7, with the coordina-
tion of the hydroxyl group occurring via the intermediate σ-allyl 
Rh(III) complex INT6. Moreover, the transition structure TS2_a, 
which is associated with the more stable precursor INT4_a, is cal-
culated to be less favourable than TS2_b by 2.2 kcal mol−1 (6.9 ver-
sus 4.7 kcal mol−1) due to the existence of steric hindrance between 
the hydroxyl and the phenyl group in TS2_a. Notably, the coordi-
nation of the hydroxyl group with the Rh(iii) centre stabilizes the 
π-allyl Rh(iii) complex INT7 by 11.9 kcal mol−1 compared with the 
kinetically favourable intermediate INT5. Subsequent isomeriza-
tion of INT7 afforded the precursor for the hydride transfer, INT8, 
in which the coordination of the hydroxyl group to the Rh(iii) cen-
tre is replaced by an agostic interaction between the metal and the 
hydrogen atom. A hydrogen bond formed between the hydroxyl 
group of INT8 and an acetate anion leads to the generation of com-
plex INT9, which is exergonic by 13.1 kcal mol−1 (relative to INT8). 
Subsequent hydride migration is realized with the assistance of the 
acetate and proceeds through a concerted transition state TS3, in 
which the acetate anion acts as a base to deprotonate the hydroxylic 
hydrogen while the coordinated hydrogen migrates to the Rh(iii) 
centre. This hydride-transfer step is exergonic (with an exergo-
nicity of 7.4 kcal mol−1) and requires an activation barrier of only 
0.6 kcal mol−1 (TS3), affording the Rh(iii) hydride complex INT10. 
Subsequently, the reductive-elimination step—which involves the 
migration of the hydride ligand to the terminal allylic carbon and 
the simultaneous coordination of the reductive Rh(i) centre to the 
C=C bond of the final 2-alkenal product E-3ab—needs to overcome 
a free-energy barrier of 4.8 kcal mol−1 (TS4). Finally, the oxidation 
of Rh(i) with Cu in air regenerates the Rh(iii) catalyst to complete 
the catalytic cycle. Overall, the carborhodation step features the 
highest free-energy barrier of the whole process (14.9 kcal mol−1, 
TS2_b), and is therefore most likely to be the rate-limiting step. It 
is noteworthy that the Rh(iii) centre readily acts as a shuttle in the 
hydrogen relay to facilitate the 1,4-hydride transfer process (from 
INT9 to INT11), making it both thermodynamically and kineti-
cally favourable and therefore not the rate-determining step; this is 
confirmed by the data shown in Fig. 5b.

On the basis of these data, we propose a catalytic cycle  
(Fig. 5c, top right) that is different from the original concept shown in  
Fig. 1c. At first, [Cp*RhOAc]+ undergoes transmetallation with the 
organoboronic acid to generate [Cp*RhR]+ species A. Subsequent 
syn-insertion and allylic Rh coordination with OH result in the 
exclusive formation of the stereodefined allylic rhodium interme-
diate C, in which the hydride participates in an agostic interaction 
with the Rh through further rotation about the C–C single bond. 
Subsequent deprotonation of the hydroxyl group and β-D elimina-
tion mediated by OAc− leads to the formation of allylic Rh species 
D, which results in the formation of the product E-3 and Cp*Rh 
species via reductive elimination. The catalytically active species 
[Cp*RhOAc]+ can be regenerated via the oxidation of Cp*Rh spe-
cies using oxygen from air and acetate anion under Cu catalysis, to 
complete the catalytic cycle.

Conclusions
In conclusion, the concept of metal-carried 1,4-H delivery of allylic 
metallic species has been developed and applied for the highly ste-
reoselective syntheses of E-enals and enones from widely available 
organoboronic acids and 2,3-allenols under very mild reaction con-
ditions. The reaction has a very broad substrate scope, tolerating 

many functional groups as well as pharmacophores, and—via the 
corresponding 1,4-H or D delivery—provides a controllable strat-
egy for the precise incorporation of deuterium into the methyl and 
methylene groups of covalent molecules from differently deuter-
ated 2,3-allenols. The reaction is co-catalysed by [Cp*RhCl2]2 and 
Cu(OAc)2, with the assistance of oxygen from air to complete the 
catalytic cycle. Further studies, including investigation of the poten-
tial bioactivity of the products and further synthetic applications, 
are currently ongoing in our laboratory.

Methods
General procedure for the synthesis of enals or enones 3. To a Schlenk flask 
we added [Cp*RhCl2]2 (15.5 mg, 0.025 mmol), NaOAc (16.4 mg, 0.20 mmol), 
Cu(OAc)2·H2O (10.0 mg, 0.05 mmol), 2 (1.5 mmol, 1.5 equiv.), 1 (1.0 mmol, 1 
equiv.) and THF (5 ml) sequentially. The reaction was then carried out at room 
temperature under an atmosphere of air from a balloon until completion of the 
reaction as monitored by thin-layer chromatography. The crude reaction mixture 
was filtered through a short column of silica gel, eluted with ethyl acetate (4 × 5 ml) 
and concentrated. The residue was purified by chromatography on silica gel to 
afford the pure product.

Data availability
Experimental procedures, characterization of the compounds and density 
functional theory calculations are available in the Supplementary Information. 
Crystallographic data for the structures reported in this Article have been 
deposited at the Cambridge Crystallographic Data Centre, under deposition 
numbers CCDC 1939682 (E-3ak) and 1939713 (E-3ed). Copies of the data can be 
obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data 
are available from the corresponding authors upon reasonable request.
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