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ABSTRACT: A novel diethylzinc-mediated radical 1,2-addition of
perfluoroalkyl iodides to unactivated alkenes and alkynes is
presented, which demonstrates a novel way to generate an ethyl
difluoroacetate radical. This method is highly efficient and gives full
conversions of the substrates, high yields of the products, and
negligible byproducts and requires no column chromatography
purifications. The mild conditions enable this protocol to exhibit excellent functional group compatibility.

The 1,2-difunctionalization of alkenes and alkynes is an
ideal reaction because two new functional groups are

equipped in a single reaction. As a consequence, numerous
elegant methods have been developed to install various kinds
of groups onto the C−C multiple bonds.1−6 Ordinarily, there
are two common strategies for the 1,2-difunctionalization of
alkenes and alkynes. One is the extensively studied three-
component difunctionalization, which employs two different
reagents to install the two target functional groups one by one
or simultaneously (Figure 1A, route a). The other one, which

uses a single reagent to provide both of the two target
functional groups, is more challenging (route b). Among the
successful examples, perfluoroalkyl halides are regarded as
favorable difunctionalization reagents because fluorine atoms
widely exist in pharmaceutical molecules and halides are
readily transformed into many other groups based on the
reliable SN2 reactions and the abundance of cross-coupling
reactions (route c).7−9 However, most catalytic systems heavily
rely on precious and toxic photocatalysts (PCs)7 or transition-

metal (TM) catalysts.8 Some reaction conditions are too harsh
to maintain good functional group tolerance. Hence there is
still a demand for a practical protocol that employs simple and
inexpensive catalysts, gives excellent yields, and exhibits broad
functional group compatibility.
Zinc is an essential element for plants, animals, and human

beings.10 Organozinc compounds have become famous for
Negishi coupling, the Reformatsky reaction, the Fukuyama
reaction, and Baran’s reagent (Figure 1B).11 In most cases, the
reaction conditions are mild, and thus good functional groups
compatibilities are achieved. Zinc salts are also widely used as
versatile catalysts to catalyze a series of reactions. In addition,
zinc compounds are found in radical chemistry.12,13 For
example, diethylzinc acts as a source that provides alkyl radicals
under the influence of oxygen.12c−k Thus we envision that the
integration of difunctionalization reactions and zinc chemistry
will become a promising research field (Figure 1C).
In this work, we demonstrate a unique reaction mode of

diethylzinc and ethyl iododifluoroacetate in the radical 1,2-
addition of C−C multiple bonds. In addition to achieving high
efficiency, excellent functional group compatibility, and good
stereoselectivity, our protocol realized an ideal “clean
reaction”; that is to say, the starting materials were fully
transformed into the target products and negligible byproducts
were generated, and thus no column chromatography
purifications were demanded after the reaction (Figure 1C).
After a preliminary screening of works,14 50 mol % of Et2Zn

efficiently induced a radical 1,2-addition of ethyl iododifluor-
oacetate 1a to allylbenzene 2a, affording the desired product
3a in excellent yield at −20 °C (eq 1). After the completion of
the reaction, simple extraction, drying, filtration, and
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Figure 1. Integration of 1,2-difunctionalization and zinc chemistry.
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concentration procedures afforded the target product 3a with
perfect purity. Conventional purification via column chroma-
tography gave a comparable isolated yield.
Because of the lack of a proximal group with a π-electron

system (e.g., aryl, carbonyl, and heteroatom) to stabilize the
nascent alkyl radical intermediates, unactivated alkenes are
much more difficult to difunctionalize than activated alkenes
such as styrene derivatives via radical pathways. Accordingly, a
series of unactivated alkenes bearing various kinds of functional
groups was submitted to the standard reaction conditions to
test the generalizability of our method. For aliphatic terminal
alkenes, the reaction proceeded well and gave excellent yields
despite the structures of the carbon backbones (Scheme 1,

3b−3d). Diene gave the double-functionalized product when 2
equiv of reagents was employed (3e). The chemistry exhibited
good functional group compatibility. A broad spectrum of
functional groups was tolerated without any problems during
the reaction, affording the corresponding products in perfect
yields. For example, bromide, acetate, benzoate, and sulfonate,
which are good leaving groups under nucleophilic conditions,
all survived during the reaction (3f−j). Substrates bearing
protected alcohols and ether groups efficiently afforded the
target products (3k−m). After the reaction, azide and
protected amines were intact, whereas the difunctionalized
products were obtained in high yields (3n and 3o). Carboxylic
acid derivatives such as nitrile, ester, and amide were also
compatible with the reaction (3p−r). For internal cyclic
alkenes, the desired products were also obtained in good yields
and with high levels of stereocontrol; that is, only trans isomers

were obtained (3s and 3t).15 When two equivalent or
nonequivalent C−C double bonds existed in the same
molecule, this chemistry exhibited good chemoselectivity. For
example, employing 1 equiv of iodide gave a monofunction-
alized product, whereas the other C−C double bond was left
intact (3t). The exocyclic terminal double bond is more
reactive than its cyclic counterpart; only the former was
functionalized when 1 equiv of iodide was employed (3u).
Our attention was then turned to alkyne substrates.

Fortunately, this reaction also worked well for alkynes and
once again showed very good generalizability. For phenyl-
acetylene derivatives, a wide range of substituents on the
aromatic rings were well tolerated (Scheme 2, 5a−p). The data

revealed that the electronic factor had little influence on the
outcome of the reaction. From electron-donating alkoxys,
alkyls, and halogens to electron-withdrawing formyl and
trifluoromethyl, the high efficiency of the reaction and the
good functional group tolerance were well maintained. In
addition, steric factors did not affect the reaction. For example,
more sterically hindered o- and m-substituted phenylacetylenes
(5l−p) gave almost the same yields as their p-substituted
counterparts (5b−k). The stereoselectivity was good; in most
cases only E isomers were observed.16 Addtionally, hetero-
cyclic arene was compatible with the reaction (5q). Aliphatic
terminal alkynes readily reacted with the iodides, affording the
target products in high yields. However, the E/Z ratios were
not as good as those of the phenylacetylene derivatives (5r−u),
indicating that the conjugated aromatic rings play a crucial role
in the stereoselectivity of the reaction. A saturated heterocyclic
substrate suffered moderate conversion and required column
chromatography purification to obtain a pure product (5v).
Internal carbon−carbon triple bonds had lower reactivities

Scheme 1. Scope of Terminal and Internal Alkenesa,b

aReaction conditions: ICF2CO2Et 1a (0.2 mmol), alkenes 2 (0.2
mmol), Et2Zn (50 mol %), acetonitrile (2.0 mL), −20 °C, 16 h.
bWithout column chromatography. c20 mol % of Me2Zn instead of
Et2Zn.

dEthyl iododifluoroacetate 1a (0.4 mmol) and Et2Zn (100 mol
%) were used. eIsolated yield.

Scheme 2. Scope of Terminal and Internal Alkynesa,b

aReaction conditions: ICF2CO2Et 1a (0.2 mmol), alkynes 4 (0.2
mmol), Et2Zn (50 mol %), acetonitrile (2.0 mL), −20 °C, 8 h.
bWithout column chromatography. cE/Z ratios were determined from
the relative intensities of 19F NMR signals. d25 mol % of Me2Zn
instead of Et2Zn.

eIsolated yield.
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under the standard reaction conditions, affording tetra-
substituted olefins in moderate yields (5w,x). Again, alkyne
with a conjugated aromatic ring (5x, E only) gave a better
stereoselectivity than its alkyl counterpart (5w, E/Z = 7:1).
Good functional group compatibility was also achieved at this
time, although moderate conversions and E/Z ratios were
obtained for those differentially functionalized alkynes (5y−
af).
To further explore the generalizability of this chemistry, we

explored other fluoro-containing iodides. Gratifyingly, both
primary and secondary perfluoroalkyls were successfully
incorporated into the C−C double bonds. Desired products
were obtained without any difficulties only at the expense of
lower conversions and the requirements of column chromatog-
raphy purification (Scheme 3).

More importantly, the reaction showed good potential for
the late-stage structural modifications of natural products and
pharmaceutical molecules (Scheme 4). A series of derivatives
of those compounds, such as camphorsulfonic acid, estrone,
(+)-fenchol, ibuprofen, dihydrocholesterol, and (+)-dehydroa-
bietylamine, all reacted well to give the desired products in

satisfying to excellent yields. The other functional groups on
the parent compounds were all well tolerated throughout the
reactions. It should be noted that for those examples with
moderate yields, the reactions were also clean. Starting
materials were recovered, and a good mass balance was
obtained (7e).
To shed light on the mechanism, a series of studies was

performed. First, under similar conditions, other organo-
metallic reagents such as n-butyllithium and methyl magne-
sium iodide both failed to promote the reaction, although the
latter is well known in radical processes (Scheme 5A). That

result also excluded a base-catalyzed mechanism, which is one
probable mechanism in Hu’s work.8a To determine whether
metal zinc is the real catalytic species, we examined zinc
powder, as well as other reductive metals (Cu, Mn, Mg, Fe), to
promote the reaction. However, even at elevated temperatures,
those metals all failed to give the desired products (Scheme
5A). Hence the data excluded a metal-promoted mechanism,
which is proposed by several groups.17 The reaction performed
well in the dark, thus excluding a light-induced mechanism
(Scheme 5B). The addition of TEMPO totally shut down the
reaction, whether or not alkene 2a was added, and the
TEMPO-captured ethyl difluoroacetate radical 8 was detected
by gas chromatography−mass spectrometry (GC-MS), which
strongly indicated that radical species were involved in the
reaction (Scheme 5C). Moreover, a couple of radical ring-
opening and ring-closure reactions further consolidated a
radical mechanism. For example, α-pinene gave a ring-opening
product 9 (Scheme 5D), whereas allyl ether and allyl amine
substrates both gave ring-closure products 10 (Scheme 5E). In
combination with the result that no protonated products were
isolated after the reaction, these data also excluded a
carbozincation mechanism.18 Further studies showed that
after reacting with 1.0 equiv of diethylzinc in the absence of
alkenes or alkynes, ICF2CO2Et fully transformed into enolate I
because its protonated product HCF2CO2Et 11 was detected
as the only fluorine-containing species by crude 19F NMR
(Scheme 5F).19 Trace amounts of oxygen were proven to be

Scheme 3. Scope of Perfluoroalkyl Iodidesa,b

aICmFn 1 (0.2 mmol), allylbenzene 2a (0.2 mmol), Et2Zn (50 mol %),
acetonitrile (2.0 mL), −20 °C, 16 h. bIsolated yield.

Scheme 4. Late-Stage Functionalization of Natural Product
and Pharmaceutical Molecule Derivativesa,b

aICF2CO2Et 1a (0.2 mmol), alkenes 2 (0.2 mmol), Et2Zn (50 mol
%), acetonitrile (2.0 mL), −20 °C, 16 h. bWithout column
chromatography. cIsolated yield. dICF2CO2Et 1a (0.2 mmol), alkenes
2 (0.1 mmol), Et2Zn (100 mol %), acetonitrile (2.0 mL), rt, 16 h.
eYield of recovered starting material.

Scheme 5. Mechanism Studies
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necessary to initiate the reaction, as only <5% product was
obtained when the reaction was performed in freshly distilled
MeCN with freeze−pump−thaw cycling.
On the basis of those results, a probable mechanism is

proposed. First, diethylzinc undergoes metal/iodine exchange
upon reaction with ethyl iododifluoroacetate 1a to afford
intermediate I (Scheme 6, step 1).20 In the meantime,

diethylzinc reacts with a trace amount of oxygen to release
ethyl radical II (step 2).12 The latter then attacks I to produce
ethyl difluoroacetate radical III and regenerate the diethylzinc
(step 3). Radical III then undergoes an atom transfer radical
addition (ATRA) reaction;2b that is, radical III first adds to a
C−C multiple bond to form an adduct radical IV (step 4),
which captures an iodide radical from the starting material 1a
to furnish the target addition product (step 5). Meanwhile, this
process regenerates the difluoroacetate radical III, which could
react with another molecule of substrates.
The synthesized products are versatile building blocks and

exhibit broad synthetic utility. Both the iodide and the
difluoroester are readily transformed into other groups. For
example, iodide in compound 3b was smoothly substituted by
sodium azide via a SN2 reaction (Scheme 7A). The

difluoroester in compound 3a was readily reduced to alcohol
and subsequently underwent an intramolecular SN2 reaction to
form a novel fluoro-containing tetrahydrofuran motif (Scheme
7B). Importantly, on the basis of multifarious cross-coupling
reactions, a series of groups could be installed on the fluoro-
containing backbones. This utility was exemplified by a

palladium-catalyzed Sonogashira coupling and a cobalt-
catalyzed Kumada coupling. Both the vinyl iodide and the
alkyl iodide successfully reacted with the corresponding
coupling partners to afford the desired products 14 and 15
in good yields (Scheme 7C,D).
In conclusion, we have developed a simple but efficient

protocol to install two functional groups of synthetic values
onto C−C multiple bonds. This work demonstrates a novel
way to generate an ethyl difluoroacetate radical. The mild
conditions, high yields, excellent functional group compati-
bility, and good stereoselectivity make our protocol of great
synthetic importance and a good complement to the existing
catalytic systems. The application of zinc-mediated radical
chemistry to other reactions is under investigation in our lab.
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