

DOI: 10.1002/ejoc.201500815

Total Synthesis of 3-Oxo- and 3β-Hydroxytauranin via Negishi Coupling of a Bis(*ortho*-oxy)-Functionalized Benzyl Chloride

Matthias Göhl^[a] and Karlheinz Seifert*^[a]

Keywords: Total synthesis / Natural products / Terpenoids / Epoxides / Cyclization / Radical reactions

The first asymmetric synthesis of the sesquiterpene quinones 3-oxo- and 3 β -hydroxytauranin (1, 2) was achieved and the originally proposed structure of 3 α -hydroxytauranin was revised. The protected benzyl chloride 5 was obtained in six steps starting from 4-bromo-3,5-dihydroxybenzoic acid (8) via a highly scalable approach. The troublesome Negishi coupling of the benzyl chloride 5 with alkenyldimethylalane

6 was optimized to furnish *all-trans*-farnesylarene **14** in very good yield. This prenylated arene was transformed in six additional steps to 3β -hydroxytauranin (**2**). Finally, a new convenient access to propargylated terpenes without using dry cryogenic ammonia and gaseous allene or propyne is described.

Introduction

Sesquiterpene quinones and hydroquinones possess many of interesting pharmacological activities. Avarol and avarone inhibit the reverse transcriptase of the HIV-virus and in this way the replication of the AIDS virus is suppressed.^[1a] Ilimaquinone shows an inhibition of the RNase-Hfunction of the HIV-1 reverse transcriptase^[1b] and the tubulin-polymerization.^[1c] Bolinaquinone, 21-dehydrobolinaquinone, and dysidine possess inhibitory activity against hPTP1B, a potential drug target for treatment of type-II diabetes and obesity.^[1d] Yahazunol, cyclozonarone, spongiaquinone and hyatellaquinone show good cytostatic/cytotoxic activity against the tumour cell lines HM02 (gastric adenocarcinoma), HepG2 (hepatocellular carcinoma), and MCF7 (breast carcinoma).^[1e] Wiedendiol B exhibits a strong and selective cyclooxygenase-2 (COX2) inhibition. COX2 inhibitors are drugs with antiphlogistic and antirheumatic activities.[1f]

Gunatilaka's group claimed to have isolated the sesquiterpene quinones tauranin, 3-oxotauranin (1), 3α -hydroxytauranin, and 14-hydroxytauranin (Figure 1) from *Phyllostigta spinarum*, a fungal strain endophytic in *Platycladus orientalis* from the Sonoran Desert. Tauranin shows apoptotic activity toward several human solid tumor cell lines.^[1g] Analyzing the ¹H NMR spectroscopic data of 3α hydroxytauranin^[1g] it is obvious that the reported coupling constants of the proton in position 3 ($\delta = 3.29$ ppm, dd, $J_{2ax,3ax} = 11.3$ Hz, $J_{2eq,3ax} = 4.3$ Hz) are in agreement with the 3β -epimer of **2** (Figure 1). The 3-H signal of 3β -

 [a] Lehrstuhl f
ür Organische Chemie, NW II, Universit
ät Bayreuth, Universit
ätsstra
ße 30, 95447 Bayreuth

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201500815.

Figure 1. Structures of tauranins and expected ¹H NMR coupling constants.

E-mail: karlheinz.seifert@uni-bayreuth.de

FULL PAPER hydroxyalbicanyl acetate shows very similar coupling constants (δ = 3.25 ppm, dd, $J_{2ax,3ax}$ = 11.4 Hz, $J_{2eq,3ax}$ = 4.3 Hz).^[1h] Our goal was to develop a straightforward syn-

thesis of both 3-oxo- and 3β -hydroxytauranin (1, 2). The NMR spectroscopic data and optical rotations of compounds 1 and 2 should be compared with those of the natural products to confirm their correct structures and absolute configurations. Furthermore, 3-oxo- and 3β -hydroxy-tauranin (1, 2) should be tested for their pharmacological activities as cytostatic/cytotoxic, antiphlogistic, antirheumatic, and anti-inflammatory.

Almost all total syntheses of sesquiterpene quinones use the direct disconnection between an arene chore and the bicyclic sesquiterpene moiety.^[2] This approach usually demand a protected terpenoid, whose asymmetric de novo synthesis is often cumbersome. Commonly functional group interconversions (FGI) or deprotections are necessary to manipulate the sesquiterpene chore in the desired manner. This is especially difficult in the case of in position 3 functionalized terpenes.

Results and Discussion

We employed a bioinspired and more convenient approach and retrosynthetically reduced the quinonic chore to the orthogonally protected 3β -hydroxyalbicanylresorcin **A** (Scheme 1). Double retrosynthetic ring opening between the positions 4,5 and 9,10 of **A** resulted in (*S*)-epoxide **B**. Our methodology offers two further disconnections as shown in Scheme 1. Disconnection a leads to farnesylbromide (3) and aryl bromide **4** and disconnection b to alkenyldimethylalane **6** and benzyl chloride **5**.

Scheme 1. Retrosynthesis of 3-oxo- and 3β -hydroxytauranin (1, 2).

Pursuing disconnection a we examined the lithiation of aryl bromide **4**. The required aryl bromide **4** was prepared

from 4-bromo-3,5-dihydroxybenzoic acid (8) by benzylation to yield the ester $9^{[3a-3c]}$ (Scheme 2). Reduction of 9 with LiAlH₄ gave benzylic alcohol $10^{[3a]}$ which was protected with TIPSC1 to 4.^[3c,3d] This procedure is highly scalable as no chromatography is needed and all intermediates can be purified by crystallization on a multigram scale. All conversions are almost quantitative and the overall yield of 74% over three steps is justified by waste of product due to crystallization.

Many attempts to lithiate the benzyl-protected arene **4** showed that *n*BuLi in a very apolar solvent mixture (benzene and Et₂O) is crucial for a clean conversion.^[3e] Subsequent coupling with farnesyl bromide (**3**) led mainly to elimination products besides the desired prenylated arene **14** in 34% to 48% yield (Scheme 3).

Scheme 3. Synthesis of the coupling product 14.

For this reason disconnection b was chosen (Scheme 1). The Pd-catalyzed Negishi coupling of benzyl chlorides has been explored by Negishi.^[4a] Lipshutz studied and improved it by using a Ni⁰ catalyst and broadened the scope to highly electron rich benzyl chlorides, which could be coupled in excellent yields.^[4b–4g] For this approach the necessary benzyl chloride **5** could be obtained via an optimized lithium–halogen exchange of the aryl bromide **4** with *n*BuLi and subsequent reaction with DMF to provide the aldehyde **11** (Scheme 4).^[5a] The formyl group of **11** was reduced with NaBH₄ to the benzylic alcohol **12**^[5b] which was transformed with TMSCl to the benzyl chloride **5**.^[5c] The elaborated approach is also highly scalable since all products were purified by crystallization on a multigram scale.

The most frequently applied method to obtain propargylated prenyls is the elongation of the corresponding prenyl halide with lithiated 1-(trimethylsilyl)propyne and subsequent desilylation^[4e] or nucleophilic substitution of the latter halide with a dilithiated species derived from gaseous allene^[6a] or propyne.^[4g] The former reaction leads to byproducts which are difficult to separate.^[4g] Concerning the

Scheme 4. Synthesis of the benzyl chloride 5.

latter reaction, the handling and availability of gaseous allene or propyne is difficult, so we attempted to improve a protocol developed by Negishi, which exploits dilithiated phenyl propargyl thioether as a nucleophile.^[6b] This procedure uses a reductive desulfurization of the anion derived

Table 1. Screening of Negishi coupling conditions.

from **13** (Scheme 5) with lithium in anhydrous ammonia.^[6b] Since the drying of cryogenic liquid ammonia is cumbersome and the water content is crucial for a clean conversion of the phenyl thioether **13** to the alkyne **7**, we looked for a more appropriate procedure. We found that the reductive desulfurization with catalytic amounts of naphthalene and lithium dust^[6c] resulted in a clean conversion and gave the desired alkyne **7** (Scheme 5) after 1 h at 0 °C with a 87% yield after distillation on a 100 mmol scale.

Scheme 5. Synthesis of the Negishi coupling product 14.

Entry ^[a]	MX ^[b]	Conditions, catalyst [mol-%] ^[c]	Conversion ^[d]
1	none	$Pd(PPh_3)_4$ (5)	2%
2	none	$Ni(PPh_3)_2Cl_2$, 2 BuLi (5)	69% (30%)
3	none	$Ni(dppp)^{[e]}Cl_2$, 2 BuLi (5)	11% (10%)
4	ZnCl ₂ ^[f]	$Ni(PPh_3)_2Cl_2$, 2 BuLi (5)	55% (8%)
5	$ZnCl_2$	$Ni(PPh_3)_2Cl_2$, 2 BuLi (5)	66%
6	$ZnCl_2$	Ni(acac) ₂ , 2 PPh ₃ , 2 DIBAL (5)	67%
7	InCl ₃	$Ni(acac)_2$, 2 PPh ₃ , 2 DIBAL (5)	49%
8	$ZnCl_2$	$Ni(acac)_2$, 2 PPh ₃ , 2 DIBAL (2)	55%
9	$ZnCl_2$	$Ni(acac)_2$, 2 P(o-tol) ₃ , 2 DIBAL (2)	18%
10	$ZnCl_2$	C (3)	32%
11	$ZnCl_2$	Ni(acac) ₂ , 2 IPr·HCl (D), 4 DIBAL (3)	28%
12	$ZnCl_2$	$Pd(PPh_3)_2Cl_2$, 2 BuLi (5)	8%
13	$ZnCl_2$	$Pd(dppf)^{[g]}Cl_2$, 2 DIBAL (3)	19%
14	InCl ₃	$Pd(dppf)Cl_2$, 2 DIBAL (3)	3%
15	ZnCl ₂ , LiBr ^[h]	PEPPSI-IPr (E) (3) in THF/NMP 2:1	14% (4%)
16	$ZnCl_2$	$Ni(acac)_2$, 2 PPh ₃ , 2 DIBAL (25)	72%
17	$ZnCl_2$	Ni(acac) ₂ , 2 PPh ₃ , 2 DIBAL (40)	40%
18	$ZnCl_2$	Ni(acac) ₂ , 2 PPh ₃ , 2 DIBAL (40) in THF/NMP 2:1	54%
19	$ZnCl_2$	Ni(acac) ₂ , 2 PPh ₃ , 2 DIBAL (15) in THF/NMP 2:1 at -45 °C	83%

[a] All reaction were performed with 1 mmol benzyl chloride **5** and 1.4 mmol carboaluminated alkyne **6** in 5 mL of THF at room temp. (unless otherwise stated). [b] Added metal salt (MX) based on amount of alane **6**. Unless stated otherwise 1.05 equiv. $ZnCl_2$ respectively 0.34 equiv. $InCl_3$ were used. [c] Amount of catalyst based on amount benzyl chloride **5** is given in parenthesis. [d] Determined by ¹H-NMR of the crude reaction mixture, yield of ethylbenzene **19** is given in parenthesis. [e] dppp = 1,3-bis(diphenylphosphanyl)propane. [f] 0.45 equiv. $ZnCl_2$ were used. [g] dppf = 1,1-bis(diphenylphosphanyl)ferrocene. [h] 2.0 equiv. LiBr was added.

FULL PAPER

Thus we developed a new convenient method for the multigram preparation of propargylated terpenes without using time-consuming manipulations. Compound 7 reacted with $Cp_2ZrCl_2/AlMe_3$ to the alkenyldimethylalane 6.^[4a]

With the two building blocks 5 and 6 in our hands we performed the standard Negishi coupling protocol of Lipshutz^[4d] to obtain the prenylated arene 14 (Scheme 5). We observed that in our case a large amount of the corresponding ethylbenzene derivative 19 is produced via methyl transfer from the alkenyldimethylalane 6 to the benzyl chloride 5 (Table 1, entry 2). This is the first bis(ortho-oxy)-substituted benzyl chloride coupled in a Negishi fashion as well as the first described methyl transfer in such a case. Since the ethylbenzene 19 has the same polarity as the required prenylated arene 14 and is not separable by standard column chromatography, it was highly desirable to suppress its formation. Therefore we screened different catalyst systems and reaction conditions. As Lipshutz already stated Pd(PPh₃)₄ catalysis (entry 1) is less efficient.^[4b,4c] The use of Ni⁰ catalyst obtained by treatment of Ni(dppp)Cl₂ with BuLi led to the formation of the ethylbenzene derivative 19 together with the prenylated arene 14, both of them with poor yields of 10% and 11% (entry 3). Changes introduced in the preparation of the Ni⁰ catalyst either by addition of PPh₃, tri(o-tolyl)phosphane [P(o-tol)₃]^[7a] (entry 9) or and reducing agents such as DIBAL,^[4b-4d] transmetallation of the carboalumination product either by addition of $ZnCl_2^{[7b]}$ or $InCl_3^{[7c,7d]}$ or the addition of precatalysts C, ^[7e] D, E^[7f,7g] (entries 10, 11, 15) did not provide any better results in the first attempts, but suppressed the formation of the unwanted ethylbenzol 19. However, larger amounts of Ni⁰ catalyst derived from Ni(acac)₂, PPh₃ and DIBAL, increased the yields to a certain extent (entries 16-17). Moreover, the change of solvent from THF to THF/NMP, 2:1 at -45 °C^[4f] gave the desired product 14 with an acceptable yield of 83% (entry 19).

The asymmetric Sharpless dihydroxylation^[8a] of 14^[8b] with Noe-Lin-ligand^[8c-8e] to 15 was difficult because of solubility problems and produced 26% of (*R*)-glycol 15 plus a huge amount of overoxidized byproducts after 2 d under standard conditions (Scheme 6). After numerous efforts, we found that making use of THF as less polar cosolvent, tetrabutylammonium acetate as a phase-transfer catalyst,^[8f] and the addition of K_2CO_3 (6 equiv.), $K_3[Fe(CN)_6]$ (6 equiv.) and methanesulfonamide (1.5 equiv.) furnished the desired (R)-glycol 15 with a 56% yield, which represented 81% yield based on the recovered starting material (brms) with an enantiomeric ratio of 95:5.^[8g] Mesylation of the secondary alcohol function of 15 and basic cyclization with K_2CO_3 in MeOH furnished the desired (S)-10,11-epoxyfarnesylarene 16 in a one pot reaction with 97% yield.^[8d] The resulting (10S,2E,6E)-10,11-epoxyfarnesylarene 16 was subjected to a known bioinspired Ti^{III}-mediated cyclization cascade^[9a-9j] to give 3β-trimethylsilyloxyalbicanylarene 17.^[9i,9j] Since the TIPS group was partially removed via the standard deprotection protocol with TBAF,^[9a-9j] we used a selective TMS deprotection method making use of K₂CO₃ in MeOH/DCM to afford 18 with 34% yield.

Scheme 6. Synthesis of 3β -hydroxyalbicanylarene **18**; yields in parenthesis are based on the recovered starting material.

The debenzylation of **18** under gentle conditions with lithium naphthalide at -21 °C yielded the desired resorcine **20**^[10] (Scheme 7) in an almost quantitative yield. Attempts to oxidize the resorcine moiety to the 2-hydroxyquinone motif with salcomine [N,N'-bis(salicylidene)ethylenediaminocobalt(II)] in DMF,^[11a,11b] MeCN or MeOH under

Scheme 7. Synthesis of 3-oxo- and 3β -hydroxytauranin (1, 2); yields in parenthesis are based on the recovered starting material.

Figure 2. NOE correlations of 3α-hydroxytauranin and NOESY correlations of 3β-hydroxytauranin (2).

an O₂ atmosphere were disappointing and afforded **21** with 10–40% yields after 36 h in addition to several overoxidized byproducts. Several attempts to perform the oxidation with IBX (2-iodoxybenzoic acid) in DMF,^[11c] CAN in MeCN/ H_2O ,^[11d] PCC/ H_5IO_6 in MeCN,^[11e,11f] were not satisfying and showed a tendency towards oxidative destruction of the already formed quinonic moiety. Oxidation with PIFA [(bis(trifluoroacetoxy)iodo)benzene] in MeCN/ H_2O , 2:1 at 0 °C^[11g] was more promising, but led to several byproducts. Fortunately, changing the solvent system to DMF/ H_2O furnished the desired quinone **21** with an excellent yield (91%).

Finally, TBAF promoted TIPS^[12a] deprotection led to the isolation of 3 β -hydroxytauranin (2) with 92% yield. No oxidation of an alcohol function besides the oxidation labile 2-hydroxyquinone moiety is reported in literature. The Dess–Martin-periodinan (DMP) oxidation^[12b] of the secondary alcohol moiety of 21 to ketone 22 was stopped after a reaction time of 1 h at 0 °C due to oxidative destruction of the quinonic motif. In this way, the TIPS protected ketone 22 could be obtained with 61% yield, which represented 81% yield brsm (based on the recovered starting material). Treatment of the isolated ketone 22 with TBAF in THF furnished 3-oxotauranin (1) with an excellent yield (93%).

NOE correlations of 3α -hydroxytauranin were obtained in the Gunatilaka group by 1D NOE measurements.^[1g] Irradiation of the signal at $\delta = 0.98$ ppm (CH₃-13) showed enhancements of the signals at $\delta = 0.76$ ppm (CH₃-15) and 3.29 ppm (3-H_{eq}) indicating that the both methyl groups and 3-H are on the same side of the molecule. Since CH₃-15 is β -oriented, CH₃-13 and 3-H must also be β -oriented (Scheme 2). The chemical shifts for the signals of CH₃-15 and CH₃-14 are $\delta = 0.76$ ppm and $\delta = 0.77$ ppm. This means, the assumed NOE CH₃-15/CH₃-13 is actually the NOE CH₃-13/CH₃-14. The NOESY correlations CH₃-13/5-H and CH₃-13/6-H_{eq} of 3β -hydroxytauranin (2) showed the α -orientation of CH₃-13. Due to the NOESY correlation CH₃-13/3-H_{ax} the hydroxy group of 2 is β -oriented (Figure 2).

Conclusions

We developed a bioinspired approach for the straightforward synthesis of 3-oxo- and 3β -hydroxytauranin (1, 2).

The NMR spectroscopic data of both compounds 1 and 2 matched those reported by Wijeratne et al.^[1g] The optical rotation of 3-oxotauranin (1) ($[a]_D^{23} = -160$, CHCl₃) showed reasonable agreement with the value reported in the literature ($[a]_{D}^{23} = -130.2$, CHCl₃). The absolute value for 3 β hydroxytauranin (2) ($[a]_{D}^{23} = -149$, CHCl₃) is similar to that reported by Wijeratne et al.^[1g] ($[a]_D^{23} = +139.5$, CHCl₃) but of opposite sign. Since compounds 1 and 2 were derived from the same precursor 21, the sign of the optical rotation of the natural product 2 must be wrong. In summary we showed that the natural product isolated from *Phyllostigta* spinarum has indeed a 3β -configuration and is not 3α -hydroxytauranin as proposed by Wijeratne et al.^[1g] According to our interpretation of NMR spectroscopic data for 3-oxotauranin (1) and 3β -hydroxytauranin (2) the revised NMR assignments for both natural products can be found in the supplement. The incorrect assignment of both methyl groups 13 and 14 in compound 1 and 3αhydroxytauranin suggests also, that the postulated natural product has to be 13- and not 14-hydroxytauranin (Figure 1). Furthermore, a new convenient access to propargylated terpenes on a multigram scale without using dry cryogenic ammonia and gaseous allene or propyne has been demonstrated.

Experimental Section

General: All moisture or oxygen sensitive reactions were performed in oven-dried glassware under an argon atmosphere using standard Schlenk techniques. Unless otherwise stated silica gel (Macherey-Nagel, particle size 40-63 µm) was used for column chromatography. The oxidation labile 2-hydroxyquinones were handled under an inert gas atmosphere and frozen in a benzene matrix at -21 °C for longer storage. Optical rotations of these compounds have to be measured direct after purification. Melting points were determined in open capillary tubes with a Büchi M-565 melting point apparatus. Mass spectra were measured on an Orbitrap Elite (Thermo Fisher Scientific) mass spectrometer (HRMS, ESI). NMR spectroscopic data were recorded under conditions as indicated with a Bruker Avance 300 and a Bruker Avance-III-HD 500 spectrometer. Solvent signals were used as internal standard (¹H = 7.26 ppm and ${}^{13}C = 77.0$ ppm for CDCl₃; ${}^{1}H = 2.05$ ppm and ${}^{13}C$ = 29.8 ppm for $[D_6]$ acetone). Multiplicity m_c = centered multiplet.

Benzyl 3,5-Bis(benzyloxy)-4-bromobenzoate (9): A solution of **8** (69.90 g, 300.0 mmol) in DMF (250 mL) was prepared in a three-

neck flask equipped with a dropping funnel and a KPG stirrer under an inert gas atmosphere. Finely divided K_2CO_3 (165.8 g, 1.200 mol) was added in small portions. Then benzyl bromide (121.3 mL, 1.020 mol) was added under vigorous stirring in a manner to keep the reaction temperature at about 60 °C (0.5-1 h). After one further hour of stirring at room temperature a highly viscous suspension has formed due to crystallization of the product 9. To induce further crystallization H₂O (300 mL) was added within 15 min whilst stirring and the resulting suspension was poured into H_2O (1 L). The white solid was collected by suction filtration and washed with H₂O (3×500 mL) and pentane (2×300 mL). After drying at 40 °C and 7 mbar the crude product was recrystallized from hexanes/MTBE/CHCl₃ to yield the title compound 9 (134.9 g, 266.9 mmol, 89%). $R_{f'} = 0.24 (10\% \text{ EtOAc/hexanes}), \text{ m.p. } 134.1 \text{ }^{\circ}\text{C}$ (hexanes/MTBE/CHCl₃). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 5.21 (s, 4 H), 5.36 (s, 2 H), 7.33-7.37 (m, 4 H), 7.38-7.45 (m, 9 H), 7.49–7.53 (m, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 67.0, 70.9, 107.3, 108.3, 127.0, 128.0, 128.1, 128.3, 128.5, 128.6,129.9, 135.7, 136.1, 156.1, 165.7 ppm. ESI-HRMS: calcd. for $[C_{28}H_{23}O_4^{79}Br + H]^+$: m/z = 503.0852; found m/z = 503.0853.

[3,5-Bis(benzyloxy)-4-bromophenyl]methanol (10): A solution of 9 (121.8 g, 242.3 mmol) in THF (600 mL) was chilled in an ice bath and LAH (14.47 g, 381.3 mmol) was added in small portions. After stirring for 1 h Me₂CO (50 mL) was added and the reaction was stirred for further 15 min. Then MTBE (800 mL) was added and the reaction was quenched by addition of 5 M HCl (400 mL, 2.00 mol). After the precipitate has dissolved H₂O (400 mL) was added and the layers were separated. The aqueous phase was extracted one further time with MTBE (500 mL), the combined organic phases were washed with brine and dried with MgSO₄. After removal of the solvent the obtained crude product was purified by recrystallization from hexanes/MTBE/CHCl₃ to furnish the desired benzyl alcohol 10 (87.14 g, 218.2 mmol, 90%). $R_{f'} = 0.29$ (40%) EtOAc/hexanes), m.p. 123.0 °C (hexanes/MTBE/CHCl₃). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 1.95 (t, J = 5.7 Hz, 1 H), 4.56 (d, J = 5.7 Hz, 2 H), 5.14 (s, 4 H), 6.61 (s, 2 H), 7.33 (m_c, 2 H), 7.40 (m_c, 4 H), 7.49 (m_c, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta = 64.9, 70.7, 101.1, 104.6, 126.9, 127.8, 128.5, 136.4,$ 141.6, 156.2 ppm. ESI-HRMS: calcd. for $[C_{21}H_{19}O_3^{79}Br + H]^+$: m/z = 399.0590; found m/z = 399.0592.

[3,5-Bis(benzyloxy)-4-bromobenzyloxy]triisopropylsilane (4): To a solution of benzyl alcohol 10 (99.82 g, 250.0 mmol) and imidazole (18.72 g, 275.0 mmol) in DMF (250 mL) TIPSCI (57.33 mL, 270.0 mmol) was added. After stirring for 16 h at room temperature the reaction mixture was partitioned between hexanes (750 mL) and H₂O (750 mL) and the aqueous phase was extracted with hexanes (500 mL). The combined organic phases were washed with brine (250 mL) and dried with MgSO4. After evaporation of the solvent the crude product was crystallized from hexanes to furnish the title compound 4 (129.5 g, 233.1 mmol, 93%). $R_{f'} = 0.42$ (5%) MTBE/hexanes), m.p. 66.6 °C (hexanes). ¹H NMR (500 MHz, $CDCl_3$, 298 K): $\delta = 1.13$ (d, J = 6.6 Hz, 18 H), 1.17–1.25 (m, 3 H), 4.80 (s, 2 H), 5.21 (s, 4 H), 6.72 (s, 2 H), 7.35 (m_c, 2 H), 7.43 (m_c, 4 H), 7.54 (m_c, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 11.9, 17.9, 64.5, 70.6, 100.2, 103.7, 126.7, 127.6, 128.4, 136.6, 142.4, 156.0 ppm. ESI-HRMS: calcd. for [C₃₀H₃₉O₃⁷⁹BrSi + H]⁺: m/z = 555.1925; found m/z = 555.1912.

2,6-Bis(benzyloxy)-4-[(triisopropylsilyloxy)methyl]benzaldehyde (11): Aryl bromide **4** (25.25 g, 45.44 mmol) was dissolved in Et₂O (100 mL), C₆H₆ (35 mL) and pentane (250 mL). *n*BuLi (19.8 mL, 2.41 M in hexane, 47.7 mmol) was added dropwise within 10 min under an inert gas atmosphere at 0 °C. After stirring for 15 min DMF (4.11 mL, 53.4 mmol) was added dropwise during 5 min. The reaction mixture was allowed to come to room temperature within 25 min and then half saturated NH₄Cl solution (250 mL) was added. After separation of phases the aqueous phase was extracted with MTBE (250 mL). The combined organic phases were washed with brine and dried with MgSO₄. After evaporation of all volatiles the crude product was filtered through a plug of silica (h = 5 cm) eluting with 15% MTBE/hexanes. Removal of solvent and fractional crystallization from hexanes yielded the desired benzaldehyde 11 (20.42 g, 40.46 mmol, 89%). $R_{f'} = 0.27$ (15% MTBE/hexanes), m.p. 60.7 °C (hexanes). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta = 1.08$ (d, J = 6.7 Hz, 18 H), 1.13–1.20 (m, 3 H), 4.80 (s, 2 H), 5.20 (s, 4 H), 6.69 (s, 2 H), 7.32 (m_c, 2 H), 7.40 (m_c, 4 H), 7.48 (m_c, 4 H), 10.65 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 11.8, 17.9, 64.6, 70.3, 102.2, 113.6, 126.8, 127.8, 128.5, 136.3, 150.7, 161.2, 188.8 ppm. ESI-HRMS: calcd. for [C₃₁H₄₀O₄Si + H]⁺: m/z = 505.2769; found m/z = 505.2763.

{2,6-Bis(benzyloxy)-4-[(triisopropylsilyloxy)methyl]phenyl}methanol (12): To a solution of benzaldehyde 11 (35.38 g, 70.10 mmol) in THF/MeOH (60 mL, 5:1) NaBH₄ (2.686 g, 70.10 mmol) was added at 0 °C. After stirring for 10 min at 0 °C the reaction mixture was concentrated and partitioned between MTBE (500 mL) and half saturated NH₄Cl (300 mL). After separation of the phases the aqueous phase was extracted once more with MTBE (150 mL). The combined organic phases were washed with brine and dried with MgSO₄. After removal of solvent the crude product was crystallized from hexanes to furnish the title compound 12 (34.86 g, 68.79 mmol, 98%). $R_{f'} = 0.36$ (20% EtOAc/hexanes), m.p. 51.2 °C (hexanes). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 1.13 (d, J = 6.8 Hz, 18 H), 1.17–1.25 (m, 3 H), 2.60 (br. s, 1 H), 4.84 (s, 2 H), 4.93 (s, 2 H), 5.15 (s, 4 H), 6.72 (s, 2 H), 7.36 (m_c, 2 H), 7.42 (m_c, 4 H), 7.47 (m_c, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 11.9, 18.0, 55.0, 64.8, 70.2, 102.4, 116.0, 127.1, 127.8, 128.5, 136.8, 143.3, 157.4 ppm. ESI-HRMS: calcd. for [C₃₁H₄₂O₄Si + Na]⁺: m/z = 529.2745; found m/z = 529.2726.

[3,5-Bis(benzyloxy)-4-(chloromethyl)benzyloxy]triisopropylsilane (5): Benzylic alcohol 12 (20.94 g, 41.32 mmol) was dissolved in CHCl₃ (30 mL) and chilled in an ice bath. TMSCl (12.09 mL, 95.02 mmol) was added within 5 min under an inert gas atmosphere and the reaction mixture was stirred for 1 h. The turbid reaction mixture was partitioned between hexanes (500 mL) and half saturated NaHCO₃ (300 mL) solution. After separation of the phases the organic phase was washed with brine and dried with MgSO₄. Removal of all volatiles yielded the desired benzyl chloride 5 (21.70 g, 41.32 mmol, 100%) as a highly viscous oil or a white solid in quantitative yield. This crude product is pure enough and can be used directly for the next step. Due to its limited shelf life in the liquid state it is recommended to crystallize the title compound. Crystallization from pentane afforded benzyl chloride 5 as colorless crystals (20.36 g, 38.77 mmol, 94%), which were stored in a brown glass flask for half a year, without any notable decomposition. $R_{f'} = 0.55$ (5% MTBE/hexanes, decomposition), m.p. 71.2 °C (pentane). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta = 1.11$ (d, J = 6.8 Hz, 18 H), 1.15-1.24 (m, 3 H), 4.82 (s, 2 H), 4.93 (s, 2 H), 5.18 (s, 4 H), 6.68 (s, 2 H), 7.35 (m_c, 2 H), 7.43 (m_c, 4 H), 7.51 (m_c, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 11.9, 18.0, 36.1, 64.8, 70.1, 102.2, 113.1, 127.0, 127.8, 128.5, 136.9, 144.6, 157.5 ppm. ESI-HRMS: calcd. for $[C_{31}H_{41}ClO_3Si - Cl]^+$: m/z = 489.2819; found m/z= 489.2812 CHN-Analysis: calcd. C 70.89%, H 7.87%; found C 70.97%, H 7.875.

(*E*)-6,10-Dimethylundeca-5,9-dien-1-yne (7): To a vigorous stirred mixture of lithium dust (11.10 g, 1.600 mol) and naphthalene

(1.025 g, 8.000 mmol) in THF (150 mL) propargyl phenyl thioether 13 (28.45 g, 100.0 mmol) in THF (25 mL) was added over 30 min at 0 °C under an inert gas atmosphere. After stirring for 1 h the starting material was consumed (TLC or GC judgment) and the reaction mixture was decanted into a vigorous stirred suspension of ice cold hexanes (600 mL) and half saturated NH₄Cl (350 mL). The surplus lithium dust was washed twice with MTBE (2 \times 50 mL) and the supernatant liquid was added to the hexane suspension. After separation of the phases the organic phase was washed twice with 1 M KOH (2 × 250 mL) and then with brine (250 mL). The crude extract was dried with MgSO₄ and all volatiles were removed under reduced pressure. Distillation (78 °C at 10⁻³ mbar) of the residue yielded the desulfurized alkyne 7 (15.39 g, 87.29 mmol, 87%). $R_{f'} = 0.22$ (hexanes). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 1.60 (m_c, 3 H), 1.62 (m_c, 3 H), 1.68 (m_c, 3 H), 1.94 (t, J = 2.5 Hz, 1 H), 1.97–2.02 (m, 2 H), 2.04–2.11 (m, 2 H), 2.17–2.26 (m, 4 H), 5.09 (m_c, 1 H), 5.18 (tq, J = 6.8, 1.2 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 16.0, 17.6, 18.9, 25.6, 26.5, 27.1, 39.6, 68.1, 84.4, 122.4, 124.1, 131.3, 136.6 ppm.

{3,5-Bis(benzyloxy)-4-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10trienyl]benzyloxy}triisopropylsilane (14): Cp₂ZrCl₂ (1.637 g, 5.600 mmol) was dissolved in 1,2-dichloroethane (20 mL) under an inert gas atmosphere and cooled to 0 °C. AlMe₃ (3.225 mL, 33.60 mmol) was added dropwise followed by addition of H_2O (4.2 µL, 233 µmol). After stirring at room temperature for 15 min the mixture was cooled to -20 °C and alkyne 7 (3.949 g, 22.40 mmol) was added. After 2-3 h the carboalumination is complete (TLC or GC-judgment) and all volatiles were removed in vacuo (10^{-3} mbar, 30 °C). To ensure that all AlMe₃ has been removed hexanes (15 mL) were added and the solvents evaporated. To isolate the obtained alane 6 pentane (15 mL) was added and the obtained suspension filtered under an inert gas atmosphere to remove the zirconium salts. After removal of solvent a freshly prepared ZnCl₂ solution (26.0 mL, 1.0 M in THF, 26.0 mmol) was added at 0 °C. Meanwhile Ni(acac)₂ (616.6 mg, 2.400 mmol) and PPh₃ (1.259 g, 4.80 mmol) was dissolved in THF (16 mL) and DI-BAL (4.00 mL, 1.2 M in PhMe, 4.80 mmol) was added dropwise at 0 °C under an inert gas atmosphere to obtain the active catalyst as a deep red-brown solution. A solution of benzyl chloride 5 (8.403 g, 16.00 mmol) in THF (10 mL) was added dropwise and the now deep green-blue solution was stirred for 5 min. The reaction mixture was cooled to -45 °C and NMP (28 mL) was added. The previously prepared solution containing the organometallic species 6was added dropwise and the solution was warmed to room temperature within 30 min. After stirring for 15 min at room temperature the reaction was carefully aborted by addition of aqueous citric acid solution (200 mL, 30% m/v). After the precipitate has dissolved the mixture was partitioned between hexanes (500 mL) and H_2O (250 mL). The aqueous phase was extracted with hexanes (250 mL) and the combined organic extracts were washed with brine and dried with MgSO₄. After removal of solvents flash chromatography (silica gel, 15% to 40% C₆H₆/hexanes) yielded the desired title compound 14 (9.062 g, 13.31 mmol, 83%). $R_{f'} = 0.28$ $(25\% C_6H_6/hexanes)$. ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta =$ 1.29 (d, J = 6.6 Hz, 18 H), 1.31–1.39 (m, 3 H), 1.75–1.79 (m, 6 H), 1.85 (m_c, 3 H), 1.87 (m_c, 3 H), 2.11–2.31 (m, 8 H), 3.71 (d, J =7.0 Hz, 2 H), 4.98 (s, 2 H), 5.25–5.34 (m, 6 H), 5.53 (tq, J = 7.0, 1.2 Hz, 1 H), 6.84 (s, 2 H), 7.46 (m_c, 2 H), 7.53 (m_c, 4 H), 7.61 (m_c, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 12.0, 15.9, 16.1, 17.6, 18.0, 22.5, 25.6, 26.7, 39.7, 39.8, 65.0, 70.0, 102.5, 117.3, 123.1, 124.4, 127.0, 127.5, 128.3, 130.9, 134.2, 134.5, 137.5, 140.6, 157.1 ppm. ESI-HRMS: calcd. for $[C_{45}H_{64}O_3Si + H]^+$: m/z =681.4697; found m/z = 681.4670.

(R,6E,10E)-12-{2,6-Bis(benzyloxy)-4-[(triisopropylsilyloxy)methyl|phenyl}-2,6,10-trimethyldodeca-6,10-diene-2,3-diol (15): A mixture of finely divided K₂CO₃ (9.81 g, 71.0 mmol), finely grounded K₃[Fe(CN)₆] (23.4 g, 71.1 mmol), methanesulfonamide (1.69 g, 17.8 mmol), tetrabutylammonium acetate (1.19 g, 3.95 mmol), Noe-Lin-ligand (210 mg, 178 µmol) and K₂OsO₄·2H₂O (34.7 mg, 88.8 mmol) was chilled in an ice bath and H₂O (59 mL) and tBuOH (47.2 mL) was added. After stirring for 5 min the ligand has dissolved and a solution of farnesyl arene 14 (8.06 g, 11.8 mmol) in THF (11.8 mL) was added. After vigorous stirring at 0 °C for 17 h saturated solutions of Na₂SO₃ (150 mL) and $Na_2S_2O_3$ (150 mL) were added. The reaction mixture was warmed to room temperature and stirring was continued for further 45 min. The reaction mixture was extracted three times with ethyl acetate (500 mL, 2×150 mL) and the combined organic phases were washed with brine. Evaporation of all volatiles yielded a highly viscous crude product, which was put on a plug of silica $(\emptyset = 6 \text{ cm}, h = 5 \text{ cm})$ and eluted with 40% Me₂CO/hexanes (500 mL) to obtain a fraction containing residual starting material, product, and overoxidized byproducts. Elution with (25% MeOH/ NH₄OH [9:1]/CHCl₃) recovered Noe-Lin-ligand (197 mg, 167 µmol, 93%). Flash chromatography of the product 15 containing fraction (silica gel, 7.5% Me2CO/hexanes to 15% Me2CO/hexanes) yielded the starting material 14 (2.50 g, 3.67 mmol) besides the desired glycol 15 (4.72 g, 6.60 mmol, 56%, 81% brsm). $R_{f'}$ = 0.28 (25% Me₂CO/hexanes). $[a]_{D}^{23} = +6.9$ (c = 1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃, 298 K): $\delta = 1.09-1.24$ (m, 27 H), 1.42 (m_c, 1 H), 1.51–1.67 (m, 7 H), 1.93–2.55 (m, 8 H), 3.34 (dd, J =10.4, 2.0 Hz, 1 H), 3.50 (d, J = 7.0 Hz, 2 H), 4.81 (s, 2 H), 5.12 (s, 4 H), 5.20 (tq, J = 10.4, 2.0 Hz, 1 H), 5.32 (tq, J = 7.0, 1.3 Hz, 1 H), 6.67 (s, 2 H), 7.29-7.49 (m, 10 H) ppm. ¹³C NMR (75 MHz, $CDCl_3$, 298 K): $\delta = 12.0$, 15.9, 16.0, 18.0, 22.4, 23.2, 26.6, 29.6, 36.7, 39.8, 65.0, 70.1, 72.9, 78.2, 102.6, 117.3, 123.1, 125.2, 127.1, 127.6, 128.3, 134.2, 134.6, 137.5, 140.6, 157.1 ppm. ESI-HRMS: calcd. for $[C_{45}H_{66}O_5Si + Na]^+$: m/z = 737.4572; found m/z =737.4541.

[3,5-Bis(benzyloxy)-4-{(2E,6E)-9-[(2S)-3,3-dimethyloxiran-2-yl]-3,7dimethylnona-2,6-dienyl}benzyloxy]triisopropylsilane (16): To a solution of glycol 15 (5.45 g, 7.62 mmol) in CH₂Cl₂ (36.5 mL) and pyridine (14.6 mL) methanesulfonyl chloride (1.15 mL, 14.9 mmol) was added at 0 °C under an inert gas atmosphere. The reaction was warmed to room temperature and stirred for 16 h. After dilution with MeOH (170 mL) finely divided K₂CO₃ (4.74 g, 34.3 mmol) was added and the suspension was vigorously stirred at room temperature for 4 h. After the bulk of volatiles were removed the mixture was partitioned between MTBE (250 mL) and H₂O (200 mL). The aqueous phase was extracted with MTBE (150 mL) and the combined organic phases were dried with MgSO₄. After evaporation of the solvent the crude product was filtered through a plug of silica gel (h = 5 cm, ϕ = 4 cm) eluting with 12.5% MTBE/hexanes to obtain the title compound 16 (5.14 g, 7.37 mmol, 97%). $R_{f'}$ = 0.45 (12.5% MTBE/hexanes). $[a]_{D}^{23}$ = -2.1 (c = 0.35, CHCl₃). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 1.11 (d, J = 6.8 Hz, 18 H), 1.15-1.22 (m, 3 H), 1.26 (s, 3 H), 1.31 (s, 3 H), 1.55-1.62 (m, 4 H), 1.64-1.69 (m, 4 H), 1.96-2.01 (m, 2 H), 2.03-2.17 (m, 4 H), 2.70 (t, J = 6.3 Hz, 1 H), 3.50 (d, J = 7.0 Hz, 2 H), 4.81 (s, 2 H), 5.12(s, 4 H), 5.17 (tq, J = 7.0, 1.2 Hz, 1 H), 5.32 (tq, J = 7.0, 1.2 Hz, 1 H), 6.67 (s, 2 H), 7.33 (m_c, 2 H), 7.39 (m_c, 4 H), 7.46 (m_c, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 12.0, 15.9, 16.1, 18.0, 18.7, 22.4, 24.9, 26.7, 27.4, 36.2, 39.8, 58.2, 64.2, 65.0, 70.1, 102.6, 117.3, 123.1, 125.1, 127.1, 127.6, 128.4, 133.8, 134.2, 137.6, 140.7, 157.1 ppm. ESI-HRMS: calcd. for [C₄₅H₆₄O₄Si + Na]⁺: m/z = 719.4466; found m/z = 719.4445.

FULL PAPER

(2S,4aR,5S,8aR)-5-{2,6-Bis(benzyloxy)-4-[(triisopropylsilyloxy)methyl|benzyl}-1,1,4a-trimethyl-6-methylenedecahydronaphthalen-2ol (18): A mixture of Mn-dust (3.141 g, 57.17 mmol) and Cp₂TiCl₂ (355.8 mg, 1.429 mmol) in carefully degassed THF (90 mL) was prepared under an inert gas atmosphere at room temperature. The resulting deep red suspension was stirred for about 20 min until the color faded to greyish green. TMSCl (3.62 mL, 28.6 mmol) and 2,4,6-collidine (6.62 mL, 50.0 mmol) were added simultaneously and the resulting greyish brown suspension was stirred for 5 min. A solution of epoxide 16 (4.981 g, 7.146 mmol) in degassed THF (5 mL) was prepared at room temperature and added to the reaction mixture. The flask was rinsed twice with THF $(2 \times 2 \text{ mL})$ to ensure complete transfer and the suspension was stirred for further 16 h. After chilling the reaction mixture in an ice bath 1 M HCl (125 mL, 125 mmol) was added slowly to dissolve the surplus Mn and the reaction mixture was partitioned between MTBE (500 mL) and H₂O (350 mL). After extraction with MTBE (3×250 mL) the combined organic extracts were washed with brine and dried with MgSO₄. All volatiles were removed under reduced pressure and the obtained highly viscous oil was redissolved in MeOH/DCM (2:1, 30 mL) and finely divided K₂CO₃ (9.876 g, 71.46 mmol) was added. After vigorous stirring at room temperature for 24 h TLC analysis showed disappearance of the nonpolar TMS protected intermediate and the reaction mixture was partitioned between MTBE (300 mL) and H₂O (150 mL). The aqueous phase was extracted with MTBE (2×250 mL), the combined organic extracts were washed with brine and dried with MgSO₄. After evaporation of all volatiles the crude product was purified by flash chromatography (Merck LiChroprep® Si 60 [15-25 µm], 12.5% to 20% MTBE/hexanes) to furnish the title compound 18 (1.712 g, 2.456 mmol, 34%). $R_{\rm f'} = 0.17 \ (20\% \text{ MTBE/hexanes}). \ [a]_{\rm D}^{23} = -21.3 \ (c = 1.4, \text{ CHCl}_3).$ ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta = 0.73$ (s, 3 H), 0.74 (s, 3 H), 0.88-0.97 (m, 2 H), 0.95 (s, 3 H), 1.11 (d, J = 6.7 Hz, 18 H), 1.14–1.23 (m, 3 H), 1.35 (dddd, J = 12.9, 12.9, 12.9, 4.1 Hz, 1 H), 1.40-1.50 (m, 2 H), 1.63-1.71 (m, 2 H), 1.89 (ddd, J = 12.9, 124.7 Hz, 1 H), 2.29 (ddd, J = 12.9, 3.9, 2.3 Hz, 1 H), 2.62 (dd, J = 9.8, 3.4 Hz, 1 H), 2.69 (dd, J = 13.8, 3.4 Hz, 1 H), 2.92 (dd, J = 10.5, 5.6 Hz, 1 H), 2.97 (dd, J = 13.8, 9.8 Hz, 1 H), 4.69 (d, J =1.1 Hz, 1 H), 4.81 (s, 2 H), 5.07 (s, 5 H), 6.66 (s, 2 H), 7.36 (m_c, 2 H), 7.41 (m_c, 4 H), 7.47 (m_c, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 11.9, 14.1, 15.3, 18.0, 19.2, 24.0, 27.8, 28.2, 35.8, 38.4, 39.0, 39.7, 53.9, 54.4, 64.9, 70.3, 78.5, 102.4, 106.8, 117.2, 127.7, 128.4, 137.2, 140.4, 149.1, 157.5 ppm. ESI-HRMS: calcd. for $[C_{45}H_{64}O_4Si + H]^+$: m/z = 697.4647; found m/z =697.4635.

2-{[(1S,4aR,6S,8aR)-6-Hydroxy-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl]methyl}-5-[(triisopropylsilyloxy)methyl]benzene-1,3-diol (20): To a solution of naphthalene (796 mg, 6.21 mmol) in THF (12 mL) lithium granules (43.1 mg, 6.21 mmol) were added and the mixture was sonicated for 5 min under an inert gas atmosphere at room temperature. The mixture was stirred with a SmCostir bar for about 3 h until all lithium disappeared and THF (13 mL) was added. After cooling to -21 °C a solution of the benzyl protected resorcine 18 (555 mg, 796 µmol) in THF (10 mL) was added dropwise under vigorous stirring within 5 min and the reaction mixture was warmed to room temperature. The reaction mixture was partitioned between MTBE (250 mL) and half saturated NH₄Cl (200 mL) and the aqueous phase was extracted with MTBE (100 mL). The combined organic extracts were washed with brine, dried with MgSO₄, and all volatiles were removed under reduced pressure. Column chromatography (silica gel, 25% Me₂CO/ hexanes) provided the desired resorcine 20 (396 mg, 766 µmol, 96%). $R_{f'} = 0.27 (25\% \text{ Me}_2\text{CO/hexanes})$. $[a]_D^{23} = -7.2 (c = 0.64, c)$

CHCl₃). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta = 0.80$ (s, 3 H), 0.81 (s, 3 H), 0.99 (s, 3 H), 1.07 (d, J = 6.6 Hz, 18 H), 1.11–1.19 (m, 4 H), 1.31 (td, J = 13.5, 3.8 Hz, 1 H), 1.41 (dddd, J = 12.9, 12.9, 12.9, 4.2 Hz, 1 H), 1.54–1.79 (m, 4 H), 2.00 (dd, J = 12.9, 5.0 Hz, 1 H), 2.04 (dt, J = 13.5, 3.8 Hz, 1 H), 2.27 (dd, J = 7.4, 3.6 Hz, 1 H), 2.40 (ddd, J = 12.5, 4.2, 2.4 Hz, 1 H), 2.64 (dd, J = 14.9, 7.4 Hz, 1 H), 2.88 (dd, J = 14.9, 3.6 Hz, 1 H), 3.28 (dd, J = 11.7, 4.5 Hz, 1 H), 4.66 (s, 2 H), 4.88 (m_c, 1 H), 5.10 (m_c, 1 H), 5.55 (br. s, 2 H), 6.32 (s, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta = 11.9$, 14.1, 15.3, 18.1, 18.8, 24.1, 27.6, 28.2, 36.2, 38.3, 39.1, 40.4, 54.6, 55.6, 64.3, 79.2, 105.1, 107.0, 114.0, 140.8, 150.6, 154.8 ppm. ESI-HRMS: calcd. for [C₃₁H₅₂O₄Si + H]⁺: m/z = 517.3708; found m/z = 517.3708.

3-Hydroxy-2-{[(1S,4aR,6S,8aR)-6-hydroxy-5,5,8a-trimethyl-2methylenedecahydronaphthalen-1-yl]methyl}-5-[(triisopropylsilyloxy)methyl]cyclohexa-2,5-diene-1,4-dione (21): A solution of resorcine 20 (254 mg, 491 μ mol) in DMF (20 mL) and H₂O (5 mL) was chilled in an ice bath and a solution of bis(trifluoroacetoxy)iodobenzene (429 mg, 998 µmol) in DMF (8.5 mL) and H₂O (2.5 mL) was added dropwise during 30 min under an inert gas atmosphere. The reaction mixture was partitioned between hexanes/MTBE (3:1, 200 mL) and half saturated NH_4Cl (100 mL) and the aqueous phase was extracted with hexanes/MTBE (3:1, 100 mL). After the combined organic phases were washed with brine and dried with MgSO₄ the solvent was evaporated. The crude product was purified by column chromatography (silica gel, 3% iPrOH/CHCl₃) to obtain the quinone **21** (238 mg, 448 μ mol, 91%). $R_{f'} = 0.31$ (3% *i*PrOH/ CHCl₃). $[a]_{D}^{23} = -101$ (c = 0.18, CHCl₃). ¹H NMR (500 MHz, $CDCl_3$, 298 K): $\delta = 0.77$ (s, 3 H), 0.78 (s, 3 H), 0.99 (s, 3 H), 1.06 (d, J = 6.9 Hz, 18 H), 1.11–1.19 (m, 4 H), 1.38 (dddd, J = 12.9, 12.9, 12.9, 4.2 Hz, 1 H), 1.44 (br. s, 1 H), 1.51–1.66 (m, 2 H), 1.68– 1.78 (m, 2 H), 1.83 (m_c, 1 H), 1.92 (ddd, J = 12.9, 12.9, 5.0 Hz, 1 H), 2.31 (ddd, J = 12.9, 4.0, 2.5 Hz, 1 H), 2.35 (br. d, J = 10.9 Hz, 1 H), 2.50 (dd, J = 13.9, 2.8 Hz, 1 H), 2.67 (dd, J = 13.9, 10.9 Hz, 1 H), 3.31 (dd, J = 11.2, 4.2 Hz, 1 H), 4.61 (d, J = 2.4 Hz, 2 H), 4.69 (m_c, 1 H), 4.73 (m_c, 1 H), 6.73 (t, J = 2.4 Hz, 1 H), 7.09 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 11.8, 14.0, 15.4, 17.9, 19.0, 23.9, 27.9, 28.2, 36.6, 38.0, 39.1, 39.8, 54.1, 54.5, 58.8, 78.7, 107.1, 121.5, 133.2, 143.9, 148.2, 151.0, 182.9, 187.9 ppm. ESI-HRMS: calcd. for $[C_{31}H_{50}O_5Si + H]^+$: m/z = 531.3500; found m/z = 531.3502.

3β-Hydroxytauranin (2): To a solution of quinone **21** (60.0 mg, 113 µmol) in THF (5 mL) TBAF (120 mg, 429 µmol) was added and the reaction mixture was stirred under an inert gas atmosphere at room temperature for 30 min. The reaction mixture was partitioned between MTBE (50 mL) and half saturated NH₄Cl (25 mL) and the aqueous phase was extracted with MTBE (25 mL). After the combined organic phases were washed with brine and dried with MgSO₄ the solvent was evaporated. The crude product was purified by column chromatography (silica gel, 6.5% MeOH/ CHCl₃) to obtain 3β-hydroxytauranin (**2**; 38.8 mg, 104 µmol, 92%) as deep orange crystals. $R_{\rm f'} = 0.28$ (6.5% MeOH/CHCl₃), m.p. 185–190 °C (CHCl₃, decomposition). $[a]_{\rm D}^{22} = -149$ (c = 0.11, CHCl₃). ¹H NMR (500 MHz, CDCl₃, 298 K): see supplement. ¹³C NMR (125 MHz, CDCl₃, 298 K): see supplement. ESI-HRMS: calcd. for $[C_{22}H_{30}O_5 + H]^+$: m/z = 375.2166; found m/z = 375.2167.

3-Hydroxy-5-[(triisopropylsilyloxy)methyl]-2-{[[(1*S***,4***aR***,8***aR***)-5,5,8***a***-trimethyl-2-methylene-6-oxodecahydronaphthalen-1-yl]methyl}-cyclohexa-2,5-diene-1,4-dione (22): A solution of quinone 21 (74.4 mg, 140 µmol) in DCM (6 mL) was chilled in an ice bath under an inert gas atmosphere. Dess–Martin-periodinan (DMP, 62.4 mg, 147 µmol) was added and the reaction mixture was stirred**

at 0 °C for 1 h. Then the mixture was diluted with hexanes (90 mL) and filtered through a pad of silica (h = 4 cm, ϕ = 3 cm). The quinones stayed at the baseline and were separated via Dry Column Vacuum Chromatography (DCVC, silica gel, 5% to 15% Me₂CO/ hexanes) yielding the desired ketone 22 (44.9 mg, 84.9 µmol, 61%, 81% brsm) besides recovered starting material 21 (18.7 mg, 35.2 μ mol). $R_{f'} = 0.34 (15\% \text{ Me}_2\text{CO/CHCl}_3)$. $[a]_D^{23} = -97 (c = 0.13, c = 0.13)$ CHCl₃). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta = 0.95$ (s, 3 H), 1.03 (s, 3 H), 1.06 (d, J = 6.9 Hz, 18 H), 1.10 (s, 3 H), 1.11–1.19 (m, 3 H), 1.49 (dddd, J = 13.2, 13.2, 13.2, 4.2 Hz, 1 H), 1.64–1.72 (m, 2 H), 1.94-2.01 (m, 2 H), 2.10 (ddd, J = 13.2, 6.6, 3.9 Hz, 1H), 2.36 (ddd, J = 12.7, 3.8, 2.5 Hz, 1 H), 2.41–2.48 (m, 2 H), 2.50 (dd, *J* = 13.9, 2.7 Hz, 1 H), 2.65 (ddd, *J* = 15.2, 12.4, 6.6 Hz, 1 H), 2.75 (dd, J = 13.9, 11.0 Hz, 1 H), 4.62 (d, J = 2.4 Hz, 2 H), 4.76 (d, J = 0.7 Hz, 1 H), 4.81 (d, J = 0.7 Hz, 1 H), 6.75 (t, J = 2.4 Hz, 1 H)1 H), 6.95 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 11.8, 13.7, 17.9, 19.3, 21.7, 25.1, 26.0, 34.8, 37.2, 37.7, 39.7, 47.7, 53.4, 55.0, 58.8, 108.0, 121.0, 133.2, 144.0, 147.4, 151.0, 182.9, 187.8, 217.0 ppm. ESI-HRMS: calcd. for $[C_{31}H_{48}O_5Si + H]^+$: m/z= 529.3344; found m/z = 529.3346.

3-Oxotauranin (1): To a solution of quinone **22** (43.2 mg, 81.1 µmol) in THF (5 mL) TBAF (80.0 mg, 286 µmol) was added and the reaction mixture was stirred under an inert gas atmosphere at room temperature for 30 min. The reaction mixture was partitioned between MTBE (50 mL) and half saturated NH₄Cl (25 mL) and the aqueous phase was extracted with MTBE (25 mL). After the combined organic phases were washed with brine and dried with MgSO₄ the solvent was evaporated. The crude product was purified by column chromatography (silica gel, 5% MeOH/CHCl₃) to obtain 3-oxotauranin (1; 28.0 mg, 75.2 µmol, 93%). $R_{\rm f} = 0.22$ (5% MeOH/CHCl₃). $[a]_{\rm D}^{25} = -160$ (c = 0.13, CHCl₃). ¹H NMR (500 MHz, CDCl₃, 298 K): see supplement. ¹³C NMR (125 MHz, CDCl₃, 298 K): see supplement. ESI-HRMS: calcd. for $[C_{22}H_{28}O_5 + H]^+$: m/z = 373.2010; found m/z = 373.2009.

Supporting Information (see footnote on the first page of this article): Revised NMR-assignments of 3β -hydroxytauranin (2) and 3-oxotauranin (1), figures of ¹H and ¹³C NMR spectra of products, the determination of the enantiomeric purity of glycol 15, and synthesis of O6'-(4-heptyl)dihydrocupreidine.

Acknowledgments

Support of this research by a scholarship of the Dr. Hans M. Fischer Foundation is gratefully acknowledged. The authors would like to thank Prof. Dr. J. Woodring from the University of Bayreuth for correcting the English of the manuscript.

- a) P. Proksch, Dtsch. Apoth. Ztg. 1994, 134 (51/52), 19–20, 23– 27, 30–34; b) S. Loya, R. Tal, Y. Kashman, A. Hizi, Antimicrob. Agents Chemother. 1990, 34, 2009–2012; c) M.-L. Bourjouet-Kondracki, A. Longeor, R. Morel, M. Guyot, Int. Immunpharmac. 1991, 13, 393–399; d) Y. Li, Y. Zhang, X. Shen, Y. W. Guo, Bioorg. Med. Chem. Lett. 2009, 19, 390–392; e) T. Laube, W. Beil, K. Seifert, Tetrahedron 2005, 61, 1141–1148; f) T. Laube, A. Bernet, H.-M. Dahse, I. D. Jacobsen, K. Seifert, Bioorg. Med. Chem. 2009, 17, 1422–1427; g) E. M. K. Wijeratne, P. A. Paranagama, M. T. Marron, M. K. Gunatilaka, A. E. Arnold, A. A. L. Gunatilaka, J. Nat. Prod. 2008, 71, 218–222; h) M. Göhl, K. Seifert, Eur. J. Org. Chem. 2014, 6975–6982.
- [2] M. Gordaliza, Mar. Drugs 2012, 10, 358–402.
- [3] a) H. E. Pelish, N. J. Westwood, Y. Feng, T. Kirchhausen, M. D. Shair, J. Am. Chem. Soc. 2001, 123, 6740–6741; b) Z. Bo, A. Schäfer, P. Franke, A. D. Schlüter, Org. Lett. 2000, 2,

1645–1648; c) K. C. Nicolaou, K. Koide, M. E. Bunnage, *Chem. Eur. J.* **1995**, *1*, 454–466; d) R. F. Cunico, L. Bedell, *J. Org. Chem.* **1980**, *45*, 4797–4798; e) S. I. Odejinmi, D. F. Wiemer, *Tetrahedron Lett.* **2005**, *46*, 3871–3874.

- [4] a) E. Negishi, H. Matsushita, N. Okukado, *Tetrahedron Lett.* 1981, 22, 2715–2718; b) B. H. Lipshutz, G. Bulow, R. F. Lowe, K. L. Stevens, J. Am. Chem. Soc. 1996, 118, 5512–5513; c) B. H. Lipshutz, G. Bulow, R. F. Lowe, K. L. Stevens, *Tetrahedron* 1996, 52, 7265–7276; d) B. H. Lipshutz, G. Bulow, F. Fernandez-Lazaro, S.-K. Kim, R. Lowe, P. Mollard, K. L. Stevens, J. Am. Chem. Soc. 1999, 121, 11664–11673; e) B. H. Lipshutz, P. Mollard, S. S. Pfeiffer, W. Chrisman, J. Am. Chem. Soc. 2002, 124, 14282–14283; f) B. H. Lipshutz, B. Amorelli, J. Am. Chem. Soc. 2009, 131, 1396–1397; g) B. H. Lipshutz, A. Lower, V. Berl, K. Schein, F. Wetterich, Org. Lett. 2005, 7, 4095–4097.
- [5] a) A. Bernet, K. Seifert, *Helv. Chim. Acta* 2006, *89*, 784–796;
 b) J. Clayden, M. N. Kenworthy, M. Helliwell, *Org. Lett.* 2003, *5*, 831–834; c) G. Blame, G. Fournet, J. Gore, *Tetrahedron Lett.* 1986, *27*, 1907–1908.
- [6] a) J. Hooz, J. Cabezas, S. Musmanni, J. Calzada, Org. Synth. 1990, 69, 120; Org. Synth., Coll. Vol. 1993, 8, 226; b) E. Negishi, C. L. Rand, K. P. Jadhav, J. Org. Chem. 1981, 46, 5041– 5044; c) E. Alonso, D. J. Ramón, M. Yus, Tetrahedron 1997, 53, 14355–14368.
- [7] a) C. A. Tolman, Chem. Rev. 1977, 77, 313–348; b) E. Negishi, N. Okukado, A. O. King, D. E. van Horn, B. I. Spiegel, J. Am. Chem. Soc. 1978, 100, 2254–2256; c) M. Qian, Z. Huang, E. Negishi, Org. Lett. 2004, 6, 1531–1534; d) M. A. Pena, J. P. Sestelo, L. A. Sarandeses, Synthesis 2005, 485–492; e) Y.-C. Xu, J. Zhang, H.-M. Sun, Q. Shen, Y. Zhang, Dalton Trans. 2013, 42, 8437–8445; f) C. J. O'Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, Chem. Eur. J. 2006, 12, 4743–4748; g) C. Valente, M. E. Belowich, N. Hadei, M. G. Organ, Eur. J. Org. Chem. 2010, 4343–4354.
- [8] a) H. C. Kolb, M. S. van Nieuwenhze, K. B. Sharpless, *Chem. Rev.* 1994, 94, 2483–2547; b) G. Vidari, A. Dapiaggi, G. Zanoni, L. Garlaschelli, *Tetrahedron* 1993, 34, 6485–6488; c) E. J. Corey, M. C. Noe, S. Lin, *Tetrahedron Lett.* 1995, 36, 8741–8744; d) H. Lin, S. S. Pochapsky, I. J. Krauss, *Org. Lett.* 2011, 13, 1222–1225; e) an improved, higher yielding preparation of the precursor O6'-(4-heptyl)dihydrocupreidine can be found in the supplement; f) J. S. M. Wai, I. Marko, J. S. Svendsen, M. G. Finn, E. N. Jacobsen, K. B. Sharpless, J. Am. *Chem. Soc.* 1989, 111, 1123–1125; g) determined by ¹H-NMR using (2-formylphenyl)boronic acid and (R)- and (S)-α-methylbenzylamine according to A. M. Kelly, Y. Pérez-Fuertes, J. S. Fossey, S. L. Yeste, S. D. Bull, T. D. James, *Nat. Protoc.* 2008, 3, 215–219.
- [9] a) J. Justicia, A. Rosales, E. Buñuel, J. L. Oller-Lopez, M. Valdivia, A. Haïdour, J. E. Oltra, A. F. Barrero, D. J. Cárdenas, J. M. Cuerva, Chem. Eur. J. 2004, 10, 1778-1788; b) A. F. Barrero, M. M. Herrador, J. F. Qílez del Moral, P. Arteaga, J. F. Arteaga, M. Piedra, E. M. Sánchez, Org. Lett. 2005, 7, 2301-2304; c) J. Justicia, J. E. Oltra, A. F. Barrero, A. Guadano, A. González-Coloma, J. M. Cuerva, Eur. J. Org. Chem. 2005, 712-718; d) V. Domingo, L. Silva, H. R. Diéguez, J. F. Arteaga, J. F. Quílez del Moral, A. F. Barrero, J. Org. Chem. 2009, 74, 6151-6156; e) M. D'Acunto, C. Della Monica, I. Izzo, L. De Petrocellis, V. di Marzo, A. Spinella, Tetrahedron 2010, 66, 9785-9789; f) A. F. Barrero, J. F. Quílez del Moral, E. M. Sánchez, J. F. Arteaga, Eur. J. Org. Chem. 2006, 1627-1641; g) J. Justicia, A. de Cienfuegos, A. G. Campaña, D. Miguel, V. Jaoby, A. Gansäuer, J. M. Cuerva, Chem. Soc. Rev. 2011, 40, 3525-3537; h) T. Jiménez, S. P. Morcillo, A. Martín-Lasanta, D. Collado-Sanz, D. J. Cárdenas, A. Gansäuer, J. Justicia, J. M. Cuerva, Chem. Eur. J. 2012, 18, 12825-12833; i) A. Gansäuer, J. Justicia, A. Rosales, D. Worgull, B. Rinker, J. M. Cuerva, J. E. Oltra, Eur. J. Org. Chem. 2006, 4115-4127; j) A. Rosales, J. Munoz-Bascon, E. Roldan-Molina, N. Rivas-Bascon, N. M.

Padial, R. Rodríguez-Maecker, I. Rodríguez-García, J. E. Oltra, J. Org. Chem. 2015, 80, 1866–1870.

- [10] H.-J. Liu, J. Yip, K.-S. Shia, *Tetrahedron Lett.* **1997**, *38*, 2253–2256.
- [11] a) E. R. Dockal, Q. B. Cass, T. J. Brocksom, U. Brocksom, A. G. Corrěa, *Synth. Commun.* **1985**, *15*, 1033–1036; b) M. P. Uliana, Y. W. Vieira, M. C. Donatoni, A. G. Corrêa, U. Brocksom, T. J. Brocksom, *J. Braz. Chem. Soc.* **2008**, *19*, 1484–1489; c) D. Magdziak, A. A. Rodriguez, R. D. Van De Water,

T. R. R. Pettus, Org. Lett. 2004, 4, 285–288; d) H. L. Holland, J. Qi, T. S. Manoharan, Can. J. Chem. 1995, 73, 1399–1405; e) M. Hunsen, Synthesis 2005, 2487–2490; f) S. Yamazaki, Tetrahedron Lett. 2001, 42, 3355–3357; g) R. Barret, M. Daudon, Tetrahedron Lett. 1990, 31, 4871–4872.

 [12] a) C. Rücker, Chem. Rev. 1995, 95, 1009–1064; b) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155–4156.

Received: June 19, 2015 Published Online: August 14, 2015