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Summary.The procedure employs phenylselenyl chloride or
bromide, pent-4-en-1-ol, and additives, like pyridine and sil-
ver(I) salts, to generate the cyclic ether of tetrahydrofuran type
in high yields. A catalytic amount of additive leads to higher
yields, but equimolar amounts achieved almost quantitative
yields under extremely mild experimental conditions. The
effect of the halide ion of the selenylating reagent is not sig-
nificant.
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Introduction

During the last years, cyclic ethers have attracted

considerable attention due to their occurrence in sev-

eral groups of natural compounds exhibiting im-

portant biological activities [1]. These units can be

found in monocyclic or polycyclic compounds, fused

with other cyclic ethers or forming spiro systems

[2]. The presence of molecules with oxygenated het-

erocycles in nature is receiving considerable atten-

tion considering their capacity of modification of the

transport of the Naþ, Kþ, and Ca2þ cations through

lipid membranes [3–6]. This activity is responsible

for their antibiotic [3], neurotoxic [7, 8], antiviral

[9], and cytotoxic action [10, 11], and as growth reg-

ulators [3, 12, 13] or inhibitors of the level of cho-

lesterol in blood [14].

A number of synthesis approaches have been

devised in order to construct the cyclic ether moiety

using a carbon–carbon [15–22] or a carbon–oxygen

[23–34] cyclization step, or modifying a cyclic pre-

cursor [35–41].

Results and Discussion

In recent years, we have studied the intramolecular

cyclization of some D4- and D5-alkenols by means

of benzeneselenyl halides PhSeX (X¼Cl, Br) [29,

40–42]. Intramolecular heterocyclization is the main

reaction in the case of all investigated primary and

secondary alkenols, while tertiary alkenols, under

the same experimental conditions are not converted

into cyclic products at all by PhSeBr and in a small

amount by PhSeCl. Although the addition products

are expected, we have found that all investigated

tertiary alkenols in the reaction with PhSeBr [41]

afforded �- and �-bromoalkanols in high yields

(about 90%).

Recently [42], we have presented an approach to

cyclic ethers from tertiary alkenols using PhSeX

(X¼Cl, Br) in the presence of pyridine. We found

that the yields of the cyclic ethers are quantitative. In

this paper, we present the extension of the methodol-

ogy to pent-4-en-1-ol (1) and with Ag2O and AgOAc

as additives. This alkenol yields the tetrahydrofuran

ring, which is a commonly encountered substruc-

ture in many natural products showing interesting

biological properties. The results of our investigation

are shown in Table 1 and Scheme 1. These results

show that all reactions proceeded to form oxygen

heterocycles bearing the phenylseleno moiety in

high yields (Table 1).� Corresponding author. E-mail: zoricab@knez.uis.kg.ac.yu



Cyclization is facilitated by the presence of pyri-

dine, Ag2O, and AgOAc. Yields of products are higher

and reaction time is shorter. Catalytic amounts of addi-

tives lead to higher yields, but an equimolar amount

gives almost quantitative yields. As we can see from

Table 1, pyridine shows the best results in the case of

an equimolar amount, and Ag2O is the best catalyst for

this type of cyclization. The cyclization using a stoi-

chometric amount of Ag2O was completed faster than

by using catalytic amounts only. It appears that the

presence of pyridine is beneficial to the cyclization

process due to its basic properties. All additives could

enhance the nucleophilicity of the hydroxyl group of

the alkenol and also mediate the stabilization of the

oxonium ion intermediates. On the other hand, the

reaction without a catalyst did not afford the desired

product in practical yield. Also, the additive caused a

dramatic increase in reaction rate. Thus, the reactions

were completed in a few minutes (without additives

the reaction time is half an hour to several hours).

This improved procedure for phenyselenoetherifi-

cation should prove simpler and superior to those

currently available. As for the yields of cyclic ethers,

the procedure described gave better results than re-

ported procedures. Accompanied by other merits,

such as the mildness of the reaction conditions and

the simplicity of the experimental procedure, our

procedure is the most attractive one for the conver-

sion of alkenols into oxacyclic compounds.

Experimental

Gas–liquid chromatography (GLC) analysis was performed
with a Deni instrument, model 2000 with capillary apolar

columns. 1H and 13C NMR spectra were run in CDCl3 on a
Varian Gemini 200 MHz NMR spectrometer. IR spectra were
obtained with Perkin-Elmer Model 137B and Nicolet 7000 FT
spectrophotometers. Thin-layer chromatography (TLC) was
carried out on 0.25 mm E. Merck precoated silica gel plates
(60F-254) using UV light for visualization. For column chro-
matography, E. Merck silica gel (60, particle size 0.063–
0.200 mm) was used.

General Procedure

All reactions were carried out on a 1 mmol scale. To a mag-
netically stirred solution of alkenol 1 (1 mmol) and 0.1 mmol
or 1 mmol additive in 5 cm3 dry CH2Cl2 was added 0.212 g
solid PhSeCl (1.1 mmol) or 0.260 g PhSeBr (1.1 mmol) at
room temperature. The reaction went to completion within a
few minutes. The pale yellow solution was washed (in the
case of pyridine as an additive) with 5 cm3 1M HCl aqueous
solution, saturated NaHCO3, and then brine, or with saturated
NaHCO3 and H2O (in the case of Ag2O and AgOAc). The
organic layer was dried (Na2SO4), concentrated, and chroma-
tography was performed. The product was obtained after elu-
tion of traces of diphenyl diselenide from a silica gel column
using CH2Cl2. All the products were characterized and iden-
tified on the basis of their spectral data. The cyclic ether
product 2 is a known compound. Its spectroscopic data has
been given previously [29].
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