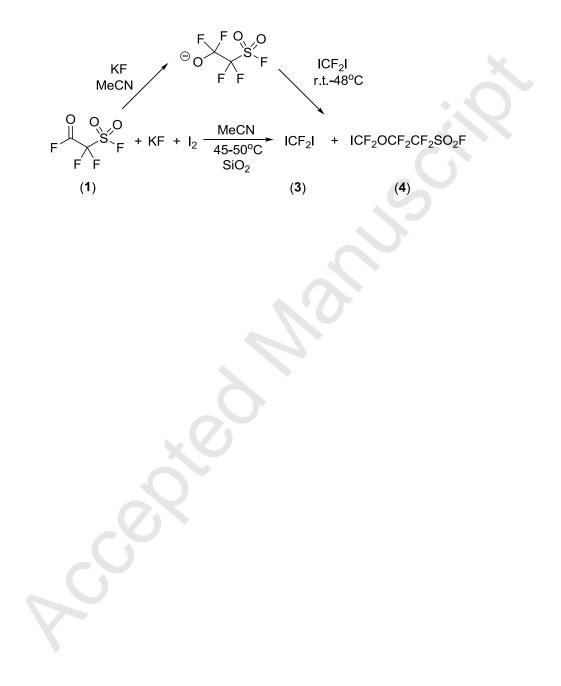
Accepted Manuscript

Title: Synthesis of $FSO_2CF_2CF_2OCF_2I$ from difluoro(fluorosulfonyl)acetyl fluoride and its relevant salt $FSO_2CF_2CF_2O^-K^+$ in the presence of I_2 or CF_2I_2

Authors: Jolanta Ignatowska, Oleg Shyshkov, Klaus Hintzer, Gerd-Volker Röschenthaler


PII:	\$0022-1139(13)00005-5
DOI:	doi:10.1016/j.jfluchem.2013.01.001
Reference:	FLUOR 8002
To opposition	ELUOR
To appear in:	FLUOR
Received date:	26-10-2012
Revised date:	31-12-2012
Accepted date:	2-1-2013

JOUBNAL OF FLUORENE CHEMISTRY

Please cite this article as: J. Ignatowska, O. Shyshkov, K. Hintzer, G.-V. Röschenthaler, Synthesis of $FSO_2CF_2CF_2OCF_2I$ from difluoro(fluorosulfonyl)acetyl fluoride and its relevant salt $FSO_2CF_2CF_2O^-K^+$ in the presence of I₂ or CF_2I_2 , *Journal of Fluorine Chemistry* (2010), doi:10.1016/j.jfluchem.2013.01.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Highlights

- ▶ The reaction of diiododifluoromethane with fluorinated alkoxide.
- ▶ The reaction of difluorocarbene with fluorinated alkoxide.
- ▶ The synthesis of fluorinated telomers.

A cotton of the second

1

Synthesis of $FSO_2CF_2CF_2OCF_2I$ from difluoro(fluorosulfonyl)acetyl fluoride and its relevant salt $FSO_2CF_2CF_2O^-K^+$ in the presence of I₂ or CF_2I_2 .

Jolanta Ignatowska,^{a*} Oleg Shyshkov,^b Klaus Hintzer,^b

Gerd-Volker Röschenthaler^{a*}

^aSchool of Engineering and Science, Jacobs University Bremen GmbH, Campus Ring 1, D-28759 Bremen, Germany ^bDyneon GmbH, D-84504 Burgkirchen Werk Gendorf, Germany

Abstract

The synthesis of $FSO_2CF_2CF_2OCF_2I$ via two routes was studied: the direct reaction between ICF_2I and $FSO_2CF_2CF_2O^{-}K^{+}$ and the reaction between $FSO_2CF_2CF_2O^{-}K^{+}$ and difluorocarbene generated from difluoro(fluorosulfonyl)acetyl fluoride in the presence of iodine.

Keywords: DFSAF, difluorodiiodomethane, perfluoroalkyl sulfonyl fluoride

1. Introduction

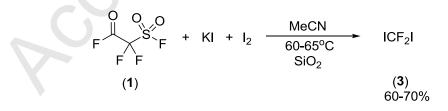
Difluoro(fluorosulfonyl)acetyl fluoride (FSO₂CF₂COF (**1**), DFSAF) under treatment of KF gives fluorosulfonyltetrafluoro potassium ethanolate $FSO_2CF_2CF_2O^-K^+$ (**5**) which reacts further with tetrafluoroethylene and iodine to give 2-(2-iodo-1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonyl fluoride $FSO_2CF_2CF_2OCF_2CF_2I$ (**2**). This compound can be converted into higher telomers possessing iodo and fluorosulfonyl as terminal groups by radical addition of **2** to TFE or C_3F_6 [1].

DFSAF can serve also as a source of difluorocarbene. In the presence of catalytic amounts of SiO_2 , (1) reacts with potassium iodide and iodine to give difluorodiiodomethane (3) in 60-70% yield [2]. The modification of that procedure by us resulted in a mixture of

^{*} Corresponding author. Tel.: +49(0)4212003138, Fax: +49(0)421 2003229.

E-mail address: j.ignatowska@jacobs-university.de (J.Ignatowska), g.roeschenthaler@jacobs-university.de (G.V.Röschenthaler).

2

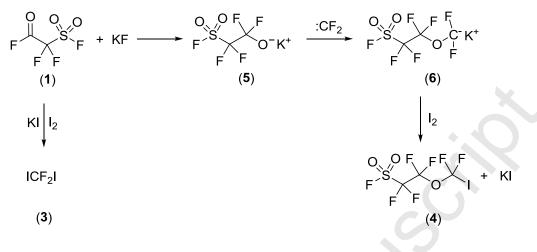

ICF₂I (**3**) and FSO₂CF₂CF₂OCF₂I (**4**) in a ratio 2.6:1. The formation of **4** in a reaction conditions can be explained by reaction of FSO₂CF₂CF₂O⁻K⁺ (**5**) with :CF₂ generated from **1** followed by the reaction with iodine. 2-(Difluoro-iodo-methoxy)-1,1,2,2-tetrafluoro-ethane sulfonyl fluoride (**4**) is an interesting monomer which formation in low yields was previously revealed during the reaction of tetrafluoroethane- β -sultone with TFE and ICl in the presence of KF [3].

Considering other possibilities of $FSO_2CF_2CF_2OCF_2I$ (4) formation we decided also to study the direct reaction of difluorodiiodomethane (3) with $FSO_2CF_2CF_2O^-K^+$ (5). Similar reactions of ICF_2I with ethoxide, phenoxide and thiophenoxide ions were reported. However only with phenoxide and thiophenoxide ions corresponding aryldifluoroiodoethers and thioeters were obtained in low yields [4]. In the case of ethoxide ion as main products carbonate (EtOCOOEt) and fluoride ion were obtained. Such reactions occur via anionic chain mechanism (with evolution of difluorocarbene) or via single electron transfer [4].

Here we report the results of our studies on the reaction between $FSO_2CF_2CF_2O^-K^+$ (5) and :CF₂ generated from 1 in the presence of iodine and on the direct reaction of difluorodiiodomethane (3) with $FSO_2CF_2CF_2O^-K^+$ (5).

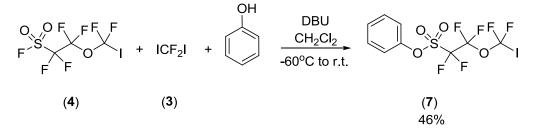
2. Results and discussion

It was reported by Xiao that formation of ICF₂I requires the following conditions: ratio KI:I₂ equal 1:1, the presence of SiO₂ used in amounts of 5-10 mol% and the concentration of I_3^- in a range 1.3-1.5 mol/l. The authors claimed also that formation of ICF₂I is inhibited in the absence of KI or if less than 1 eq. of KI was used (Scheme 1).



Scheme 1

Reproducing of that procedure we discovered that decreasing temperature to 40-50°C and adding DFSAF (1) relatively fast under reduced pressure led to a mixture of ICF₂I (3) and FSO₂CF₂CF₂OCF₂I (4) in a 2.6:1 ratio. We suppose that 4 was formed via the following pathway: first in a reaction between fluoride ion and DFSAF, the FSO₂CF₂CF₂O⁻K⁺ (5) is


3

generated, which further reacts with $:CF_2$ and then with iodine to give compound 4 (Scheme 2).

Scheme 2

Initial attempts to separate the mixture of **3** and **4** by distillation were not successful implying similar physical properties and structures of both compounds. Compound FSO₂CF₂CF₂OCF₂CF₂I (2), with a boiling point 127°C [1] let us presume that 4 ought to have a boiling point between 127 and 95°C, whereas CF₂I₂ boils at 101°C. ICF₂I can be isolated with minor losses by washing the mixture of both compounds with 5% solution of NaOH in methanol at 0-10°C. The structure of compound 4 was confirmed not only by ¹⁹F NMR, but also by GC-MS. No molecular ion was found, but peaks corresponding to FSO₂CF₂CF₂OCF₂, ICF₂O, ICF₂, FSO₂, FSO₂CF₂, OCF₂ fragments were observed. In the ¹³C NMR spectrum of the sample of both compounds (4 : 3 in a 5:1 ratio), beside a signal of ICF₂I at 1.6 ppm (t, J =377 Hz) [lit. 2.29 ppm, t, J = 378 Hz], we observed a triplet at 74.95 ppm (J = 343 Hz), which we assigned to the OCF₂I group and two signals: at 114.06 ppm (ttd, J = 293 Hz, J = 30 Hz, J= 2Hz) due to $FSO_2CF_2CF_2O$ and at 112.47 ppm (tq, J = 303 Hz, J = 39 Hz) due to the $FSO_2CF_2CF_2$ group. Additionally, the sample of compounds (4 : 3 in a 5:1 ratio) was treated with phenol in the presence of DBU and the product PhOSO₂CF₂CF₂OCF₂I (7) was isolated after column chromatography in 46% yield (Scheme 3).

Scheme 3

4

In a further investigation we decided to prove if compound 4 can be obtained exclusively if the external source of fluoride ion, namely KF will be applied. The reactions were conducted only in the presence of iodine without KI aiming to inhibit the formation of ICF₂I, however it should be taken into account that KI is generated in situ during reaction between iodine and $FSO_2CF_2CF_2OCF_2^-K^+$ (6) and probably the formation of ICF_2I can be only limited but not excluded. The results are summarized in Table 1. The yields of 4 were estimated by NMR spectroscopy. In all cases the mixture of ICF₂I (3) and FSO₂CF₂CF₂OCF₂I (4) was obtained. The yields of compound 4 were rather low and did not exceed 40%, what can be explained by competition between two reactions: reaction of :CF₂ with KI₃ leading to ICF₂I (3) and the reaction of :CF₂ with $FSO_2CF_2CF_2O^-K^+$ (5) leading to 4.

No	DFSAF ^a	KF	I_2	SiO2 ^d (mol%)	Ratio of products ^b			
					ICF ₂ I (3)	ICF ₂ SO ₂ F (8)	ICF ₂ OCF ₂ CF ₂ SO ₂ F (4)	[%]
1	1.95	1	1.0	4	12	1	4	12
2	4	1	1.0	2	9	1	7	35
3	2	1	0.66	1.8	23	1	32	42(28) ^f
4	2	1	1	2.2	24	1	15	25 ^e

^a all reactions were carried out in ampoule in MeCN at 45-50°C during 21-23h; ^b after work up procedure (the mixture was

Table 1

poured into water and the bottom phase was collected); ^cNMR yield of **4** based on amount of I₂ used; ^dcounted on amount of DFSAF; ^etwo days of stirring at 45°C; ^f NMR yield of **4** based on amount of KF used.

It is known that $FSO_2CF_2CF_2O'K^+$ (5) is not stable [5] and in 50-60^oC in diglyme undergoes fragmentation to give $FSO_2CF_2K^+$ (9) which decomposes further to difluorocarbene (Scheme 4). Decomposition of 5 during prolonged heating was the reason why an excess of 1 was required and lower temperature (45-50°C) was applied. Acetonitrile was used as a reaction medium because the increased stability of 5 in that solvent was reported [6].

5

 $\begin{array}{c} 0 & 0 & 0 \\ F & F \\ F$

Scheme 4

Our attempts to obtain compound 4 via decomposition of 5 in a presence of iodine were not successful.

The reaction between ICF₂I (**3**) and FSO₂CF₂CF₂O⁻K⁺ (**5**) was also investigated. An initial experiment conducted with a reagent **3** : **5** ratio of 1:1 at 48^oC gave a mixture of ICF₂I (**3**) and FSO₂CF₂CF₂OCF₂I (**4**) in a ratio 1.1:1. The NMR yield of **4** was estimated for 42%. When the progress of the reaction of **5** : **3** in a 1.2:1 ratio was followed by ¹⁹F NMR, it was found that reactions start immediately at room temperature, resulting in a mixture of products **3** : **4** (1:1.8) after 1 day at 45°C. Further progress of the reaction was not observed, what let us to conclusion that **5** decomposes slowly and an excess of this reagent is required to reach higher conversion.

It was proven that the application of an excess of **5** resulted not only in an advantageous ratio of products **4** : **3** (6:1) but also increased amount of by-products from decomposition of **5**, however most of them were easily washed off with water. The main signals can be assigned to sulfone **10** (5% in a reaction mixture after work-up). It seems interesting that the intermediary carbanion $FSO_2CF_2CF_2OCF_2^-$ (**6**) (see Scheme 4) formed during decomposition of $FSO_2CF_2CF_2O^-K^+$ (**5**) did not react with ICF_2I. Similar reactions of carbanions with CF_2Br_2 were reported [7].

Application of excess of 5 resulted also in a product of double substitution $CF_2(OCF_2CF_2SO_2F)_2$ (11). Compound 11 was previously synthesized by electrochemical

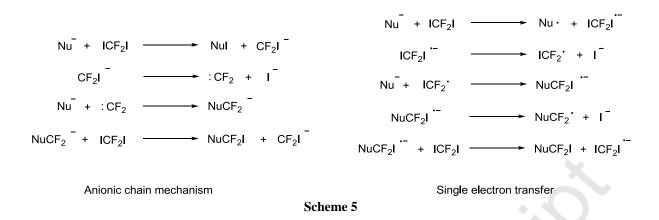
6

fluorination of the corresponding disulfonyl fluoride [8]. In the ¹⁹F NMR spectrum of the reaction mixture (see entry 5, Table 2) a signal at -46.58 ppm was observed which was assigned to the OCF₂O group of compound **11** (2.4% in reaction mixture after work-up).

The results of the reaction between $FSO_2CF_2CF_2O'K^+$ (5) and ICF_2I (3) are summarized in Table 2. The yields of 4 were estimated by NMR spectroscopy. In all cases complete conversion was not reached and ICF_2I was always present in the reaction mixtures.

Table 2

No 1	DIGAL		ICF ₂ I	Temp.[C]	Time [h]	Ratio of products ^b		Yield (4)
1	DFSAF ^a	KF				ICF ₂ OCF ₂ CF ₂ SO ₂ F (4)	ICF ₂ I (3)	[%] ^{b,c}
	1	1	1	48	23.5	1.1	1	42
2	1.6	1.5	1	45	48	5.5	1	55
3	1.4	1.18	1	r.t	26	1.2	1	48
4	3.4	3.2	1	35-37	23	3.2	1	51
5	4.6	4.1	1	35-37, 45 ^d	48	6	1	67^{b,c}


Results of reaction between FSO₂CF₂CF₂O⁻K⁺ (pre-generated) and ICF₂I

^aall reactions were carried out in MeCN in ampoule; ^bafter work up procedure (the mixture was poured into water and the bottom phase was collected); ^cNMR yield based on amount of ICF₂I used.; ^d1 day at 35-37^oC, 1 day at 45^oC;

It was found that, application of a longer reaction time or four-fold excess of $FSO_2CF_2CF_2O'K^+$ (5) lead to an optimal yield and ratio of ICF_2I (3) : $ICF_2OCF_2CF_2SO_2F$ (4) (entry 5, Table 2). However similar result can be obtained using 1.4 fold excess of 5 and conducting the reaction at room temperature (entry 3, Table 2), what can be explained by slower decomposition of 5 in that temperature. Once the reaction is completed the product can be isolated by phase separation after addition of water. Having in mind that 4 cannot be separated from 3 by distillation, the crude mixture of both compounds (entry 5, Table 2) was treated with PhOH in a presence of DBU and gave after column chromatography PhOSO₂CF₂CF₂OCF₂I (7) in 30% yield.

The yields of **4** (42-67%) obtained in the direct reaction between ICF₂I (**3**) and FSO₂CF₂CF₂O⁻K⁺(**5**) were higher than yields of **4** (12-35%) obtained in the reaction between FSO₂CF₂CF₂O⁻K⁺(**5**) and :CF₂ generated from **1**. In the case of ICF₂I (**3**) and FSO₂CF₂CF₂O⁻K⁺(**5**), two pathways can occur via anionic chain mechanism (with evolution of difluorocarbene) or via single electron transfer (Scheme 5).

7

It was never proven which mechanism is more favoured during the reaction between ICF₂I (**3**) and nucleophiles like phenoxide or thiopenoxide ions [4]. According to our knowledge the reaction of such nucleophile like $FSO_2CF_2CF_2O^-K^+$ (**5**) with compounds type CF_2X_2 (X = Cl, Br, I) was not reported previously.

3. Experimental

Boiling points were measured during distillation; both are uncorrected. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded with JEOL ECX 400 spectrometer, in CDCl₃ or CD₃CN solutions. Chemical shifts are quoted in ppm from internal TMS for ¹H and from internal CFCl₃ for ¹⁹F nuclei. GC-MS analyzes were performed with a Varian Saturn 2100T apparatus (30 m, capillary column, VF-5ms). Difluoro(fluorosulfonyl)acetyl fluoride was donated us by DUPONT. ICF₂I was prepared according known procedures [2, 9].

3.1. General procedure for the reaction between $ICF_2I(3)$ and $FSO_2CF_2CF_2O^*K^+(5)$

In a glass ampoule 5.01 g (0.086 mol) of dry KF and 1.8 ml of dry MeCN were placed, than 17.7 g (0.098 mol) of FSO₂CF₂COF was condensed into it. The content of ampoule was stirred 2 h at room temperature, than the ampoule was cooled down to -30° C, opened under nitrogen, than 6.64 g (0.021 mol) of ICF₂I and 60 ml of dry acetonitrile was added into it. The reaction mixture was stirred 24 h in 35-37°C and 24 h in 45°C. After that time the ampoule was opened and analyzed by NMR spectroscopy, than the content of ampoule was poured into water. The bottom organic phase (7.58 g) was collected, dried over sodium sulfate and analyzed by NMR with BTF as standard, proving the presence of ICF₂I (3) and ICF₂OCF₂CF₂SO₂F (4) in a ratio 1:6. The NMR yield of 4 was 67%. In the collected organic phase beside signals of compound 3 and 4, three minor signals from compound 10 were observed (5%) and signals of compound 11 (2.4%).

8

Difluorodiiodomethane (3):

¹⁹F NMR (CD₃CN) δ : 17.76 (s, 2F), ¹³C NMR (CDCl₃) δ : 1.6 (t, *J* = 377 Hz); GC-MS: m/z: 304 (M)⁺; 177 (ICF₂)⁺;

2-(Difluoro-iodo-methoxy)-1,1,2,2-tetrafluoro-ethane sulfonyl fluoride (4):

¹⁹F NMR (CD₃CN) δ : 44.7 (m, 1F, SO₂F), -10.3 (m, 2F, OC<u>F</u>₂I), -83.1 (m, 2F, OC<u>F</u>₂CF₂), -113.1 (m, 2F, CF₂C<u>F</u>₂SO₂F); ¹³C NMR (CDCl₃) δ : 74.95 (*J* = 343 Hz, O<u>C</u>F₂I); 114.06 (ttd, *J* = 293 Hz, *J* = 30 Hz, *J* = 2Hz, FSO₂CF₂<u>C</u>F₂); 112.47 (tq, *J* = 303 Hz, *J* = 39 Hz, FSO₂<u>C</u>F₂CF₂); GC-MS: m/z: 249 (M-I)⁺; 193 (ICF₂O)⁺; 183 (FSO₂CF₂CF₂)⁺; 177 (ICF₂)⁺; 133 (FSO₂CF₂)⁺, 119 (C₂F₅)⁺; 100 (C₂F₄)⁺; 83 (FSO₂)⁺; 67 (CF₂O)⁺;

2,2,4,4,5,5-Hexafluoro-[1,3]-oxathiolane-3,3-dioxide (10):

¹⁹F NMR (CD₃CN) δ: -75.41 (m, 2F), -82.92 (m, 2F), -119.22 (m, 2F);

2-[Difluoro-(1,1,2,2-tetrafluoro-2-fluorosulfonyl-ethoxy)-methoxy]-1,1,2,2-tetrafluoro-ethane sulfonyl fluoride (**11**):

¹⁹F NMR (CD₃CN) δ: 44.7 (m, 2F, SO₂F); -46.58 (m, 2F, OC<u>F</u>₂O); -83.1 (m, 4F, OC<u>F</u>₂CF₂); -113.1 (m, 4F, CF₂C<u>F</u>₂SO₂F);

3.2. Synthesis of 2-(Difluoro-iodo-methoxy)-1,1,2,2-tetrafluoro-ethane-sulfonic acid phenyl ester PhOSO₂CF₂CF₂OCF₂I (7):

In a glass ampoule 4.86 g (0.083 mol) of dry KF and 1.8 ml of dry MeCN were placed, than 17.9 g (0.099 mol) of FSO₂CF₂COF was condensed into it. The content of ampoule was stirred 2 h at room temperature, than the ampoule was cooled down to -30° C, opened under nitrogen, than 6.66 g (0.021 mol) of ICF₂I and 60 ml of dry acetonitrile was added into it. The reaction mixture was stirred 48 h in 45°C. After that time the ampoule was opened and analyzed by NMR spectroscopy, than the content of ampoule was poured into water. The bottom organic phase (8.41 g) was collected, dried over sodium sulfate and analyzed by NMR with BTF as standard, proving the presence of ICF₂I (**3**) and ICF₂OCF₂CF₂SO₂F (**4**) in a ratio 1:5. In the collected organic phase beside signals of compound **3** and **4**, three minor signals from compound **10** were observed (9.5%) and signals of compound **11** (3.5%).

In a flask under nitrogen 2.19 g (0.023 mol) of phenol, 6.07 g (0.039 mol) of DBU and 25 ml of dry CH_2Cl_2 were placed. The flask was cooled down to $-60^{\circ}C$ and the mixture (8.41 g) of

9

compounds 3:4 in a ratio 1:5 was added into it. The flask was slowly warm up to the room temperature and the content of it was stirred 2 h at that temperature. After that time, reaction mixture was poured into water. The organic phase was washed twice by water and dried over sodium sulfate. The solvent was removed at rotary evaporator and the residue (4.93 g) was purified by column chromatography to give compound 7 in 30% (3.02 g) yield.

2-(Difluoro-iodo-methoxy)-1,1,2,2-tetrafluoro-ethane-sulfonic acid phenyl ester (7):

Yellowish liquid. ¹⁹F NMR (CDCl₃) δ : -8.32 (t, *J* = 11.56 Hz, 2F); -81.74 (t, *J* = 11.56 Hz, 2F); -112.7 (m, 2F); ¹³C NMR (CDCl₃) δ : 75.26 (t, *J* = 341.9 Hz, O<u>C</u>F₂I); 112.87 (tt, *J* = 300.55 Hz, *J* = 37.6 Hz, O<u>C</u>F₂CF₂); 114.65 (tt, *J* = 290.92 Hz, *J* = 29.9 Hz, OCF₂<u>C</u>F₂SO₂); 121.51 (C-2, Ph); 128.38 (C-4, Ph); 130.31 (C-3, Ph); 149.95 (C-1, Ph); ¹H NMR (CDCl₃) δ : 7.28-7.32 (m, 2H), 7.38-7.49 (m, 3H);

3.3. General procedure for the reaction between $FSO_2CF_2CF_2O^*K^+$ (5) and : CF_2 generated from FSO_2CF_2COF (1):

In a glass ampoule 4.05 g (0.069 mol) of dry KF and 11.7 g (0.046 mol) of I_2 , 0.15 g (0.0025 mol) of SiO₂, 40 ml of dry MeCN were placed, than 25.5 g (0.141 mol) of FSO₂CF₂COF was condensed into it. The content of ampoule was stirred 21-23 h in 45-50°C. After that time the reaction mixture was poured into water. The bottom organic phase (13.87 g) was collected, dried over sodium sulfate and analyzed by NMR with BTF as standard, proving the presence of ICF₂I (**3**) and ICF₂OCF₂CF₂SO₂F (**4**) and ICF₂SO₂F (**8**) in a ratio: 23: 32: 1. The NMR yield of **4** was 28.3% (based on the amount of KF used).

Difluorodiiodomethane (**3**): ¹⁹F NMR (CDCl₃) δ: 19.2 (s, 2F);

2-(*Difluoro-iodo-methoxy*)-1,1,2,2-tetrafluoro-ethane sulfonyl fluoride (**4**): ¹⁹F NMR (CDCl₃) δ: 46.00 (s, 1F); -8.85 (m, 2F); -82.04 (m, 2F); -111.91 (m, 2F);

Difluoro-iodo-methane-sulfonyl fluoride (8): ¹⁹F NMR (CDCl₃) δ : 26.0 (m, 1F); -50.4 (m, 2F); GC-MS: m/z: 260 (M)⁺; 177 (ICF₂)⁺; 67 (CF₂O)⁺; 48 (SO)⁺;

4. Acknowledgment

J. I. and G.-V. R. are very grateful for the financial support of Dyneon GmbH, Burgkirchen (Germany).

10

References:

- [1] G. A. Bargigia, G. Caporiccio, M. Pianca, J. Fluorine Chem. 19 (1982) 403-410;
- [2] J.Ch. Xiao, J.X. Duan, A.R. Li, Y. Guo, Q.Y. Chen, Collect. Czech. Chem. Commun. 67 (2002) 1320-1324;
- [3] Shanghai Institute of Organic Chemistry, Huaxue Xuebao (1978) 315-324;
- [4] Y. Guo, Q.Y. Chen, J. Fluorine Chem. 102 (2000) 105-109;
- [5] C. G. Krespan, J. Fluorine Chem. 16 (1980) 385-390;
- [6] W. Storzer, D.D. DesMarteu, Inorg. Chem. 30 (1991) 4821-4826;
- [7] I. Rico, D. Cantacuzene, C. Wakselman, J. Chem. Soc. Perkin 1 (1982) 1063;
- [8] G.L. Gard, N.N. Hamel, J. Mohtasham, J. Fluorine Chem. 55 (1991) 313-321;
- [9] Z. Y. Yang, J. Am. Chem. Soc. 118 (1996) 8140-8141;