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In this work, a novel series of arylisoxazole-phenylpiperazines 5a-k were designed, synthesized, 

and evaluated toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Our 

results revealed that (5-(2-chlorophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5c) 
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was the most potent AChE inhibitor with IC50 of 21.85 µM. It should be noted that most of 

synthesized compounds showed no BChE inhibitory activity and (5-phenylisoxazol-3-yl)(4-

phenylpiperazin-1-yl)methanone (5a) was the most active anti-BChE derivative (IC50 = 51.66 

µM). Also, kinetic studies for the AChE and BChE inhibitory activity of compounds 5c and 5a 

confirmed that they have simultaneously bound to the catalytic site (CS) and peripheral anionic 

site (PAS) of both AChE and BChE. Furthermore, docking study of compound 5c showed 

desired interactions of that compound with amino acid residues located in the active and 

peripheral anionic sites. Compound 5c was also evaluated for its BACE1 inhibitory activity and 

demonstrated IC50 = 76.78 µM. Finally, neuroprotectivity of compound 5c on Aβ-treated 

neurotoxicity in PC12 cells depicted low activity. 

Keyword: Arylisoxazole, Beta-secretase (BACE1), Cholinesterase, Docking, Kinetic study, 

Neuroprotection, Phenylpiperazine 

 

Introduction 

Alzheimer's disease (AD) is known as a controversial neurodegenerative disorder. It is 

the most common type of dementia among elderly people in such a manner that their quality of 

life is directly affected by the various drawbacks.[1] As AD has depicted enormous effects on the 

patients’ mental ability due to gradual death of neuronal cells, a wide range of difficulties such as 

failure of memory and thinking skills have been emerged. In this respect, it has imposed a huge 

burden on the societies and health care systems.     

The exact origin of AD is not recognized and several factors are involved in the 

pathogenesis of the diseases.[2] Among them, tau protein aggregation[3] and extracellular plaque 

deposits of the β-amyloid peptide (Aβ)[4] are two factors have been recently discussed and 
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investigated. However, treatment strategies and drug discovery have been accomplished via the 

cholinergic hypothesis[5] which is associated with the decreased level of acetylcholine (ACh) in 

the brain.  

ACh is an essential neurotransmitter for the cognitive activities such as attention, 

learning, memory, and motivation. There are two enzymes known as acetylcholinesterase 

(AChE) and butyrylcholinesterase (BChE) which catalyze the hydrolysis of ACh leading to the 

reduction of synaptic availability of that substance in the brain. However, BChE plays a minor 

role in regulating brain ACh as two enzymes differ in rate specificity, kinetics and activity in the 

different parts of the brain.[6] Inhibition of AChE and BChE have been an important strategy for 

the management of AD and AChE inhibitors have been found as the main treatment plan. Also, 

non-cholinergic role of AChE and consequently AChE inhibitors (AChEIs) has attracted lots of 

attention due to its participation in pro-aggregating activity of Aβ.[7] Amyloid fibril formation 

can be achieved through various amino acid residues located in the PAS of AChE.[8]   

Although AD has been characterized as a multifactorial disease,  cholinesterase inhibitors 

(ChEIs) are still the main target for the treatment of early and moderate stages of the disease 

since FDA approved drugs including rivastigmine, galantamine, and donepezil are ChEIs[9] (Fig 

1).  

Heterocyclic compounds have been considered as the effective targets and versatile tools 

in the enzymatic treatment of AD. In in this respect, design, synthesis and biological evaluation 

of multi-target heterocycles have been the center of attention to develop potent and novel anti-

AD drugs[10-12] as well as diagnostic applications.[13,14] Focusing on the cholinesterase inhibitory 

activity of heterocycles, design and synthesis of a wide range of compounds such as 

coumarins,[15] 1,2,3-triazoles,[16-19] isoxazoles,[19,20] imidazoles,[21] pyrazoles,[22] and 
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quinazolines,[23] etc. have been developed. In this work, following anti-ChE activity of our 

previously reported isoxazole derivatives A and B,[19,20] synthesis and biological evaluation of 

novel isoxazoles connected to phenylpiperazine moiety was reported (Fig. 2).  

Design of the target compounds is based on the potent inhibitory activity of isoxazoles 

which can interact with the CAS and PAS of the AChE [19,20]. Also, the nitrogen atom from 

phenylpiperazine group plays a key role in the inhibitory activity. It is the positive charge center 

which is necessary in AChE inhibitory action to interact with the catalytic center of the AChE[24] 

(Fig. 2). 

 

Results and discussion 

Chemistry 

 Synthesis of desired compounds 5a-k was carried out as depicted in Scheme 1. The 

synthetic procedure was started from ethyl 2,4-dioxo-4-arylbutanoate 1 which was prepared 

according to the literature.[19,20] The reaction of 1 and hydroxylamine hydrochloride in refluxing 

ethanol afforded compounds 2. Hydrolysis of the ester group in the presence of potassium 

hydroxide (KOH) in refluxing MeOH gave the corresponding carboxylic acid derivatives 3. 

Finally, reaction of compound 3 and 1-phenylpiperazine 4 in the presence of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI) and hydroxybenzotriazole (HOBt) in dry CH3CN at 

room temperature yielded target arylisoxazole-phenylpiperazine derivatives 5.  

 

AChE and BChE assay 

In vitro AChE and BChE inhibitory activity of the synthesized compounds 5a-k was 

evaluated using Ellman’s method comparing with donepezil and rivastigmine as the reference 
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drugs (Table 1).[25] The best anti-AChE activity was obtained by compound 5c possessing 2-

chlorophenylisoxazole group (IC50 = 21.85 µM). Changing the position of chlorine from ortho to 

para position of aryl group (compound 5d) led to the reduction of AChEI activity (IC50 = 70.06 

µM). However, compound 5e possessing two chlorine substituents showed lower activity (IC50 = 

34.08 µM) than compound 5c but it was found to be stronger than compound 5d. Substitution of 

different halogens such as fluorine and bromine showed versatile anti-AChE activity. 

Introduction of fluorine into ortho position of aryl group connected to isoxazole moiety 

(compound 5a) deleted anti-AChE activity (IC50 > 100 µM) and compound 5b possessing 4-

fluorophenyl group showed lower activity than compound 5c almost similar AChEI activity to its 

counterpart, compound 5d having 4-chlorophenyl group. Increasing the size of halogen atom in 

compound 5f possessing 4-bromophenyl led to lower activity comparing with other 4-

halosubstituted compounds (5b and 5d).  

As can be seen in Table 1, introduction of electron-donating groups including methyl and 

methoxy groups (compounds 5g and 5h) as well as removal of substituents from aryl group 

(compound 5k) eliminated inhibitory activity (IC50 > 100 µM). In the case of derivatives 

possessing electron-withdrawing groups (NO2, compounds 5i and 5j) the position of nitro group 

was significant in inducing anti-AChE activity in such a manner that compound 5i having 3-

nitrophenyl group connected to isoxazole moiety depicted no activity (IC50 > 100 µM) whereas 

compound 5j containing 4-nitrophenyl showed moderate inhibitory activity (IC50 = 44.14 µM).  

It can be concluded that replacement of halogen substituents especially chlorine would be 

suitable for inducing better AChEI activity in the series of arylisoxazole-phenylpiperazines 5a-k.  

Finally, comparing our results with those reported in our previous studies on anti-AChE 

activity of isoxazoles A and B[19,20] revealed that the synthesized compounds 5 were found to be 
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lower active than 1,2,3-triazole-isoxazole hybrids A confirming that replacement of 1,2,3-

triazole by phenylpiperazine did not afford higher activity. However, the presence of 

phenylpiperazine led to higher anti-AChE activity in comparison to compound B possessing 

tryptamine moiety. Also, compound 5c similar to compound B possessed 2-chlorophenyl group 

connected to isoxazole moiety.        

In the case of BChEI activity, most of synthesized compounds were inactive toward 

BChE. Among them, compounds 5a and 5k possessing 2-fluorophenyl and phenyl groups were 

found to be moderate BChE inhibitors with IC50s of 51.66 and 72.27 µM, respectively. It should 

be noted these compounds were not AChEIs. Also, BChEI activity of series of compounds 5a-k 

was lower than compounds A and B. 

 

Kinetic study 

The most active anti-AChE and anti-BChE compounds 5c and 5a, respectively were 

candidate for kinetic studies of enzymes inhibition using Lineweaver-Burk plots in the presence 

(three concentrations) and absence of those inhibitors. As indicated in Fig. 3 and 4, graphical 

analysis of the reciprocal Lineweaver-Burk plots depicted both increasing slopes and intercepts 

at increasing concentration of both compounds 5c and 5a (Fig. 3 and 4, respectively). The 

reciprocal plots confirmed mixed type of inhibition for both AChE and BChE suggesting that 

compounds 5c and 5a were able to bind both CAS and PAS of AChE and BChE. As shown in 

Fig. 3 and 4, the inhibition constants Ki were calculated for 5c and 5a from the secondary plots 

of the slope versus the concentration of inhibitors (38.13 µM and 18.19 µM, respectively). 
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BACE1 enzymatic assay 

Beta-secretase 1 (BACE1) is an enzyme which catalyzes beta-site amyloid precursor 

protein (APP) cleaving enzyme1.[31]  In this respect, development of BACE1 inhibitors has been 

emerged as the versatile therapeutic strategy. Compound 5c, the most potent anti-AChE 

derivative was evaluated for its BACE1 inhibitory activity. The calculated IC50 indicated 76.78 

µM ± 2.65 comparing with OM-99-2 (IC50 = 14.70 nM ±2.83) as the reference inhibitor.  

 

Neuroprotective effect against Aβ-induced damage measured in PC12 cells 

Neuroprotective effect of compound 5c against damage induced by Aβ25-35 was 

investigated in PC12 cells by MTT assay.[31] This compound showed negligible activity up to the 

concentration of 25 µM.  

 

Docking study 

1EVE was selected among 100 crystal structures of acetylcholinesterase complexed with 

different ligands in PDB. The most promising anti-AChE inhibitor 5c was subjected to dock with 

1EVE by using smina in Linux platform. The range of minimized affinity values of the poses of 

ligand is −11.42 to −9.59 kcal/mol. The Interactions of the best-docked conformation of ligand 

with the active site residues of acetylcholinesterase (1EVE) is depicted in Fig. 5. Target 

compound strongly positioned in AChE peripheral anionic site (PAS) to form hydrogen bond 

with Tyr121 and pi-anion interaction with Asp72 through isoxazole moiety. 2-Chlorophenyl ring 

surrounded by Phe330, Trp84, and Phe331 near the wall of the active gorge is responsible for the 

extra activities. Regarding to docking results and inhibitory activity of synthesized compounds, 
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aromatic ring of the molecule having lipophilic withdrawing group at ortho position possessed 

an optimum fit into the CAS and PAS.[27,28] 

As demonstrated in docking study there was no interaction between an electron-rich 

moiety of compound 5c and Trp279 of the PAS which is important for the inhibition of AChE-

induced Aβ aggregation.[7,8,29] 

Molecular docking study of compound 5c on BACE1 (2qp8) also demonstrated -8.55 to -

7.71 kcal/mol as the range of minimized affinity values of that derivative. The ligand formed 

hydrogen bond with Thr292 through oxygen atom of carbonyl group. Also, Pi-alkyl interaction 

with Pro131 and Pi-Pi interaction with Tyr132 residues were observed (Fig. 6).  

 

Conclusion 

In conclusion, a novel series of arylisoxazole-phenylpiperazines were designed, 

synthesized, and evaluated as anti-AChE agents. Among them, (5-(2-chlorophenyl)isoxazol-3-

yl)(4-phenylpiperazin-1-yl)methanone (5c) showed the most potent AChEI activity (IC50 = 21.85 

µM). However, they generally depicted no significant BChEI activity. Only, compounds 5a and 

5k showed moderate to low activity (IC50s = 51.66 and 72.27 µM, respectively) which were not 

active toward AChE. Kinetic as well as docking studies of compounds 5a and 5c confirmed their 

dual inhibitory activity since they could simultaneously bind to amino acid residues located at 

the CAS and PAS of both the AChE and BChE. 

 

Experimental 

Melting points were determined on a Kofler hot stage apparatus and are uncorrected. 1H 

and 13C NMR spectra were recorded on a Bruker FT-500, using TMS as an internal standard. IR 
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spectra were obtained on a Nicolet Magna FTIR 550 spectrophotometer (KBr disks). MS were 

recorded on an Agilent Technology (HP) mass spectrometer operating at an ionization potential 

of 70 eV. Elemental analysis was performed on an Elementar Analysensystem GmbH VarioEL 

CHNS mode. All chemicals were obtained from Merck and compounds 1, 2, and 3 were 

synthesized according to our previous reports.[30]  

General procedure for the synthesis of arylisoxazole-phenylpiperazines 5a-k 

A mixture of compound 3 (1 mmol), EDCI (1.1 mmol), and HOBT (1 mmol) in dry 

CH3CN (10 mL) was stirred for 1 h at room temperature. Then, 1-phenylpiperazine 4 (1 mmol) 

was added to the reaction mixture and stirred for 24-48 h. After completion of reaction as 

indicated by TLC, the solvent was evaporated under vacuum, dichloromethane (50 mL) was 

added and the organic layer was washed with saturated NaHCO3 solution (2×50 mL) following 

with brine (2×50 mL). The organic layer was separated, dried over Na2SO4, and concentrated 

under vacuum to yield the crude product which was purified by recrystallization from petroleum 

ether/ethyl acetate. 

(5-(2-Fluorophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5a)  

Yield = 75%, mp 76-78 ºC. IR (KBr, cm-1): 2971, 2914, 284, 1625, 1597. 1H NMR (500 MHz, 

CDCl3): 7.97 (t, J = 8.0 Hz, 1H, H4′), 7.47 (dd, J = 13.7, 8.0 Hz, 1H, H3′), 7.30 (t, J = 7.5 Hz, 

2H, Ph), 7.26 (s, 1H, H4), 7.22 (t , J = 8.0 Hz, 1H, H5′), 7.03-7.04 (m, 1H, H6′), 6.95 (d, J = 7.5 

Hz, 2H, Ph), 6.92 (t, J = 7.5 Hz, 1H, Ph), 4.08 (t, J = 5.0 Hz, 2H, piperazine), 3.99 (t, J = 5.0 Hz, 

2H, piperazine), 3.30 (t, J = 5.0 Hz, 2H, piperazine), 3.26 (t, J = 5.0 Hz, 2H, piperazine). 13C 

NMR (125 MHz, CDCl3): 166.5, 162.5 (d, JC-F = 250.0 Hz), 159.4, 159.3, 150.9, 132.1, 129.3, 

127.5, 124.8, 122.8, 120.7, 116.8, 116.4 (d, JC-F = 21.2 Hz), 104.7 (d, JC-F = 11.2 Hz), 50.1, 49.5, 

46.9, 42.6. MS (m/z, %): 351 (M+, 88), 334 (20), 228 (64), 200 (55), 119 (52), 159 (100), 132 
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(100), 104 (100), 91 (53), 56 (100), 42 (53).Anal. Calcd for C20H18FN3O2: C, 68.36; H, 5.16; N, 

11.96. Found: C, 68.51; H, 5.30; N, 11.76. 

(5-(4-Fluorophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5b) 

Yield = 85%, mp 155-157 ºC. IR (KBr, cm-1): 3138, 3018, 2917, 2837, 1621, 1503. 1H NMR 

(500 MHz, CDCl3): 7.80 (dd, J = 8.5, 5.2 Hz, 2H, H2′, H6′) 7.30 (t, J  = 7.5 Hz, 2H, Ph), 7.19 (t, 

J = 8.5 Hz, 2H, H3′, H5′), 6.97-6.92 (m, 3H, Ph), 6.82 (s, 1H, H4), 3.99-4.12 (m, 4H, 

piperazine), 3.26-3.31 (m, 4H, piperazine). 13C NMR (125 MHz, CDCl3): 169.4, 164.0 (d, JC-F = 

250.6 Hz), 159.2, 159.1, 150.2, 129.2, 128.0, 123.0, 121.6, 116.8, 116.3 (d, JC-F = 21.9 Hz), 

100.6, 50.1, 49.5, 46.8, 42.5. MS (m/z, %): 351 (M+, 11), 228 (15), 190 (23), 159 (50), 132 (88), 

104 (100), 77 (96), 56 (80). Anal. Calcd for C20H18FN3O2: C, 68.36; H, 5.16; N, 11.96. Found: 

C, 68.10; H, 4.89; N, 12.18. 

(5-(2-Chlorophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone  (5c)  

Yield = 84%, mp 103-105 ºC. IR (KBr, cm-1): 2913, 2847, 1636, 1598. 1H NMR (500 MHz, 

CDCl3): 7.96 (dd, J = 7.5, 3.5 Hz, 1H, H6′), 7.53 (dd, J = 7.5, 3.5 Hz, 1H, H3′), 7.43-7.41 (m, 

2H, H4′, H5′), 7.31-7.28 (m, 3H, Ph, H4), 6.95 (d, J = 7.5 Hz, 2H, Ph), 6.92 (t, J = 7.5 Hz, 1H, 

Ph), 4.10 (t, J = 5.0 Hz, 2H, piperazine), 3.99 (t, J = 5.0 Hz, 2H, piperazine), 3.30 (t, J = 5.0 Hz, 

2H, piperazine), 3.27 (t, J = 5.0 Hz, 2H, piperazine). 13C NMR (125 MHz, CDCl3): 166.8, 159.3, 

159.0, 150.9, 132.1, 131.3, 131.0, 129.4, 129.3, 127.2, 125.6, 120.7, 116.8, 105.6, 50.1, 49.5, 

46.9, 42.6. MS (m/z, %): 369 ([M+2]+., 20), 367 (M+, 60), 228 (73), 200 (61), 159 (90), 132 

(100), 104 (97), 77 (82), 56 (100), 42 (47). 

Anal. Calcd for C20H18ClN3O2: C, 65.31; H, 4.93; N, 11.42. Found: C, 65.51; H, 5.24; N, 11.58. 

 (5-(4-Chlorophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5d)  
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Yield = 62 %, mp 168-170 ºC. IR (KBr, cm-1): 3025, 2912, 2846, 1632, 1598. 1H NMR (500 

MHz, CDCl3): 7.74 (d, J = 8.5 Hz, 2H, H3′, H5′), 7.47 (d, J = 8.5 Hz, 2H, H2′, H6′), 7.29 (t, J = 

8.5 Hz, 2H, Ph), 6.95 (d, J= 8.0 Hz, 2H, Ph), 6.91 (t, J= 8.0 Hz, 1H, Ph), 6.85 (s, 1H, H4), 4.11 

(t, J = 5.0 Hz, 2H, piperazine), 3.98 (t, J = 5.0 Hz, 2H, piperazine), 3.30 (t, J = 5.0 Hz, 2H, 

piperazine), 3.26  (t, J = 5.0 Hz, 2H, piperazine). 13C NMR (125 MHz, CDCl3): 169.0, 159.2, 

158.8, 150.8, 136.8, 129.5, 129.3, 127.2, 125.2, 120.7, 116.8, 101.2, 50.1, 49.5, 46.9, 42.7. MS 

(m/z, %): 369 ([M+2]+., 9), 367 (M+, 27), 228 (29), 200 (25), 159 (58), 132 (97), 119 (35), 104 

(74), 77 (70), 56 (100), 42 (53). Anal. Calcd for C20H18ClN3O2: C, 65.31; H, 4.93; N, 11.42. 

Found: C, 65.11; H, 5.14; N, 11.24. 

(5-(2,4-Dichlorophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5e)  

Yield = 85%, mp 110-112 ºC. IR (KBr, cm-1): 3127, 2907, 2811, 1632, 1603. 1H NMR (500 

MHz, CDCl3): 7.90 (d, J = 8.5 Hz, 1H, H6′), 7.56 (d, J = 2.0 Hz, 1H, H3′), 7.40 (dd, J = 8.5, 2.0 

Hz, 1H, H5′), 7.29 (t, J = 8.0 Hz, 2H, Ph), 7.28 (s, 1H, H4), 6.95 (dd, J = 8.0, 1.0, 2H, Ph), 6.92 

(td, J = 8.0, 1.0 Hz, 1H, Ph), 4.10 (t, J = 5.2 Hz, 2H, piperazine), 3.98 (t, J = 5.2 Hz, 2H, 

piperazine), 3.30 (t, J = 5.2 Hz, 2H, piperazine), 3.26  (t, J = 5.2 Hz, 2H, piperazine). 13C NMR 

(125 MHz, CDCl3): 165.8, 159.3, 159.1, 150.8, 136.9, 132.7, 130.9, 130.1, 129.3, 127.8, 124.1, 

120.7, 116.8, 105.8, 50.1, 49.4, 46.9, 42.7. MS (m/z, %): 405 ([M+4]+., 1.5), 403 ([M+2]+., 10), 

401 (M+, 15), 228 (21), 200 (20), 173 (14), 159 (44), 132 (85), 104 (62), 77(62),  55 (100), 42 

(41). Anal. Calcd for C20H17Cl2N3O2: C, 59.71; H, 4.26; N, 10.45. Found: C, 59.57; H, 4.41; N, 

10.61. 

(5-(4-Bromophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5f)  

Yield = 90%, mp 170-172 ºC. IR (KBr, cm-1): 3126, 2973, 2903, 2807, 1631, 1602. 1H NMR 

(500 MHz, CDCl3): 7.67 (d, J = 8.0 Hz, 2H, H3′, H5′), 7.63 (d, J = 8.0 Hz, 2H, H2′, H6′), 7.29 (t, 
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J = 7.5 Hz, 2H, Ph), 6.95 (d, J = 7.5 Hz, 2H, Ph), 6.90 (t, J = 7.5 Hz, 1H, Ph),  6.87 (s, 1H, H4), 

4.11 (t, J = 5.0 Hz, 2H, piperazine), 3.98 (t, J = 5.0 Hz, 2H, piperazine), 3.30 (t, J = 5.0 Hz, 2H, 

piperazine), 3.26 (t, J = 5.0 Hz, 2H, piperazine). 13C NMR (125 MHz, CDCl3): 165.1, 159.2, 

159.1, 150.8, 132.4, 129.3, 127.3, 125.6, 125.1, 120.7, 116.7, 101.3, 50.1, 49.4, 46.9, 42.6. MS 

(m/z, %): 413 ([M+2]+., 14), 411 (M+, 14), 228 (29), 200 (22), 159 (55), 132 (92), 104 (72), 91 

(40), 77 (69), 56 (100), 42 (45). Anal. Calcd for C20H18BrN3O2: C, 58.26; H, 4.40; N, 10.19. 

Found: C, 58.42; H, 4.21; N, 10.33. 

(4-Phenylpiperazin-1-yl)(5-(p-tolyl)isoxazol-3-yl)methanone (5g)  

Yield = 65%, mp 110-112 ºC. IR (KBr, cm-1): 3030, 2921, 2833, 1649, 1602. 1H NMR (500 

MHz, CDCl3): 7.83 (d, J = 7.5 Hz, 2H, H2′, H6′), 7.26-7.29 (m, 4H, H3′, H5′, Ph), 6.95-6.92 (m, 

3H, Ph), 6.60 (s, 1H, H4), 3.88-3.85 (m, 4H, piperazine), 3.26-3.24 (m, 4H, piperazine). 13C 

NMR (125 MHz, CDCl3): 164.5, 159.5, 158.4, 150.5, 132.1, 129.6, 129.3, 127.4, 123.9, 120.8, 

116.8, 95.9, 50.1, 49.4, 46.1, 42.0, 21.7. MS (m/z, %): 347 (M+, 8), 322 (21), 161 (20), 132 (42), 

119 (55), 104 (32), 91 (100), 77 (44), 56 (38). Anal. Calcd for C21H21N3O2: C, 72.60; H, 6.09; N, 

12.10. Found: C, 72.84; H, 5.82; N, 12.38. 

(5-(3-Methoxyphenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5h)  

Yield = 70%, mp 110-112 ºC. IR (KBr, cm-1): 3035, 2966, 2906, 2809, 1630, 1574. 1H NMR 

(500 MHz, CDCl3): 7.41-7.39 (m, 2H, H5′, H6′), 7.33 (s, 1H, H2′), 7.30 (t, J = 7.5 Hz, 2H, Ph), 

7.01 (d, J = 7.5 Hz ,1H, H4′), 6.95 (d, J = 7.5 Hz, 2H, Ph), 6.92 (t, J = 7.5 Hz, 1H, Ph), 6.85 (s, 

1H, H4), 4.11 (t, J = 5.0 Hz, 2H, piperazine), 3.98 (t, J = 5.0 Hz, 2H, piperazine), 3.30 (t, J = 5.0 

Hz, 2H, piperazine), 3.26 (t, J = 5.0Hz, 2H, piperazine). 13C NMR (125MHz, CDCl3): 165.0, 

159.4, 159.1, 154.9, 150.9, 130.3, 129.3, 128.2, 120.7, 118.5, 116.8, 116.7, 111.1, 101.1, 55.4, 

50.1, 49.5, 46.9, 42.7. MS (m/z, %): 363 (M+, 12), 229 (17), 200 (16), 159 (38), 132 (78), 104 
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(81), 91 (46), 77 (100), 56 (92), 42 (18). Anal. Calcd for C21H21N3O3: C, 69.41; H, 5.82; N, 

11.56. Found: C, 69.61; H, 5.56 N, 11.31. 

5-(3-Nitrophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5i)  

Yield = 82%, mp 170-172 ºC. IR (KBr, cm-1): 3133, 2913, 2829, 1639, 1597, 1528, 1348.  1H 

NMR (500 MHz, CDCl3): 8.66 (s, 1H, H2′), 8.33 (d, J = 8.0 Hz, 1H, H4′), 8.13 (d, J = 8.0 

Hz,1H, H6′), 7.72 (t, J = 8.0 Hz,1H, H5′), 7.30 (t, J = 7.5 Hz, 2H, Ph), 7.04 (s, 1H, H4), 6.96 (d, 

J = 7.5 Hz, 2H, Ph), 6.93( t, J = 7.5 Hz, 1H, Ph), 4.13 (t, J = 5.0 Hz, 2H, piperazine), 3.99 (t, J = 

5.0 Hz, 2H, piperazine), 3.31 (t, J = 5.0 Hz, 2H, piperazine), 3.28 (t, J = 5.0 Hz, 2H, piperazine). 

13C NMR (125 MHz, CDCl3): 167.8, 159.5, 158.8, 150.8, 148.8, 131.4, 130.4, 129.3, 128.3, 

125.1, 121.0, 120.8, 116.8, 102.8, 50.1, 49.5, 47.0, 42.8. MS (m/z, %): 378 (M+, 6), 217 (18), 

200 (12), 161 (33), 132 (56), 119 (24), 104 (100), 91 (38), 77 (69), 56 (69), 42 (35). Anal. Calcd 

for C20H18N4O4: C, 63.48; H, 4.79; N, 14.81. Found: C, 63.22; H, 4.52; N, 15.12. 

(5-(4-Nitrophenyl)isoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5j)  

Yield = 78%, mp 201-203 ºC. IR (KBr, cm-1): 3123, 3087, 2899, 2821, 1630, 1600, 1516, 1340. 

1H NMR (500 MHz, CDCl3): 8.40 (d, J = 8.3 Hz, 2H, H3′, H5′), 8.22 (d, J = 8.3 Hz, 2H, H2′, 

H6′), 7.61 (s, 1H, H4), 7.24 (t, J = 7.5 Hz, 2H, Ph),  6.98 (d, J = 7.5, 2H, Ph), 6.83 (t, J = 7.5 Hz, 

1H, Ph), 3.83 (t, J = 5.0 Hz, 4H, piperazine), 3.79 (t, J = 5.0 Hz, 4H, piperazine). 13C NMR (125 

MHz, CDCl3): 167.8, 159.5, 158.7, 150.8, 148.8, 132.0, 129.3, 126.8, 124.5, 120.8, 116.8, 103.7, 

50.1, 49.5, 47.0, 42.8. MS (m/z, %): 378 (M+, 31), 228 (14), 200 (12), 159 (35), 132 (88), 104 

(71), 91 (32), 77 (60), 56 (100), 42 (29). Anal. Calcd for C20H18N4O4: C, 63.48; H, 4.79; N, 

14.81. Found: C, 63.60; H, 4.92; N, 14.92. 

(5-Phenylisoxazol-3-yl)(4-phenylpiperazin-1-yl)methanone (5k)  
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Yield = 65 %, mp 118-120 ºC. IR (KBr, cm-1): 3060, 3016, 2916, 2840, 1623, 1597. 1H NMR 

(500 MHz, CDCl3): 7.81 (d, J = 7.0 Hz, 2H, H2′, H6′), 7.48 -7.49 (m, 3H, H3′, H4′,  H5′), 7.30 

(t, J = 7.5 Hz, Hz, 2H, Ph), 6.96 (d, J = 7.5 Hz, 2H, Ph), 6.92 (t, J = 7.5 Hz, 1H, Ph),  6.86 (s, 

1H, H4), 4.12 (t, J = 5.0 Hz, 2H, piperazine), 3.99 (t, J = 5.0 Hz, 2H, piperazine), 3.30 (t, J = 5.0 

Hz, 2H, piperazine), 3.26 (t, J = 5.0 Hz, 2H, piperazine). 13C NMR (125 MHz, CDCl3): 168.1, 

159.4, 158.6, 150.5, 130.7, 129.3, 129.1, 126.8, 125.9, 120.7, 116.8, 100.9, 50.1, 49.5, 46.9, 42.7. 

MS (m/z, %): 333 (M+, 14), 228 (18), 200 (16), 172 (18), 159 (38), 105 (95), 91 (36), 77 (100), 

56 (61), 42 (19). Anal. Calcd for C20H19N3O2: C, 72.05; H, 5.74; N, 12.60. Found: C, 72.22; H, 

5.40; N, 12.41. 

  

AChE and BChE inhibition assay 

 All chemicals required for the ChE assay were obtained from Sigma-Aldrich. The assay 

was performed according to our previous reports[19,20] based on the Ellman’s method.[25] 

 

Kinetic studies of AChE and BChE inhibition 

 For estimates of the inhibition model and inhibition constant Ki, reciprocal plots 

of 1/V versus 1/[S] were obtained using different concentrations of the substrate. For this 

purpose, all experiments were performed similar to enzyme inhibition assay.[18] The rate of 

enzymatic reaction was obtained with different concentrations of inhibitor and in the absence of 

inhibitor. For each experiment, reaction was initiated by adding substrate and progress curves 

were recorded at 405 nm within 2 min. Next, double reciprocal plots (1/v vs. 1/[s]) were made 

using the slopes of progress curves to obtain the type of inhibition. Slopes of these reciprocal 
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plots were then plotted against the concentration of compound, and Ki was determined as the 

intercept on the negative x-axis.  

 

BACE1 enzymatic assay 

The BACE1 enzyme inhibition assay was achieved using a FRET (Forster resonance energy 

transfer) kit, from Invitrogen (former Pan Vera corporation, Madison, WI) comparing with 

OM99-2 as the reference inhibitor based on the literature [31]. 

 

Neuroprotection effect against Aβ-induced damage 

The ability of compound 5c in protecting neuronal PC12 cells against damage induced by 

Aβ25-35 was examined by the MTT assay as previously described [31].  

 

Molecular modeling and docking internal validation 

The 3D X-ray structure was taken from the protein data bank encoded 1EVE. For the 

preparation of receptor, the hydrogen atoms were added, all water molecules were removed and 

pH of the protein was adjusted to almost neutral (7.4). Molecular docking was performed using 

smina which is a fork of AutoDock Vina in Linux platform [32].The autobox ligand option is used 

for defining bounding box for docking. It generates a box with an 8 Å around the reference 

ligand in the active site. In order to confirm the validity of the docking protocol, RMSD value 

was measured between the crystal ligand pose and the generated nine poses of redocked crystal 

ligand pose. The minimized affinity values for generated poses of redocked crystal ligand pose 

were −11.62 to −9.81 and -8.55 to -7.71 kcal/mol for AChE (1EVE) and BACE1 (2qp8) 

inhibitory, respectively.   
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Table 1. Anti-cholinesterase activity of arylisoxazole-phenylpiperazines 5a-k.a 

 

Entry Product 5 X AChEI (IC50, µM) BChEI (IC50, µM) 

1 5a 2-F >100 51.66±0.15 

2 5b 4-F 69.12 ± 0.39 >100 

3 5c 2-Cl 21.85 ± 0.15 >100 

4 5d 4-Cl 70.06 ± 0.76 >100 

5 5e 2,4-diCl 34.08 ±0.50 >100 

6 5f 4-Br 84.55±1.60 >100 

7 5g 4-Me >100 >100 

8 5h 3-MeO >100 >100 

9 5i 3-NO2 >100 >100 

10 5j 4-NO2 44.14±0.75 >100 

11 5k H >100 72.27±2.79 

12 Donepezil  0.079 ±0.002 5.19±0.38 

13 Rivastigmine  11.07±0.01 7.72±0.02 

a Inhibitor concentration (mean ± SD of three experiments) required for 50% inactivation of AChE and BChE. 
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Fig. 1. Marketed cholinesterase inhibitor drugs used for management of Alzheimer’s disease. 
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Fig. 2. Design of new isoxazole derivatives based on the anti-AChE activity of compounds A 

and B. 
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Scheme 1. Synthesis of arylisoxazole-phenylpiperazine derivatives 5a-k. 
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                                                                               (A) 

 

                                                                     (B) 

Fig. 3. (A): Lineweavere-Burk plot for the inhibition of AChE by compound 5c at different 

concentrations of acetylthiocholine (ATCh). (B): Steady-state inhibition constant (Ki) of 

compound 5c. 
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(A)                                                                                              

 

           (B)                                                                                              

Fig. 4. (A): Lineweavere-Burk plot for the inhibition of BChE by compound 5a at different 

concentrations of acetylthiocholine (ATCh). (B): Steady-state inhibition constant (Ki) of 

compound 5a. 
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Fig. 5. a) The RMSD value between crystal ligand pose and the best pose of redocked crystal 

ligand pose is 0.901 b) 3D analysis of the interactions between AChE (1EVE) and compound 5c  

b) 2D presentation of different interactions of compound 5c and 1EVE 
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Fig. 6. The proposed orientation and binding mode of compound 5c in the active site of BACE-1 

(2qp8). 
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