DOI: 10.1002/ejoc.201100177

Synthesis of 3'-S-Phosphonomethyl-Modified Nucleoside Phosphonates with a 3'-Deoxy-3'-thio-α-L-threosyl Sugar Moiety

Qiuya Huang^[a] and Piet Herdewijn*^[a]

Keywords: Medicinal chemistry / Nucleosides / Carbohydrates / Glycosylation / Biological activity / Phosphonates

The synthesis and antiviral evaluation of 3'-deoxy-3'-S-phosphonomethyl-3'-thio- α -L-threosyl nucleosides as well as the 2'-deoxy analogues related to PMDTT are described. The key transformations involved the synthesis of the 3'-deoxy-3'-thio-L-threosyl and the 2',3'-dideoxy-3'-thio-L-threosyl

derivatives by the Mitsunobu reaction. The phosphonate function was introduced by nucleophilic substitution and the glycosylation was carried out under Vorbrüggen conditions. None of these synthesized compounds showed significant in vitro activity against HIV, HCV, and RSV, or cytotoxicity.

Introduction

Nucleoside analogues with a thiosugar moiety (e.g., 4'thionucleosides^[1]) exhibit interesting biological activities, such as antibacterial,^[2] antiviral,^[3] and antitumor^[4] activity, owing to the presence of the sulfur atom in the sugar moiety. Despite the development of new synthetic strategies,^[5] practical and facile preparation of thiosugar derivatives remains a challenge for synthetic organic chemists. Nucleoside phosphonates with a phosphonomethoxy group on the sugar moiety, such as (*S*)-HPMPC,^[6] PMEA,^[7] (*R*)-PMPA,^[8] PMDTA,^[9] and d4AP,^[10] are of biological interest. Herein we describe the synthesis of thionucleoside analogues with a bioisosteric phosphonate function on the sugar moiety. To the best of our knowledge little attention has been paid to the synthesis of thionucleoside phosphonates primarily due to the synthetic challenges involved.

PMDTA analogues (Figure 1) bearing a phosphonomethoxy group at the 3'-position of the sugar moiety have been described as highly selective and potent anti-HIV agents.^[9] As part of our ongoing program exploring the properties and scope of the phosphonate linker at the 3'position of the sugar moiety in relation to antiviral activity, we replaced the 3'-phosphonomethoxy group in the PMDTA analogues with a phosphonomethylthio congener. Thus, compounds **1a**, **1b**, and **1c** (Figure 1) with a 3'-Sphosphonomethyl-modified linker related to PMDTA analogues were synthesized and evaluated for their in vitro activity against HIV, HCV, and RSV in cell assays. Compounds **1a** and **1b** were obtained by synthesis of the 3'deoxy-3'-thio-L-threosyl sugar moiety by Mitsunobu reac-

E-mail: Piet.herdewijn@rega.kuleuven.be

tion followed by introduction of the base moiety by Vorbrüggen glycosylation. Following the same strategy, the 2'-deoxygenated analogue 1c was prepared as an α and β anomeric mixture.

Figure 1. Structures of PMDTA, PMDTT, and the synthesized nucleoside phosphonates **1a–1c**.

Results and Discussion

Scheme 1 shows the synthetic strategies for obtaining the target compounds 1b and 1c by using the disconnection approach. Compounds 1b and 1c were obtained by hydrolysis of the phosphonate ester groups of 11 and 20, respectively. However, all attempts to synthesize 20 proved unsuccessful by synthetic methods such as substitution of the 3'-hydroxy group of 2'-deoxynucleoside 2a with thiol reagent 3 and thioacetic acid by Mitsunobu reaction,[11] nucleophilic substitution of 2b with the nucleophile 3 under basic conditions, and reduction of the 2'-hydroxy group of 11 by Barton deoxygenation.^[12] Compounds 11 and 20 were prepared by glycosylation of the thiosugars 7 and 19, respectively, under Vorbrüggen conditions.^[13] Compounds 7 and 19 were derived from the related compounds 5 and 17 by nucleophilic substitution after removal of the 3-S-acetyl protecting group. Introduction of the acetylthio group at the 3-position of 4 and 16 was achieved by Mitsunobu reaction giving 5 and 17, respectively, with a reverse configuration at the 3position.

[[]a] Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium Fax: +32-16-337340

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201100177.

Scheme 1. Synthetic strategies towards the target compounds 1b and 1c.

As shown in Scheme 2, nucleoside phosphonates 1a and **1b** were synthesized starting from D-xylose. 1,2-Isopropylidene-D-erythrose (4) was derived from D-xylose according to reported methods.^[14] Substitution of the free hydroxy group of 4 with thioacetic acid under Mitsunobu conditions provided compound 5 (with a reverse configuration at the 3position) in 66% yield. The acetyl protecting group of 5 was removed by treatment with 0.2 N NaOH under argon followed by lyophilization to give a yellow powder, which easily forms the disulfide by oxidative coupling upon exposure to air. The intermediate obtained was directly treated with the triflate of diisopropylphosphonomethanol and NaH in THF at -78 °C under argon to provide compound 6 (71% yield for two steps). Removal of the isopropylidene protecting group of 6 and replacement with two acetyl protecting groups gave compound 7 as an α/β anomeric mixture in 70% yield. The presence of the 2-O-acetyl group in compound 7 allowed selective introduction of the base moiety with an α configuration. The nucleobase N⁶-benzoyladenine and silvlated thymine were introduced using SnCl₄ as Lewis catalyst under Vorbrüggen glycosylation conditions (giving 8 and 9). Compounds 8 and 9 were deprotected in two steps: Removal of the benzoyl and acetyl groups with ammonia in methanol (yielding 10 and 11) followed by hydrolysis of the diisopropyl protecting groups with TMSI at room temperature. After purification by silica gel chromatography, C₁₈ reversed-phase HPLC, and Dowex sodium ion-exchange resin, nucleoside phosphonic diacids 1a and 1b were obtained as the sodium salts (63 and 54%, respectively). In an effort to obtain the 2'-deoxygenated analogues of 1a and 1b, Barton deoxygenation was attempted to remove the 2'-OH group of 10 and 11. Unfortunately, under these conditions the 3'-S-diisopropylphosphonomethyl linker was also reduced and no selectivity in the radical reduction of the 2'- or 3'-position was observed.

Scheme 2. Synthesis of target compounds 1a and 1b.

2D gHMBC NMR experiments were performed to illustrate the correct connection of the nucleobase to the sugar moiety. For compound **1a**, the gHMBC spectrum shows that the proton of C-1' of the sugar moiety is coupled to C-4 and C-8 of the adenine moiety, which proves that C-1' is linked to the N-9 of the adenine through a C-N bond. Likewise, for compound **1b**, the gHMBC spectrum shows that the proton of C-1' of the sugar moiety is coupled to C-6 of the thymine moiety, which suggests that C-1' is linked to N-1 of the thymine moiety through a C-N bond.

The 2'-deoxy analogue 1c was synthesized following the same strategy as described for 1a and 1b. We proposed to first synthesize the 2',3'-dideoxy-3'-thio-L-threosyl sugar moiety and then introduce the base moiety under Vorbrüggen glycosylation conditions. Based on this strategy, the α/β anomeric mixture of **1c** needed to be separated. As shown in Scheme 3, commercially available (S)- β -hydroxy- γ -butyrolactone (12) was used as the starting material. Protection of the free hydroxy group of 12 with a TBDPS protecting group provided compound 13. Compound 14 was obtained by selective reduction of the lactone function of 13 with DIBAL-H at -78 °C. The free 1-hydroxy group of 14 was protected with a methyl group to give 15. Removal of the TBDPS protecting group of 15 by treatment with TBAF provided 16. Substitution of the 3hydroxy group of 16 with thioacetic acid was achieved under Mitsunobu conditions to give the expected compound 17 with a reverse configuration at the 3-position. The 3-Sacetyl protecting group of 17 was cleaved by treatment with K₂CO₃ in absolute MeOH under argon. The intermediate obtained, without purification, was treated with the triflate of diisopropylphosphonomethanol and NaH in THF at -78 °C under argon to give 18. Note that, by removing the acetyl group of 17, the intermediate obtained easily forms disulfides by oxidative coupling upon exposure to air. Attempts to convert the 1-O-methyl group of 18 to a 1-Oacetyl group were not successful under acid catalysis. Gly-

FULL PAPER

cosylation of 18 with silvlated thymine under Vorbrüggen conditions (TMSOTf as Lewis catalyst) provided an α/β anomeric mixture of 20 as well as the unexpected ring-opened nucleoside 21. Note that the glycosylation reaction of 18 was not successful when using silvlated N^6 -benzoyladenine and SnCl₄ as Lewis catalyst. Unfortunately, we were unable to separate the α and β anomers of **20** by various purification methods, including preparative TLC and normal-phase (silica gel column) and reversed-phase (C_{18} column) HPLC. Hydrolysis of the diisopropyl protecting groups of the anomeric mixture 20 was achieved by treatment with TMSI at 0 °C. After purification by silica gel chromatography, reversed-phase (C₁₈ column) HPLC, and Dowex sodium ionexchange resin, the expected nucleoside phosphonic diacid 1c was obtained as an anomeric mixture in the sodium form. The gHMBC spectrum of 1c shows that the proton of C-1' of the sugar moiety of both anomers is coupled with C-6 of the thymine moiety, which suggests that C-1' is linked to the N-1 of the thymine moiety for both the α and β anomers.

Scheme 3. Synthesis of target compound 1c.

Conclusions

Starting from D-xylose, a synthetic scheme has been developed for the synthesis of 3'-S-phosphonomethyl-modified 3'-deoxy-3'-thio- α -L-threosyl nucleoside analogues 1a and 1b. Unfortunately, attempts to reduce the 2'-hydroxy group of the related nucleoside analogues under Barton deoxygenation led to loss of the 3'-S-phosphonomethyl linker of the sugar moiety. The 2'-deoxy analogue 1c with a thymine moiety was obtained as a mixture of α and β anomers. The key transformations in the synthetic scheme leading to 1c are the introduction of the acetylthio group at the sugar moiety using the Mitsunobu reaction and glycosylation with the silvlated thymine base under Vorbrüggen conditions. Unfortunately, none of the synthesized compounds (1a, 1b and 1c) shows in vitro activity against HIV, HCV, and RSV, or cytotoxicity at concentrations up to 50 µM. Thus, the replacement of the 3'-oxygen by a sulfur atom in

the 3'-phosphonomethoxy group of PMDTT results in the loss of antiviral activity. The lack of antiviral activity in these compounds could result from poor metabolic activation to the related diphosphates and/or the lack of affinity of the diphosphates towards viral polymerases (in this case, HIV RT, HCV NS5B RdRp, and RSV RNA polymerase).

Experimental Section

General: Analytical grade solvents were used for all reactions. All moisture-sensitive reactions were carried out in oven-dried glassware (135 °C) under nitrogen. Anhydrous THF was heated at reflux over sodium/benzophenone and distilled. Varian Unity 500 MHz and Gemini 300 MHz spectrometers were used for ¹H, ³¹P, and ¹³C NMR spectroscopy. 2D NMR (H,H-COSY, gHQSC, and gHMBC) was used for structural assignment of the final compounds. Exact mass measurements were performed with a quadrupole time-of-flight mass spectrometer (Q-Tof-2, Micromass, Manchester, UK) equipped with a standard electrospray ionization (ESI) interface; samples were infused in *i*PrOH/H₂O (1:1) at $3 \mu L/$ min. Precoated aluminium sheets (Fluka silica gel/TLC cards, 254 nm) were used for TLC analysis; the spots were examined under UV light and visualized with CAM (ceric ammonium molybdate) stains. Column chromatography was performed on ICN silica gel (mesh 63–200, 60 Å). For the sake of clarity, the NMR signals of sugar protons and carbon atoms are indicated with a prime and the signals of base protons and carbon atoms are given without a prime.

3-S-Acetyl-3-deoxy-1,2-O-isopropylidene-3-mercapto-B-L-threofuranose (5): DIAD (652 µL, 3.28 mmol) was added dropwise to a solution of PPh₃ (859 mg, 3.28 mmol) and compound 4 (238 mg, 1.49 mmol) in dry THF (15 mL) at 0 °C. After stirring for 30 min, a solution of thioacetic acid (233 µL, 3.28 mmol) was added dropwise to the resulting yellow suspension and the reaction mixture was continuously stirred for 3 h at 0 °C. The reaction mixture was quenched with sat. sodium hydrogen carbonate, concentrated, and partitioned between EtOAc and water. The organic layer was washed with water and brine, dried with anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by column chromatography on silica gel (EtOAc/hexane = 1:4) to afford 5 (214 mg, 0.98 mmol) in 66% yield as yellow crystals. ¹H NMR (300 MHz, [D₆]DMSO): $\delta_{\rm H}$ = 1.24 (s, 3 H, CH₃), 1.41 (s, 3 H, CH₃), 2.36 (s, 3 H, Ac CH₃), 3.73 (d, J = 10.0 Hz, 1 H, 4-H_a), 3.83 (d, J = 4.1 Hz, 1 H, 3-H), 4.16 (dd, $J_1 = 10.0$, $J_2 = 4.2$ Hz, 1 H, 4- H_b), 4.54 (d, J = 3.6 Hz, 1 H, 2-H), 5.82 (d, J = 3.6 Hz, 1 H, 1-H) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta_{\rm C}$ = 26.54 (CH₃), 26.77 (CH₃), 31.07 (Ac CH₃), 47.86 (C-3), 69.91 (C-4), 84.86 (C-2), 105.17 (C-1), 111.51 [(O)₂C(CH₃)₂], 194.83 (Ac, CO) ppm. HRMS: calcd. for C₉H₁₅O₄S [M + Na]⁺ 219.0691; found 219.0683.

3-Deoxy-3-S-(diisopropylphosphonomethyl)-1,2-*O***-isopropylidene-3-mercapto-** β **-L-threofuranose (6):** Compound **5** (160 mg, 0.735 mmol) was stirred in degassed NaOH (0.2 N, 8 mL) solution at room temperature under Ar for 7 h. The solvent was removed by lyophilization to give a white solid. A suspension of NaH (147 mg, 3.677 mmol) in dry and degassed THF (20 mL) was added to the flask with the white solid under Ar. The mixture was cooled to $-78 \,^{\circ}$ C and the triflate of diisopropylphosphonomethanol (2.941 mmol) in THF (5 mL) was added dropwise. The reaction mixture was slowly warmed to room temperature and stirred overnight. Aqueous NH₄Cl was added to quench the reaction and the

mixture was concentrated under reduced pressure. The residue was partitioned between EtOAc and H₂O, the organic layer was dried with Na₂SO₄, concentrated, and purified by column chromatography (EtOAc/hexane = 1:1) to afford 6 (185 mg, 0.522 mmol) as a colorless oil in 71% yield. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.32– 1.36 (m, 15 H, CH₃), 1.49 (s, 3 H, CH₃), 2.72 (d_{AB} , J_{AB} = 13.5, $J_{\rm P,H}$ = 13.8 Hz, 2 H, PCH₂), 3.61 (d, J = 4.5 Hz, 1 H, 3-H), 3.90 (d, J = 9.9 Hz, 1 H, 4-H_a), 4.28 (dd, $J_1 = 9.9$, $J_2 = 4.5$ Hz, 1 H, 4- H_b), 4.67 (d, J = 3.6 Hz, 1 H, 2-H), 4.70–4.81 [m, 2 H, OCH- $(CH_3)_2$, 5.93 (d, J = 3.6 Hz, 1 H, 1-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 23.93 (d, $J_{\rm P,C1}$ = 1.6 Hz, CH₃), 24.00 (d, $J_{\rm P,C}$ = 1.6 Hz, CH₃), 24.04 (d, J_{PC} = 1.6 Hz, CH₃), 24.09 (d, J_{PC} = 1.6 Hz, CH₃), 24.76 (d, J_{PC} = 150.6 Hz, PCH₂), 26.34 (CH₃), 26.70 (CH₃), 50.16 (d, J_{PC} = 3.4 Hz, C-3), 70.08 (C-4), 71.37 [d, J_{PC} = 13.6 Hz, OCH(CH₃)₂], 71.46 [OCH(CH₃)₂], 84.77 (C-2), 105.52 (C-1), 111.79 [(O)₂C(CH₃)₂] ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta_{\rm P}$ = 21.38 ppm. HRMS: calcd. for $C_{14}H_{28}O_6PS$ [M + H]⁺ 355.1344; found 355.1346.

1,2-O-Diacetyl-3-deoxy-3-S-(diisopropylphosphonomethyl)-3-mercapto-L-threofuranose (7): Compound 6 (330 mg, 0.931 mmol) in 60% acetic acid (6 mL) was heated at 80 °C under Ar for 19 h. The starting material was completely consumed. The excess acetic acid and water were evaporated in vacuo followed by co-evaporation with dry CH₃CN twice and drying in vacuo. The resulting yellow oil was dissolved in dry pyridine (8 mL) at 0 °C under N₂. Acetic anhydride (1.05 mL, 11.17 mmol) was added dropwise to this solution. The reaction mixture was slowly warmed to room temperature and continuously stirred overnight. Aqueous NH4Cl was added to quench the reaction and the mixture was concentrated and co-evaporated with toluene (10 mL \times 2) and the residue was purified by column chromatography on silica gel (EtOAc/hexane = 2:1) to give 7 (259 mg, 0.651 mmol) in 70% yield as a colorless oil containing an anomeric mixture of α and β anomers. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.32–1.34 (m, 24 H, CH₃), 2.05–2.08 (m, 12 H, Ac CH₃), 2.69 (t, *J* = 15.0 Hz, 1 H, PCH_a), 2.72 (t, *J* = 15.0 Hz, 1 H, PCH_a), 2.80 (dd, $J_1 = 15.1$, $J_2 = 12.7$ Hz, 1 H, PCH_b), 2.96 (dd, J_1 = 15.2, J_2 = 11.7 Hz, 1 H, PCH_b), 3.67–3.75 (m, 1 H, 3-H), 3.77– 3.88 [m, 3 H (3-H, 1 H), (4-H, 2 H)], 4.42-4.54 (m, 2 H, 4-H), 4.69–4.77 [m, 4 H, OCH(CH₃)₂, α and β anomer], 5.05 (dd, J_1 = 7.7, $J_2 = 4.3$ Hz, 1 H, 2-H), 5.19 (d, J = 2.0 Hz, 1 H, 2-H), 6.15 (s, 1 H, 1-H), 6.34 (d, *J* = 4.3 Hz, 1 H, 1-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 20.58 (Ac CH₃), 20.90 (Ac CH₃), 21.02 (Ac CH₃), 21.08 (Ac CH₃), 23.96 (CH₃), 24.02 (CH₃), 24.12 (CH₃), one signal of CH₃ was overlapped, 24.55 (d, $J_{P,C} = 150.4 \text{ Hz}$, PCH₂), 25.11 (d, $J_{P,C}$ = 149.8 Hz, PCH₂), 44.41 (d, $J_{P,C}$ = 3.4 Hz, C-3), 47.41 (d, J_{P,C} = 2.6 Hz, C-3), 71.21 (C-4), 71.35 (OCH₂), 71.49 (OCH₂), 71.56 (OCH₂), 71.66 (OCH₂), 73.29 (C-4), 77.49 (C-2), 82.84 (C-2), 94.39 (C-1), 100.51 (C-1), 169.54 (Ac C=O), 169.77 (Ac C=O), 169.83 (Ac C=O) ppm, one Ac C=O signal was overlapped. ³¹P NMR (121.5 MHz, CDCl₃): δ_P = 21.07, 21.53 ppm. HRMS: calcd. for $C_{15}H_{28}O_8PS$ [M + H]⁺ 399.1242; found 399.1243; calcd. for C₁₅H₂₇O₈PSNa [M + Na]⁺ 421.1062; found 421.1055.

2-*O*-Acetyl-1-(N^6 -benzoyladenin-9-yl)-3-deoxy-3-*S*-(diisopropylphosphonomethyl)-3-mercapto- α -L-threose (8): SnCl₄ (177 µL, 1.506 mmol) was added dropwise to a solution of 7 (150 mg, 0.376 mmol) and N^6 -benzoyladenine (180 mg, 0.753 mmol) in dry CH₃CN (15 mL) at room temperature under N₂. The reaction mixture was stirred for 4 h. Then the reaction was quenched with aqueous NH₄Cl and concentrated. The residue was partitioned between H₂O (10 mL) and CHCl₃ (50 mL×4). The organic layer was washed with water and brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography on a silica gel column (CH₂Cl₂/MeOH = 29:1, 19:1) to give **8** (165 mg, 0.278 mmol, 74%) as an amorphous solid. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 1.32 - 1.34$ (m, 12 H, CH₃), 2.14 (s, 3 H, Ac CH₃), 2.77 (t, J = 15.1 Hz, 1 H, PCH_a), 2.98 (dd, $J_1 = 15.3$, $J_2 = 11.6$ Hz, 1 H, PCH_b), 3.97–4.01 (m, 1 H, 3'-H), 4.27 (dd, $J_1 = 10.0, J_2 =$ 4.5 Hz, 1 H, 4'-H_a), 4.50 (dd, $J_1 = 10.0$, $J_2 = 6.7$ Hz, 1 H, 4'-H_b), 4.69–4.82 [m, 2 H, OCH(CH₃)₂], 5.81 (t, J = 2.3 Hz, 1 H, 2'-H), 6.27 (d, J = 2.2 Hz, 1 H, 1'-H), 7.39–7.60 (m, 3 H, Ar-H), 8.01– 8.08 (m, 2 H, Ar-H), 8.46 (s, 1 H, A 2-H), 8.79 (s, 1 H, A 8-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 20.81 (Ac CH₃), 23.88 (CH₃), 23.94 (CH₃), 24.03 (CH₃), 24.07 (CH₃), 24.25 (d, J_{P,C} = 150.74 Hz, PCH₂), 48.42 (d, $J_{P,C}$ = 2.2 Hz, C-3'), 71.53 [d, $J_{P,C}$ = 6.8 Hz, OCH(CH₃)₂], 71.67 [d, $J_{P,C}$ = 6.9 Hz, OCH(CH₃)₂], 73.34 (C-4'), 81.66 (C-2'), 89.29 (C-1'), 123.29 (A C-5), 128.21 (Bz C), 128.61 (Bz C), 129.85 (Bz C), 130.43 (Bz C), 141.83 (A C-8), 149.89 (A C-4), 151.61 (A C-2), 152.48 (A C-6), 165.21 (Bz C=O), 169.87 (Ac C=O) ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta_{\rm P}$ = 21.40 ppm. MS (ESI): calcd. for $C_{25}H_{33}N_5O_7PS [M + H]^+$ 578.1838; found 578.2.

2-O-Acetyl-3-deoxy-3-S-(diisopropylphosphonomethyl)-3-mercapto-**1-(thymin-1-yl)-α-L-threofuranose (9):** Thymine (103 mg, 0.816 mmol), ammonium sulfate (2.6 mg, 0.018 mmol), and HMDS (4 mL) were added to a dried flask. The mixture was heated at reflux overnight under N2. HMDS was removed in vacuo. A solution of compound 7 (130 mg, 0.326 mmol) in dried CH₃CN (16 mL) was added to the flask with the residue followed by the dropwise addition of SnCl₄ (153 µL, 1.305 mmol) at room temperature under N₂. The reaction mixture was stirred for 4 h. The reaction was then quenched with saturated aq. NH₄Cl and concentrated to a small volume. The residue was partitioned between H₂O (10 mL) and EtOAc (80 mL). The organic layer was washed with water and brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography on a silica gel column $(CH_2Cl_2/MeOH = 29:1)$ to afford 9 (128 mg, 0.267 mmol) as a colorless amorphous solid in 82 % yield. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.29–1.31 (m, 12 H, CH₃), 1.91 (s, 3 H, T CH₃), 2.08 (s, 3 H, Ac CH₃), 2.75 (t, J = 14.9 Hz, 1 H, PCH_a), 2.93 (dd, $J_1 = 15.3$, J_2 = 11.9 Hz, 1 H, PCH_b), 3.78–3.80 (m, 1 H, 3'-H), 4.10 (dd, J_1 = 10.2, $J_2 = 2.6$ Hz, 1 H, 4'-H_a), 4.30 (dd, $J_1 = 10.2$, $J_2 = 6.2$ Hz, 1 H, 4'-H_b), 4.65–4.78 [m, 2 H, OCH(CH₃)₂], 5.24 (s, 1 H, 2'-H), 5.95 (d, J = 2.6 Hz, 1 H, 1'-H), 7.43 (s, 1 H, T 6-H), 9.44 (br., 1 H, NH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 12.58 (T CH₃), 20.84 (Ac CH₃), 23.90 (CH₃), 23.96 (CH₃), 24.04 (CH₃), 24.09 (CH₃), 24.36 (d, $J_{P,C}$ = 150.4 Hz, PCH₂), 48.54 (d, $J_{P,C}$ = 2.6 Hz, C-3'), 71.42 [d, $J_{P,C} = 7.2 \text{ Hz}$, OCH(CH₃)₂], 71.61 [OCH(CH₃)₂], 72.72 (C-4'), 81.56 (C-2'), 90.19 (C-1'), 111.06 (T C-5), 135.87 (T C-6), 150.52 (T C-2), 163.92 (T C-4), 170.0 (Ac C=O) ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta_P = 21.40$ ppm. MS (ESI): calcd. for $C_{18}H_{30}N_2O_8PS [M + H]^+$ 465.146; found 465.2.

1-(Adenin-9-yl)-3-deoxy-3-S-(diisopropylphosphonomethyl)-3-mercapto-α-L-threofuranose (10): A solution of 8 (330 mg, 0.557 mmol) in methanol saturated with ammonia (15 mL) was stirred at room temperature for 7 h. The mixture was concentrated and the residue was purified by chromatography on a silica gel column (CH₂Cl₂/ MeOH = 19:1 and 9:1) to afford 10 (215 mg, 0.481 mmol) as a white powder in 86% yield. ¹H NMR (300 MHz, [D₆]DMSO): $\delta_{\rm H}$ = 1.25-1.27 (m, 12 H, CH₃), 3.05 (s, 1 H, PCH_a), 3.09 (s, 1 H, PCH_b), 3.59–3.66 (m, 1 H, 3'-H), 4.11 (t, J = 8.8 Hz, 1 H, 4'-H_a), 4.30 (dd, $J_1 = 8.3$, $J_2 = 8.0$ Hz, 1 H, 4'-H_b), 4.59–4.65 [m, 2 H, $OCH(CH_3)_2$], 4.82 (d, J = 6.1 Hz, 1 H, OH), 5.81 (d, J = 4.6 Hz, 1 H, 2'-H), 6.06 (d, J = 4.9 Hz, 1 H, 1'-H), 7.29 (br., 2 H, NH₂), 8.15 (s, 1 H, A 2-H), 8.35 (s, 1 H, A 8-H) ppm. ¹³C NMR (75 MHz, $[D_6]DMSO$): $\delta_C = 23.66$ (d, $J_{P,C} = 146.11$ Hz, PCH₂), 24.13 (CH₃), 24.20 (CH₃), 24.26 (CH₃), 24.31 (CH₃), 49.18 (d, J_{P,C} = 4.5 Hz, C-3'), 70.86 [OCH(CH₃)₂], 70.95 [OCH(CH₃)₂], 72.20 (C-4'), 78.69

FULL PAPER

(C-2'), 90.07 (C-1'), 119.76 (A C-5), 140.50 (A C-8), 149.71 (A C-4), 153.05 (A C-2), 156.55 (A C-6) ppm. ³¹P NMR (121.5 MHz, [D₆]DMSO): $\delta_{\rm P}$ = 22.52 ppm. HRMS: calcd. for C₁₆H₂₇N₅O₅PS [M + H]⁺ 432.1470; found 432.1476.

3-Deoxy-3-S-(diisopropylphosphonomethyl)-3-mercapto-1-(thymin-1-yl)-α-L-threofuranose (11): A solution of 9 (195 mg, 0.406 mmol) in methanol saturated with ammonia (10 mL) was stirred at room temperature for 7 h. The mixture was concentrated and the residue was purified by chromatography on a silica gel column (CH2Cl2/ MeOH = 29:1 and 9:1) to afford 11 (143 mg, 0.327 mmol) as a white powder in 80% yield. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.33–1.34 (m, 12 H, CH₃), 1.92 (s, 3 H, T CH₃), 2.72 (dd, $J_1 =$ 15.2, $J_2 = 12.5$ Hz, 1 H, PCH_a), 2.89 (dd, $J_1 = 14.8$, $J_2 = 13.9$ Hz, 1 H, PCH_b), 3.59–3.66 (m, 1 H, 3'-H), 3.98 (dd, $J_1 = 8.8$, $J_2 =$ 7.9 Hz, 1 H, 4'-H_a), 4.39–4.46 [m, 2 H (4'-H_b, 1 H), (2'-H, 1 H)], 4.70–4.81 [m, 2 H, OCH(CH₃)₂], 5.73 (d, J = 4.3 Hz, 1 H, 1'-H), 7.23 (s, 1 H, T 6-H), 9.93 (br., 1 H, NH) ppm. $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 12.52 (T CH₃), 23.89 (d, $J_{\rm P,C}$ = 3.3 Hz, CH₃), 23.96 (d, $J_{P,C} = 2.7$ Hz, CH₃), 23.99 (d, $J_{P,C} = 3.8$ Hz, CH₃), 24.07 (d, $J_{P,C}$ = 3.6 Hz, CH₃), 25.01 (d, $J_{P,C}$ = 151.73 Hz, PCH₂), 50.41 (C-3'), 71.84 [d, $J_{P,C}$ = 7.0 Hz, OCH(CH₃)₂], 72.13 [d, $J_{P,C}$ = 6.9 Hz, OCH(CH₃)₂], 72.17 (C-4'), 81.52 (C-2'), 92.81 (C-1'), 110.73 (T C-5), 136.26 (T C-6), 151.02 (T C-2), 164.15 (T C-4) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ_P = 22.32 ppm. HRMS: calcd. for C₁₆H₂₈N₂O₇PS [M + H]⁺ 423.1354; found 423.1346.

1-(Adenin-9-yl)-3-deoxy-3-mercapto-3-S-(phosphonomethyl)-α-Lthreofuranose Sodium Salt (1a): Iodotrimethylsilane (93 µL, 0.681 mmol) was added to a solution of compound 10 (38 mg, 0.085 mmol) and Et₃N (116 µL, 0.851 mmol) in dry CH₂Cl₂ (8 mL) at room temperature under nitrogen. The reaction mixture was continuously stirred for 2 h. The reaction was quenched with 0.5 M TEAB solution. The mixture was concentrated in vacuo and the residue was purified by chromatography on a silica gel column $(CH_2Cl_2/MeOH = 3:1 \text{ and } CHCl_3/MeOH: H_2O = 5:4:1)$ to give crude 1a. Purification by HPLC using a reversed-phase C18 column (isocratic mobile phase: 1% MeCN and 99% H₂O) and ion exchange with Dowex Na⁺ resin offered 1a (21 mg, 0.053 mmol) as a colorless solid after lyophilization in 63% yield. ¹H NMR (500 MHz, D₂O): $\delta_{\rm H}$ = 2.76 (d_{AB}, $J_{\rm AB}$ = 13.9, $J_{\rm P,H}$ = 13.8 Hz, 2 H, PCH₂), 3.71 (dt, $J_{3',2'} = 6.1$, $J_{3',4'} = 7.4$ Hz, 1 H, 3'-H), 4.21 (dd, $J_1 = 9.5, J_2 = 7.4$ Hz, 1 H, 4'-H_a), 4.56 (dd, $J_1 = 9.5, J_2 = 7.5$ Hz, 1 H, 4'-H_b), 4.83 (dd, $J_{2',1'}$ = 4.8, $J_{2',3'}$ = 6.0 Hz, 1 H, 2'-H), 6.02 (d, J = 4.6 Hz, 1 H, 1'-H), 8.21 (s, 1 H, A 2-H), 8.37 (s, 1 H, A 8-H) ppm. ¹³C NMR (125 MHz, D₂O): $\delta_{\rm C}$ = 26.53 (d, $J_{\rm P,C}$ = 132.7 Hz, PCH₂), 48.87 (d, J_{P,C} = 6.3 Hz, C-3'), 72.05 (C-4'), 78.68 (C-2'), 89.20 (C-1'), 118.51 (A C-5), 140.09 (A C-8), 148.37 (A C-4), 152.41 (A C-2), 155.17 (A C-6) ppm. ³¹P NMR (121.5 MHz, D_2O): $\delta_P = 16.11$ ppm. HRMS: calcd. for $C_{10}H_{13}N_5O_5PS$ $[M - H]^{-346.0375}$; found 346.0381.

3-Deoxy-3-S-(phosphonomethyl)-3-mercapto-1-(thymin-1-yl)-α-L-threofuranose Sodium Salt (1b): This compound was prepared as described for **1a** using **11** (68 mg, 0.152 mmol) as the starting material and iodotrimethylsilane (166 μL, 1.218 mmol). Compound **1b** (31 mg, 0.082 mmol) was obtained as a colorless solid after lyophilization in 54% yield. ¹H NMR (500 MHz, D₂O): $\delta_{\rm H}$ = 1.90 (d, *J* = 1.2 Hz, 3 H, T CH₃), 2.73 (d_{AB}, *J*_{AB} = 13.9, *J*_{P,H} = 13.8 Hz, 2 H, PCH₂), 3.61 (dt, *J*_{3',2'} = 6.2, *J*_{3',4'} = 7.3 Hz, 1 H, 3'-H), 4.15 (dd, *J*₁ = 9.5, *J*₂ = 7.2 Hz, 1 H, 4'-H_a), 4.43 (dd, *J*_{2',1'} = 4.8, *J*_{2',3'} = 6.0 Hz, 1 H, 2'-H), 4.47 (dd, *J*₁ = 9.5, *J*₂ = 7.4 Hz, 1 H, 4'-H_b), 5.80 (d, *J* = 4.8 Hz, 1 H, 1'-H), 7.61 (d, *J* = 1.1 Hz, 1 H, T 6-H) ppm. ¹³C NMR (125 MHz, D₂O): $\delta_{\rm C}$ = 11.11 (T CH₃), 26.43 (d, *J*_{P,C} = 132.9 Hz, PCH₂), 48.68 (d, *J*_{P,C} = 6.3 Hz, C-3'), 72.23

(C-4'), 78.51 (C-2'), 91.04 (C-1'), 110.85 (T C-5), 137.58 (T C-6), 151.43 (T C-2), 166.24 (T C-4) ppm. ³¹P NMR (121.5 MHz, D₂O): $\delta_{\rm P}$ = 16.03 ppm. HRMS: calcd. for C₁₀H₁₄N₂O₇PS [M – H]⁻ 337.0260; found 337.0253.

(S)-β-(tert-Butyldiphenylsiloxy)-γ-butyrolactone (13): tert-Butyldiphenyl(chloro)silane (7.8 mL, 30 mmol) was added dropwise to a solution of (S)- β -hydroxy- γ -butyrolactone (12; 2.04 g, 20 mmol) and imidazole (2.72 g, 40 mmol) in dry DMF (20 mL) at 0 °C. The reaction mixture was warmed to room temperature, stirred overnight, and concentrated. The residue was partitioned between H₂O (20 mL) and EtOAc (100 mL). The organic layer was washed with water and brine, dried with anhydrous Na₂SO₄, and concentrated in vacuo. The residue was crystallized in *n*-hexane to afford 13 (5.98 g, 17.4 mmol) as a white solid in $87\,\%$ yield. 1H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.06 (s, 9 H, CH₃), 2.49 (d, J = 4.5 Hz, 2 H, 2-H), 4.13-4.22 (m, 2 H, 4-H), 4.53-4.58 (m, 1 H, 3-H), 7.37-7.46 (m, 6 H, Ar-H), 7.60-7.62 (m, 4 H, Ar-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 19.11 [SiC(CH₃)₃], 26.85 (CH₃), 38.00 (C-2), 69.14 (C-3), 75.73 (C-4), 128.13 (Ar C), 130.33 (Ar C), 132.83 (Ar C), 132.96 (Ar C), 135.67 (Ar C), 135.71 (Ar C), 175.68 (C-1, C=O) ppm. HRMS: calcd. for $C_{20}H_{25}O_3Si [M + H]^+ 341.1573$; found 341.1576.

3-O-(tert-Butyldiphenylsilyl)-2-deoxy-D-erythrofuranose (14): A 1.2 м solution of diisobutylaluminium hydride (14.5 mL, 17.43 mmol) in toluene was slowly added dropwise to a solution of 13 (4.96 g, 14.53 mmol) in dry THF (45 mL) at -78 °C under argon. The reaction mixture was stirred at -78 °C until the starting material was completely consumed (TLC, 5 h). Methanol (2 mL) was slowly added to quench the reaction at -78 °C. The cooling bath was removed, a saturated aq. sodium potassium tartrate solution (40 mL) and EtOAc (150 mL) were added, and the mixture was stirred vigorously for 3 h. The organic layer was washed with water and brine, dried with anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography on a silica gel column (*n*-hexane/EtOAc = 4:1) to afford **14** (4.56 g, 13.22 mmol) as an anomeric mixture of β and α anomers as a colorless oil in 91% yield. ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.05 (s, 9 H, CH₃, minor), 1.08 (s, 9 H, CH₃, major), 1.84-1.91 (m, 1 H, 2-H_a, major), 1.92–2.02 (m, 1 H, 2-H_a, minor), 2.08 (d, J = 13.5 Hz, 1 H, 2-H_b, major), 2.57 (d, J = 2.7 Hz, 1 H, 2-H_b, minor), 3.67 (dd, $J_1 = 9.7, J_2 = 3.9$ Hz, 1 H, 4-H_a, major), 3.74 (dd, $J_1 = 9.2, J_2 =$ 2.6 Hz, 1 H, 4-H_a, minor), 3.89 (dd, J₁ = 9.2, J₂ = 4.7 Hz, 1 H, 4-H_b, minor), 3.93 (d, J = 11.3 Hz, 1 H, OH, major), 4.05–4.09 (m, 1 H, 4-H_b, major), 4.10 (d, J = 7.1 Hz, 1 H, OH, minor), 4.43–4.46 (m, 1 H, 3-H, major), 4.55–4.61 (m, 1 H, 3-H, minor), 5.39 (dd, J₁ = 11.4, J₂ = 4.9 Hz, 1 H, 1-H, major), 5.65 (t, J = 2.6 Hz, 1 H, 1-H, minor), 7.37–7.47 (m, 12 H, Ar-H, α + β anomer), 7.62–7.67 (m, 8 H, Ar-H, α + β anomer) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 19.06 [SiC(CH_3)_3], 19.17 [SiC(CH_3)_3], 27.00 (CH_3), 42.46 (C-$ 2), 43.55 (C-2), 72.92 (C-3), 73.45 (C-3), 74.28 (C-4), 75.74 (C-4), 98.97 (C-1), 99.49 (C-1), 127.85 (Ar C), 128.06 (Ar C), 129.91 (Ar C), 130.24 (Ar C), 132.82 (Ar C), 132.92 (Ar C), 135.80 (Ar C), 135.84 (Ar C) ppm. HRMS: calcd. for $C_{20}H_{26}O_3SiNa [M + Na]^+$ 365.1549; found 365.1556.

3-*O*-(*tert*-**Butyldiphenylsilyl)-2-deoxy-1-***O*-**methyl-D**-**erythrofuranose** (15): Compound 14 (270 mg, 0.786 mmol) was dissolved in a 0.01 M solution of hydrogen chloride in MeOH (2.5 mL) and the reaction mixture was stirred for 2 h. Et₃N was added to neutralize the excess acid and the mixture was concentrated in vacuo and purified by chromatography on a silica gel column (EtOAc/*n*-hexane = 1:29) to give 15 (277 mg, 0.77 mmol) in 98% yield as an anomeric mixture (2.3:1). ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.05 (s, 18 H, CH₃,

Eurjoc Gomis Chamit

α + β anomer), 1.85–1.99 (m, 2 H, 2-H_a, α + β anomer), 2.04–2.20 (m, 2 H, 2-H_b, α + β anomer), 3.27 (s, 3 H, OCH₃, major), 3.36 (s, 3 H, OCH₃, minor), 3.71–3.77 (m, 4 H, 4-H, α + β anomer), 4.31–4.37 (m, 1 H, 3-H, minor), 4.53–4.56 (m, 1 H, 3-H, major), 4.86 (dd, $J_1 = 5.7$, $J_2 = 2.5$ Hz, 1 H, 1-H, minor), 5.11 (dd, $J_1 = 5.3$, $J_2 = 2.3$ Hz, 1 H, 1-H, major), 7.34–7.42 (m, 12 H, Ar-H, α + β anomer), 7.62–7.64 (m, 8 H, Ar-H, α + β anomer) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_C = 19.16$ [SiC(CH₃)₃], 19.20 [SiC(CH₃)₃], 26.96 (CH₃), 41.70 (C-2), 42.79 (C-2), 55.00 (OCH₃), 55.03 (OCH₃), 71.90 (C-3), 72.36 (C-4), 72.85 (C-3), 73.97 (C-4), 104.97 (C-1), 105.39 (C-1), 127.83 (Ar C), 129.87 (Ar C), 133.88 (Ar C), 133.91 (Ar C), 133.97 (Ar C), 135.77 (Ar C), 135.79 (Ar C), 135.83 (Ar C) ppm. HRMS: calcd. for C₂₁H₂₉O₃SiNa [M + Na]⁺ 357.1886; found 357.1882.

2-Deoxy-1-O-methyl-D-erythrofuranose (16): A 1.0 M solution of TBAF (9.8 mL, 9.78 mmol) in THF was added dropwise to a solution of 15 (7.0 g, 19.58 mmol) in dry THF (100 mL) at 0 °C. The reaction mixture was stirred at room temperature for 0.5 h and concentrated under reduced pressure. The residue was purified by chromatography on a silica gel column (EtOAc/n-hexane = 2: 1) to give 16 (1.74 g, 14.68 mmol) in 75% yield as an anomeric mixture (5.4:1). ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 2.02–2.13 (m, 4 H, 2-H, α + β anomer), 3.34 (s, 3 H, OCH₃, major), 3.37 (s, 3 H, OCH₃, minor), 3.77 (dd, $J_1 = 9.8$, $J_2 = 1.1$ Hz, 1 H, 4-H_a, major), 3.90 (dd, $J_1 = 9.8$, $J_2 = 4.1$ Hz, 1 H, 4-H_b, major), 3.95–3.97 (m, 1 H, 4-H_a, minor), 4.02 (dd, $J_1 = 9.8$, $J_2 = 4.7$ Hz, 1 H, 4-H_b, minor), 4.32-4.35 (m, 1 H, 3-H, minor), 4.49-4.53 (m, 1 H, 3-H, major), 5.06 (d, J = 4.1 Hz, 1 H, 1-H, minor), 5.15 (dd, $J_1 = 4.8$, $J_2 =$ 3.2 Hz, 1 H, 1-H, major) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 41.41 (C-2), 42.76 (C-2), 54.88 (OMe), 55.15 (OMe), 71.16 (C-3), 71.47 (C-3), 73.80 (C-4), 76.54 (C-4), 105.02 (C-1), 105.11 (C-1) ppm. HRMS: calcd. for C₅H₁₀O₃Na [M + Na]⁺ 141.0528; found 141.0526.

3-S-Acetyl-2,3-dideoxy-3-mercapto-1-O-methyl-L-threofuranose (17): DIAD (5.0 mL, 25.39 mmol) was added dropwise to a solution of PPh₃ (6.66 g, 25.3 mmol) and compound 16 (1.36 g, 11.54 mmol) in dry THF (60 mL) at 0 °C under Ar. After stirring for 30 min at the same temperature a solution of thioacetic acid (1.8 mL, 25.39 mmol) was added dropwise to the resulting yellow suspension and the reaction mixture was continuously stirred for 3 h at 0 °C. The reaction mixture was guenched with saturated sodium hydrogen carbonate, concentrated, and partitioned between EtOAc and water. The organic layer was washed with water and brine, dried with anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by column chromatography on silica gel (EtOAc/n-hexane = 1:19) to afford a crude product, which was diluted with *n*-hexane. The precipitate was removed by filtration and the filtrate was evaporated to dryness to obtain pure 17 (1.58 g, 8.88 mmol) in 77% yield as an anomeric mixture (3.3:1). ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.81–1.88 (m, 1 H, 2-H_a, major), 1.92–2.00 (m, 1 H, 2-H_a, minor), 2.31 (s, 6 H, CH₃, α + β anomer), 2.45–2.59 (m, 2 H, 2-H_b, α + β anomer), 3.33 (s, 3 H, OCH₃, minor), 3.35 (s, 3 H, OCH₃, major), 3.66 (dd, $J_1 = 9.0$, J_2 = 6.8 Hz, 1 H, 4-H_a, major), 3.71 (dd, J_1 = 9.4, J_2 = 4.3 Hz, 1 H, 4-H_a, minor), 3.91–4.01 (m, 1 H, 3-H, major), 4.08–4.12 (m, 1 H, 3-H, minor), 4.26 (dd, $J_1 = 9.4$, $J_2 = 6.5$ Hz, 1 H, 4-H_b, minor), 4.28 (dd, $J_1 = 9.0$, $J_2 = 7.4$ Hz, 1 H, 4-H_b, major), 5.04 (dd, $J_1 =$ 5.2, $J_2 = 1.5$ Hz, 1 H, 1-H, major), 5.08 (d, J = 1.8 Hz, 1 H, 1-H, minor) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 30.39 (Me), the two Me signals overlapped, 38.54 (C-2), 38.87 (C-2), 38.92 (C-3), 40.08 (C-3), 54.93 (OMe), 55.06 (OMe), 72.21 (C-4), 72.43 (C-4), 104.62 (C-1), 104.69 (C-1), 196.00 (Ac C=O) ppm, one Ac C=O signal was obscured by the noise. HRMS: calcd. for $C_7H_{12}O_3SNa$ [M + Na]⁺ 199.0405; found 199.0409.

2,3-Dideoxy-3-S-(diisopropylphosphonomethyl)-3-mercapto-1-Omethyl-L-threofuranose (18): K₂CO₃ (69 mg, 0.5 mmol) was added to a solution of 17 (71 mg, 0.4 mmol) in dry and degassed MeOH (3 mL) under Ar. The reaction mixture was stirred for 5 h. The volatiles were removed under high vacuum and exchanged with Ar (to avoid the formation of the disulfide by carrying out the reaction and following work-up under an inert atmosphere). The resulting residue was charged with dried and degassed THF under Ar and NaH (24 mg, 0.6 mmol) was added at -30 °C. The reaction mixture was stirred for 10 min. The triflate of (diisopropylphosphono) methanol (397 mg, 1.2 mmol) was added to this suspension at -30 °C under Ar. The reaction mixture was stirred at the same temperature for 1 h. The reaction was quenched with a saturated NaHCO₃ solution and extracted with EtOAc (\times 2). The organic phases were washed with water and brine, dried with anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by chromatography on a silica gel column (EtOAc/n-hexane = 1:1 and 3:2) to give 18 (38 mg, 0.12 mmol) in 30% yield as an anomeric mixture (4.3:1). ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 1.33–1.35 (m, 24 H, CH₃, α + β anomer), 1.78–1.87 (m, 2 H, 2-H_a, α + β anomer), 2.49–2.58 (m, 2 H, 2-H_b, α + β anomer), 2.69 (d, J = 1.3 Hz, 1 H, PCH_a, minor), 2.71 (s, 1 H, PCH_a, major), 2.74 (d, J = 1.2 Hz, 1 H, PCH_b, minor), 2.75 (s, 1 H, PCH_b, major), 3.32 (s, 3 H, OMe, minor), 3.35 (s, 3 H, OMe, major), 3.50–3.59 (m, 2 H, 3-H, $\alpha + \beta$ anomer), 3.67 (t, J = 8.6 Hz, 1 H, 4-H_a, major), 3.76–3.82 (m, 1 H, 4-H_a, minor), 4.17 (dd, $J_1 = 8.3$, $J_2 = 7.5$ Hz, 1 H, 4-H_b, major), 4.29-4.31 (m, 1 H, 4-H_b, minor), 4.72-4.78 [m, 4 H, OCH(CH₃)₂, $\alpha + \beta$ anomer], 5.02 (dd, $J_1 = 5.4$, $J_2 = 2.1$ Hz, 1 H, 1-H, major), 5.07 (d, J = 5.2 Hz, 1 H, 1-H, minor) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 24.05 (Me), 24.11 (Me), 24.15 (Me), 24.20 (Me), 25.01 (d, $J_{P,C}$ = 150.1 Hz, PCH₂), 25.37 (d, $J_{P,C}$ = 149.9 Hz, PCH₂), 39.94 (C-2), 40.29 (C-2), 41.46 (d, $J_{\rm P,C}$ = 3.5 Hz, C-3), 42.38 (d, $J_{P,C}$ = 4.2 Hz, C-3), 54.81 (OMe), 55.00 (OMe), 71.29 [OCH-(CH₃)₂], 71.33 [OCH(CH₃)₂], 71.38 [OCH(CH₃)₂], 71.42 [OCH(CH₃)₂], 71.79 (C-4), 72.15 (C-4), 105.04 (C-1) ppm, the two signals of C-1 overlapped. ³¹P NMR (121.5 MHz, CDCl₃): $\delta_{\rm P}$ = 21.72, 21.93 ppm. HRMS: calcd. for C₁₂H₂₆O₅PS [M + H]⁺ 313.1238; found 313.1241.

2,3-Dideoxy-3-S-(diisopropylphosphonomethyl)-3-mercapto-1-(thymin-1-yl)-L-threofuranose (20): Thymine (63 mg, 0.5 mmol), ammonium sulfate (1.6 mg, 0.012 mmol), and HMDS (3 mL) were added to a dried flask. The mixture was heated at reflux overnight under Ar and then HMDS was removed in vacuo. A solution of 18 (62 mg, 0.2 mmol) in dry DCE (8 mL) was added to the flask with the residue followed by dropwise addition of TMSOTf (120 µL, 0.6 mmol) at room temperature under Ar. The reaction mixture was stirred for 0.5 h. The reaction was quenched with cold saturated NaHCO₃ and extracted with CHCl₃ (\times 2). The organic layer was washed with H₂O and brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography on a silica gel column ($CH_2Cl_2/MeOH = 50:1$) to give 20 (25 mg, 0.06 mmol) in 30% yield as an anomeric mixture (2:1). ¹H NMR (300 MHz, MeOD): $\delta_{\rm H}$ = 1.32–1.35 (m, 24 H, CH₃, α + β anomer), 1.88–1.89 (m, 6 H, T CH₃, α + β anomer), 2.00–2.09 (m, 1 H, 2'-H_a, minor), 2.30-2.39 (m, 1 H, 2'-H_a, major), 2.46-2.55 (m, 1 H, 2'-H_b, major), 2.77–2.87 (m, 1 H, 2'-H_b, minor), 2.92 (s, 1 H, PCH_a, major), 2.93 (d, J_{P,H} = 13.9 Hz, 1 H, PCH_a, minor), 2.96 (s, 1 H, PCH_b, major), 2.97 (d, $J_{P,H}$ = 13.8 Hz, 1 H, PCH_b, minor), 3.78–3.90 [m, 3 H (3'-H, 2 H, α + β anomer), (4'-H_a, 1 H, major)], 4.09 (dd, $J_1 = 9.3$, $J_2 = 5.4$ Hz, 1 H, 4'-H_a, minor), 4.21 (dd, $J_1 = 9.3$, $J_2 = 6.4$ Hz, 1 H, 4'-H_b, minor), 4.51 (dd, $J_1 = 8.7$, $J_2 = 5.8$ Hz, 1 H, 4'-H_b, major), 4.66–4.75 [m, 4 H, OCH(CH₃)₂, $\alpha + \beta$ anomer], 5.99 (dd, $J_1 = 6.8$, $J_2 = 5.2$ Hz, 1 H, 1'-H, minor), 6.08 (dd, $J_1 = 6.7$, $J_2 = 4.8$ Hz, 1 H, 1'-H, major), 7.44 (d, J =1.2 Hz, 1 H, T 6-H, major), 7.60 (d, J = 1.2 Hz, 1 H, T 6-H, minor) ppm. ¹³C NMR (75 MHz, MeOD): $\delta_{\rm C}$ = 12.47 (T CH₃, major), 12.56 (T CH₃, minor), 24.26 (Me), 24.32 (Me), 24.36 (Me), 24.41 (Me), 25.25 (d, J_{P,C} = 150.1 Hz, PCH₂, major), 25.59 (d, J_{P,C} = 149.6 Hz, PCH₂, minor), 39.79 (C-2', minor), 39.83 (C-2', major), 43.92 (d, $J_{P,C}$ = 4.1 Hz, C-3', major), 44.10 (d, $J_{P,C}$ = 4.4 Hz, C-3', minor), 73.28 [OCH(CH₃)₂, major], 73.37 $[OCH(CH_3)_2, minor]$, the two signals of $OCH(CH_3)_2$ overlapped, 75.29 (C-4', minor), 75.58 (C-4', major), 87.95 (C-1', minor), 88.12 (C-1', major), 111.14 (T C-5, minor), 111.49 (T C-5, major), 137.86 (T C-6, major), 138.01 (T C-6, minor), 152.42 (T C-2), 166.49 (T C-4) ppm, the signals of C-2 and C-4 of the thymine moiety were obscured by noise. ³¹P NMR (121.5 MHz, MeOD): $\delta_P = 22.72$, 22.84 ppm. HRMS: calcd. for $C_{16}H_{28}N_2O_6PS [M + H]^+ 407.1405$; found 407.1411.

2,3-Dideoxy-3-mercapto-3-S-(phosphonomethyl)-1-(thymin-1-yl)-Lthreofuranose (1c): Iodotrimethylsilane (612 µL, 4.5 mmol) was added to a solution of compound 20 (183 mg, 0.45 mmol) and Et₃N (3 mL, 21.64 mmol) in dry CH₂Cl₂ (25 mL) at 0 °C under nitrogen. The reaction mixture was continuously stirred for 3.5 h. The reaction was guenched with a 0.5 M TEAB solution. The mixture was concentrated at room temperature in vacuo and the residue was purified by chromatography on a silica gel column $(CH_2Cl_2/MeOH = 9:1 \text{ and } CHCl_3/MeOH/H_2O = 5:4:1)$ to give crude 1c. Purification by HPLC using a reversed-phase C18 column (isocratic mobile phase: 1% MeCN and 99% H₂O) and ion exchange with Dowex Na⁺ resin offered 1c (75 mg, 0.205 mmol) as a colorless solid after lyophilization in 45% yield as an anomeric mixture (α/β). ¹H NMR (600 MHz, D₂O): $\delta_{\rm H}$ = 1.89 (s, 3 H, T CH₃, major), 1.91 (s, 3 H, T CH₃, minor), 2.04 (ddd, J₁ = 13.5, J₂ = 6.4, $J_3 = 6.4$ Hz, 1 H, 2'-H_a, minor), 2.42 (ddd, $J_1 = 13.9$, $J_2 = 6.7$, J_3 = 6.7 Hz, 1 H, 2'-H_a, major), 2.52 (ddd, J_1 = 13.9, J_2 = 7.2, J_3 = 4.8 Hz, 1 H, 2'-H_b, major), 2.69 (d_{AB}, J_{P,H} = 14.1 Hz, 2 H, PCH₂, minor), 2.70 (d_{AB}, J_{P,H} = 14.3 Hz, 2 H, PCH₂, major), 2.85 (ddd, $J_1 = 14.4, J_2 = 7.3, J_3 = 7.3$ Hz, 1 H, 2'-H_b, minor), 3.74–3.77 (m, 1 H, 3'-H, minor), 3.77–3.82 (m, 1 H, 3'-H, major), 3.91 (dd, J₁ = 9.3, $J_2 = 5.8$ Hz, 1 H, 4'-H_a, major), 4.07 (dd, $J_1 = 9.0$, $J_2 = 6.3$ Hz, 1 H, 4'-H_a, minor), 4.28 (dd, $J_1 = 9.1$, $J_2 = 6.6$ Hz, 1 H, 4'-H_b, minor), 4.51 (dd, $J_1 = 9.3$, $J_2 = 6.2$ Hz, 1 H, 4'-H_b, major), 6.08 (dd, $J_1 = 6.5$, $J_2 = 6.2$ Hz, 1 H, 1'-H, minor), 6.17 (dd, $J_1 = 6.3$, $J_2 = 5.2$ Hz, 1 H, 1'-H, major), 7.51 (s, 1 H, T 6-H, major), 7.71 (s, T 6-H, minor) ppm. ¹³C NMR (150 MHz, D_2O): $\delta_C = 11.12$ (T CH₃, major), 11.16 (T CH₃, minor), 26.89 (d, J_{P,C} = 158.3 Hz, PCH₂, major), 27.07 (d, J_{P,C} = 158.1 Hz, PCH₂, minor), 37.22 (C-2', minor), 37.34 (C-2', major), 41.63 (d, $J_{PC} = 8.4$ Hz, C-3', minor), 41.91 (d, J_{P,C} = 8.8 Hz, C-3', major), 73.64 (C-4', minor), 74.02 (C-4', major), 86.15 (C-1', minor), 86.53 (C-1', major), 110.70 (two signals overlapped, T C-5), 137.23 (T C-6, major), 137.46 (T C-6, minor), 151.14 (T C-2, major), 151.23 (T C-2, minor), 166.21 (two signals overlapped, T C-4) ppm. ³¹P NMR (121.5 MHz, D_2O): $\delta_P = 14.42$, 14.49 ppm. HRMS: calcd. for $C_{10}H_{14}N_2O_6PS \ [M - H]^- 321.0310$; found 321.0322.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra of 1-20 and HPLC spectra of 1a-1c.

Acknowledgments

We are indebted to Dr. Richard L. Mackman (Gilead Sciences) for helpful discussions and for providing the antiviral data and to Gilead Sciences for financial support. We are grateful to Prof. Roger Busson for assignments of 2D NMR spectra, Prof. Jef Rozenski for recording HRMS spectra, and Luc Baudemprez for running the 2D NMR experiments. We are grateful to the Katholieke Universiteit Leuven for financial support (GOA/10/13). Chantal Biernaux is acknowledged for her excellent editorial help.

- For recent reviews dealing with 4'-thionucleosides, see: a) M. Yokoyama, Synthesis 2000, 12, 1637–1655; b) P. Gunaga, H. R. Moon, W. J. Choi, D. H. Shin, J. G. Park, L. S. Jeong, Curr. Med. Chem. 2004, 11, 2585–2637; c) M. Yokoyama, in: Modified Nucleosides in Biochemistry, Biotechnology and Medicine (Ed.: P. Herdewijn), Wiley-VCH, Weinheim, Germany, 2008, pp. 173–221.
- [2] a) M. Bobek, R. L. Whistler, A. Bloch, J. Med. Chem. 1970, 13, 411–413; b) M. Bobek, R. L. Whistler, A. Bloch, J. Med. Chem. 1972, 15, 168–171; c) R. G. S. Ritchie, W. A. Sazrek, J. Chem. Soc., Chem. Commun. 1973, 686–687.
- a) M. R. Dyson, P. L. Coe, R. T. Walker, J. Med. Chem. 1991, [3] 34, 2782–2786; b) J. A. Secrist III, R. M. Riggs, K. N. Tiwari, J. A. Montgomery, J. Med. Chem. 1992, 35, 533-538; c) L. S. Jeong, R. F. Schinazi, J. W. Beach, H. O. Kim, K. Shanmuganathan, S. Nampalli, M. W. Chun, W. K. Chung, B. G. Choi, C. K. Chu, J. Med. Chem. 1993, 36, 2627-2638; d) G. Rassu, P. Spanu, L. Pinna, F. Zanardi, G. Casiraghi, Tetrahedron Lett. 1995, 36, 1941-1944; e) S. G. Rahim, N. Trivedi, M. V. Bogunovic-Batchelor, G. W. Hardy, G. Mills, J. W. Selway, W. Snowden, E. Littler, P. L. Coe, I. Bsnak, R. F. Whale, R. T. Walker, J. Med. Chem. 1996, 39, 789-795; f) J. A. Miller, A. W. Pugh, G. M. Ullah, Tetrahedron Lett. 2000, 41, 3265-3268; g) H. Kumamoyo, T. Nakai, K. Haraguchi, K. T. Nakamura, H. Tanaka, M. Baba, Y. C. Cheng, J. Med. Chem. 2006, 49, 7861-7867; h) Z. Gu, B. Allard, J. M. De Muys, J. Lippens, R. F. Rando, N. Nguyen-Ba, C. Ren, P. McKenna, D. L. Taylor, R. C. Bethell, Antimicrob. Agents Chemother. 2006, 50, 625-631.
- [4] a) J. A. Secrist III, K. N. Tiwari, J. M. Riordan, J. A. Montgomery, J. Med. Chem. 1991, 34, 2361–2366; b) K. N. Tiwari, L. Cappellacci, J. A. Montgomery, J. A. Secrist III, Nucleosides Nucleotides Nucleic Acids 2003, 22, 2161–2170.
- For representative synthetic strategies for thionucleosides, see: [5] a) M. R. Dyson, P. L. Coe, R. T. Walker, Carbohydr. Res. 1991, 216, 237-248; b) C. Leydier, L. Bellon, J. L. Barascut, J. Deydier, M. Georges, P. Helene, A. E. Moulay, J. L. Imbach, Nucleosides Nucleotides 1994, 13, 2035-2050; c) B. Tber, N. Fahmi, G. Ronco, P. Villa, D. F. Ewing, G. Mackenzie, Carbohydr. Res. 1995, 267, 203-215; d) K. S. Jandu, D. L. Selwood, J. Org. Chem. 1995, 60, 5170-5173; e) Y. Yoshimura, K. Kitano, H. Satoh, M. Watanabe, S. Miura, S. Sakata, T. Sasaki, A. Matsuda, J. Org. Chem. 1997, 62, 3140-3152; f) K. Haraguchi, A. Nishikawa, E. Sasakura, H. Tanaka, K. T. Nakamura, T. Miyasaka, Tetrahedron Lett. 1998, 39, 3713-3716; g) J. A. Secrist III, K. N. Tiwari, A. T. Shorynacy-Fowler, L. Messini, J. Riordan, J. A. Montgomery, J. Med. Chem. 1998, 41, 3865-3871; h) L. S. Jeong, H. Y. Moon, Y. J. Choi, M. W. Chun, H. O. Kim, J. Org. Chem. 1998, 63, 4821-4825; i) M. E. Jung, O. Kretschik, J. Org. Chem. 1998, 63, 2975-2981; j) J. Wirsching, J. Voss, Eur. J. Org. Chem. 1999, 64, 691-696; k) Y. Choi, H. Choo, Y. Chong, S. Lee, S. Olgen, R. F. Schinzai, C. K. Chu, Org. Lett. 2002, 4, 305-307.
- [6] a) E. De Clercq, A. Holy, I. Rosenberg, T. Sakuma, J. Balzarini, P. C. Maudgal, *Nature* 1986, 323, 464–467; b) M. Baba, S. Mori, S. Shigeta, E. De Clercq, *Antimicrob. Agents Chemother*. 1987, 31, 337–339.
- [7] R. Pauwels, J. Balzarini, D. Schols, M. Baba, J. Desmyter, I. Rosenberg, A. Holy, E. De Clercq, *Antimicrob. Agents Chem*other. **1988**, 32, 1025–1030.

- [8] J. Balzarini, A. Holy, J. Jindrich, L. Naesens, R. Snoeck, D. Schols, E. De Clercq, *Antimicrob. Agents Chemother.* 1993, 37, 332–338.
- [9] T. Wu, M. Froeyen, V. Kempeneers, C. Pannecouque, J. Wang, R. Busson, E. De Clercq, P. Herdewijn, J. Am. Chem. Soc. 2005, 127, 5056–5065.
- [10] a) C. U. Kim, B. Y. Luh, J. C. Martin, J. Org. Chem. 1991, 56, 2642–2647; b) R. L. Mackman, C. G. Boojamra, V. Prasad, L. Zhang, K. Y. Lin, O. Petrakovsky, D. Babusis, J. Chen, J. Douglas, D. Grant, H. C. Hui, C. U. Kim, D. Y. Markevitch, J. Vela, A. Ray, T. Cihlar, *Bioorg. Med. Chem. Lett.* 2007, 17, 6785–6789.
- [11] K. C. K. Swamy, N. N. B. Kumar, E. Balaraman, K. V. P. P. Kumar, *Chem. Rev.* 2009, 109, 2551–2651.
- [12] D. H. R. Barton, D. Crich, A. Loebberding, S. Z. Zard, *Tetra*hedron **1986**, 42, 2329–2338.
- [13] H. Vorbrüggen, C. Ruh-Pohlenz (Eds.), Handbook of Nucleoside Synthesis, John Wiley & Sons, 2001.
- [14] a) J. Moravcová, J. Čapková, J. Staněk, *Carbohydr. Res.* 1994, 263, 61–66; b) S. Cruz-Gregorio, L. Hernandez, M. Vargas, L. Quintero, F. Sartillo-Piscil, *J. Mex. Chem. Soc.* 2005, 49, 20– 23; c) L. Hernandez-Garcia, L. Quintero, M. Sanchez, F. Sartillo-Piscil, *J. Org. Chem.* 2007, 72, 8196–8201.

Received: February 8, 2011 Published Online: May 20, 2011