
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Copper-Catalyzed Three-Component Reactions of 2-Iodo-
2,2-difluoroacetophenones, Alkynes, and Trimethylsilyl
Cyanide
Pingjie Wu,[a] Cheng Zheng,[a] Xia Wang,[a] Jingjing Wu,*[a, b] and Fanhong Wu*[a]

A Cu(I)-catalyzed three-component reaction of 2-iodo-2,2-
difluoroacetophenones, alkynes, and TMSCN is described. The
reaction provided a facile method for the synthesis of
difluoroacyl-substituted nitriles, which might be served as
potentially useful fluoroorganic intermediates for further trans-
formation in drug discovery. This method has broad substrate
scope, good efficiency, and excellent stereoselectivity. Prelimi-
nary mechanistic investigation indicated that a radical-mediated
process was involved in this cyanodifluoroalkylation reaction.

Difluoromethylene compounds have been widely used in
medicinal chemistry and agrochemistry due to that the
difluorinated moieties could significantly enhance their lip-
ophilicity, metabolic stability, and bioavailability.[1] Therefore,
substantial efforts have been made on the development of
difluoroalkylation reactions for the construction of α,α-difluor-
oketone molecules.[2] In a general way, the difluoroalkylation
methods mainly include metal-mediated cross-coupling reac-
tions of difluoroalkylated reagents with halogenated aromatic
hydrocarbons, or olefins,[3] and radical addition reactions of
difluoroalkylated reagents with unsaturated hydrocarbons,[4]

etc.
As we know, alkynes were vital industrial raw materials, and

their excellent performance in functionalization was widely
concerned.[5] Among them, the difunctionalization of alkynes for
the synthesis of organofluorine compounds via three-compo-
nent reactions has made significant advancements.[6] Liang et al.
reported a novel method for the synthesis of fluoroalkylated
alkenes through palladium-catalyzed three-component reac-
tions with alkynes, ethyl difluoroiodoacetate, and arylboronic
acids.[6a] In 2017, Zhao’s group disclosed a palladium-catalyzed
reaction of alkynes with diphenylphosphine oxides and ethyl
difluoroiodoacetate, providing an attractive approach for the
formation of (E)-γ,γ-difluoroalkenylphosphines oxides.[6b] Sub-

sequently, Zhu et al. and Zhang et al. independently reported
the palladium-catalyzed difunctionalization of alkynes with
ethyl difluoroiodoacetate and B2pin2.

[6c,d] A Pd (0)-catalyzed
three-component reactions of 2-iodo-2,2-difluoroacetophe-
nones, alkynes, and arylboronic acids was also reported by our
group. The application of more difluoroalkylation reagents will
facilitate the development of synthetic approaches for varieties
of useful fluoroalkylated compounds.[6e]

In addition, nitriles are versatile organic intermediates,[7]

which can be easily converted into other functional organic
compounds with potential applications such as ketones,
carboxylic acids, amides and triazoles etc. Despite the impor-
tance of nitriles in the field of organic synthesis, the develop-
ment of concise approaches to fluorine-containing nitriles
remains a challenging task. Liang’s group reported the synthesis
of β-trifluoromethylated acrylonitriles via copper-catalyzed
difunctionalization of alkynes with Togni reagent and trimeth-
ylsilyl cyanide (TMSCN).[8] They next disclosed a copper powder-
mediated reaction with ethyl difluoroiodoacetate, alkynes, and
TMSCN for the synthesis of β-difluoroalkylated acrylonitriles.[9] In
2019, Bao’s group has developed a copper-catalyzed cyanoper-
fluoroalkylation of alkynes with perfluoroalkyl iodides and
TMSCN to produce a variety of perfluoroalkylated
cyanoalkenes.[10] In recent years, our group has utilized RCOCF2I
as difluoroalkylating reagents and employed them in different
reactions for the construction of diverse difluoroacyl
alkenes.[6e,11] With our continued interest in the introduction of
the difluoroacyl group synchronously with other functional
groups into alkynes, herein, we reported a copper-catalyzed
reaction of 2-iodo-2,2-difluoroacetophenones, alkyne, and
trimethylsilyl cyanide (TMSCN) that achieves cyanodifluoroalky-
lation of simple abundant alkynes with high stereoselectivity via
multicomponent radical cascade process (Scheme 1).

In our initial investigation, the reaction of 2-iodo-2,2-
difluoroacetophenone 1 a, phenylacetylene 2 a with TMSCN was
chosen as a model reaction to optimize the reaction conditions.
The reaction was conducted in anhydrous MeOH at 70 °C with
lauryl peroxide (LPO) as the radical initiator, and L1 as the
ligand catalyzed by Cu(CH3CN)4BF4 under the nitrogen (Table 1,
entry 1). As expected, results showed that the desired difluor-
oalkyl-substituted acrylonitrile 3 aa was observed in 73% GC
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https://doi.org/10.1002/ejoc.202001650 Scheme 1. Synthesis of difluoroacyl-substituted nitriles catalyzed by copper.
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yield. Unfortunately, the byproduct 4 was also formed from the
reaction in a 19% GC yield. Encouraged by this preliminary
observation, we attempted to improve the reaction efficiency
and to exclude the generation of the byproduct 4 by optimizing
the reaction conditions. Among the copper-metal catalysts
tested, Cu(CH3CN)4PF6 was found to be the best catalyst
(Table 1, entries 2–7), giving the compound 3 aa in a raising
83% yield and 4 in only 8% (Table 1, Entry 7). The desired
product 3 aa was obtained in lower yields when AIBN or ABVN
was used as a radical initiator instead of LPO in the reaction
(Table 1, entries 8 and 9). Other solvents such as CH3CN, DMSO,
CH3COCH3 and DMF showed inferior results (Table 1, entries 10–
13). The yield of 3 aa was decreased when L2–L7 were tested as
alternative ligands (Table 1, entries 14–19). Increasing or
decreasing the equivalent of LPO did not improve the yield of
3 aa (Table 1, entries 22 and 23). Ultimately, the optimized
conditions for the generation of 3 aa were determined as 2-
iodo-2,2-difluoroacetophenone 1 a (1.0 equiv), phenylacetylene

2 a (1.5 equiv) with TMSCN (2.0 equiv) in the presence of
Cu(CH3CN)4PF6 (10 mol%), L1 (20 mol%), and LPO (2.5 equiv) in
MeOH (1.0 mL) at 70 °C for 5 h (Table 1, entry 7). Additional
control experiments confirmed that copper-metal catalyst, L1,
and LPO were all crucial for this reaction (Table 1, entries 22–
24).

With the optimized reaction conditions in hand, we next
evaluated the substrate scope of the reaction by employing
structurally varied 2-iodo-2,2-difluoroacetophenones. As shown
in Table 2, aryl 2-iodo-2,2-difluoroketones bearing electron-
donating or -withdrawing groups are all compatible to deliver
cyanodifluoroalkylation products (3 aa–3 ja) in moderate to
excellent yields. The substrates containing electron-withdrawing
groups give a relatively low yield. Substituent groups were
tolerated at the para- and meta- positions of the benzene ring
(3 ba–3 da, 3 ha). Unfortunately, the ortho-substituent sub-
strates failed to give the desired products. Furthermore, 2-iodo-
2,2-difluoroacetophenones derived from heterocyclic arenes,
such as thiophene 1 i, reacted smoothly with 2 a to afford the
compound 3 ia in excellent yield. Pleasingly, we found that the
reaction with 1,1-difluoro-1-iodo-4-phenylbutan-2-one 1 k and
2 a proceeded well to provide 4,4-difluoro-5-oxo-2,7-diphenyl-
hept-2-enenitrile 3 ka with a high yield of 81%. When ethyl
iododifluoroacetate was used as the substrate, the desired
compound 3 la was not achieved, instead, the compound 3 ma
was obtained through a transesterification reaction.

Secondly, we examined the reaction scope with respect to
the alkyne component by using 1 a as the fluoroalkyl reagent
(Table 3). These alkynes all proceeded efficiently under the
optimized reaction conditions to furnish the corresponding
products (3 ab–3 ap) in moderate to good yields with excellent

Table 1. Optimization of the reaction conditions for cyanodifluoroalkyla-
tion of alkynes.[a]

Entry Cat. Ligand Initiator Solvent Yield[b][%] of
3aa/4

1 Cu(CH3CN)4BF4 L1 LPO CH3OH 73/19
2 CuTc L1 LPO CH3OH 70/18
3 CuI L1 LPO CH3OH 62/24
4 CuBr L1 LPO CH3OH 63/22
5 CuOAc L1 LPO CH3OH 59/27
6 CuBr2 L1 LPO CH3OH 59/26
7 Cu(CH3CN)4PF6 L1 LPO CH3OH 83/8
8 Cu(CH3CN)4PF6 L1 AIBN CH3OH 27/56
9 Cu(CH3CN)4PF6 L1 ABVN CH3OH 32/54
10 Cu(CH3CN)4PF6 L1 LPO CH3CN 68/16
11 Cu(CH3CN)4PF6 L1 LPO DMSO 34/60
12 Cu(CH3CN)4PF6 L1 LPO CH3COCH3 52/36
13 Cu(CH3CN)4PF6 L1 LPO DMF 50/38
14 Cu(CH3CN)4PF6 L2 LPO CH3OH 61/27
15 Cu(CH3CN)4PF6 L3 LPO CH3OH 57/31
16 Cu(CH3CN)4PF6 L4 LPO CH3OH 58/29
17 Cu(CH3CN)4PF6 L5 LPO CH3OH 62/24
18 Cu(CH3CN)4PF6 L6 LPO CH3OH 55/35
19 Cu(CH3CN)4PF6 L7 LPO CH3OH 60/24
20[c] Cu(CH3CN)4PF6 L1 LPO CH3OH 81/10
21[d] Cu(CH3CN)4PF6 L1 LPO CH3OH 80/9
22[e] – L1 LPO CH3OH trace
23[f] Cu(CH3CN)4PF6 – LPO CH3OH trace
24[g] Cu(CH3CN)4PF6 L1 – CH3OH trace

[a] Reaction conditions: 1a (0.2 mmol, 1.0 equiv), 2a (0.3 mmol, 1.5 equiv),
TMSCN (0.4 mmol, 2.0 equiv), initiator (0.5 mmol, 2.5 equiv), cat. [Cu]
(10 mol%), ligand (20 mol%), solvent (1.0 mL), at 70 °C, 5 h, under N2.
[b] GC yields. [c] LPO (0.4 mmol, 2.0 equiv). [d] LPO (0.6 mmol, 3.0 equiv).
[e] Without Cu(CH3CN)4PF6 catalyst. [f] Without L1 ligand. [g] Without LPO
initiator.

Table 2. Substrate scope of 2-iodo-2,2-difluoroacetophenones.[a,b]

[a] Reaction conditions: 1 (0.3 mmol, 1.0 equiv), 2a (0.45 mmol, 1.5 equiv),
TMSCN (0.6 mmol, 2.0 equiv), LPO (0.75 mmol, 2.5 equiv), Cu(CH3CN)4PF6

(10 mol%), L1 (20 mol%), MeOH (1.5 mL), at 70 °C, 5 h, under N2.
[b] Isolated yields.
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stereoselectivity. The aryl acetylenes bearing electron-withdraw-
ing substituents gave lower yield than those with electron-
donating groups, including Me (3 ab, 3 af), n� C2H5 (3 ac), t� Bu
(3 ad), n� C5H11 (3 ae), OMe (3 ah), Ph (3 am) at the para- or
meta- position on the phenyl ring. Furthermore, halogen-
containing substrates turned out to be operational reactants,
yielding the acrylonitrile products (3 ag, 3 aj–3 al) with good
efficiency. Interestingly, 2- or 3-ethynylthiophene derivatives
(2 n, 2 o) reacted extremely well to provide corresponding
products 3 an and 3 ao, and even, 2-ethynylthiophene afforded
4,4-difluoro-5-oxo-5-phenyl-2-(thiophen-2-yl) pent-2-enenitrile
(3 an) in 79% yield. Notably, the satisfactory yield of the
difluoroalkyl-substituted acrylonitrile 3 ap was observed in this
case when ethynylcyclohexene was subjected to the three-
component reaction.

The NOESY experiment was offered to provide the data for
the determination of the stereochemistry of compound 3 aa
(See Supporting Information). The spectrum shows that there is
no correlation between hydrogen in C=C bond and hydrogen
in benzene ring, which means that compound 3 aa is mainly in
E-configuration. Furthermore, a second signal appears next to
the main product in almost all the 19F NMR-spectra, which
might show that the Z-isomer of the desired compound is also
obtained. The ratio of the two isomers of the cyanodifluoroalky-
lated products 3 is showed in table 2 and table 3 according to
the 19F NMR-spectra.

A reduction reaction was performed to demonstrate the
synthetic utility of the cyanofluoroalkylation products. The
reaction between compound 3 aa and DIBAL proceeded
smoothly to afford the reduced product 5 a in 52% yield
(Scheme 2).

Several control experiments were designed to interrogate
the reaction mechanism. The reaction was completely sup-
pressed when the radical scavenger 2,2,6,6-tetramethyl-1-oxy-
lpiperidine (TEMPO) was added under the standard conditions,
which indicates that a radical path might be involved in the
process (Scheme 3a). No desired product 3 aa was detected in
the absence of LPO (Scheme 3b). Furthermore, the adduct
product 4 was used to react with TMSCN under the standard
reaction conditions. However, the cyanodifluoroalkylation prod-
uct 3 aa was not obtained, and an almost quantitative yield of 4
was recovered. These results suggested that the possibility of 4
as the reaction intermediate was precluded (Scheme 3c).

On the basis of the control experiments above and previous
literature reports,[12] a plausible reaction mechanism is proposed
similar to Bao’s report (Scheme 4).[10] First, LPO reacted with
L1Cu(I) catalyst (A) to form an undecyl radical and an L1Cu(II)
complex (B), which undergoes a ligand exchange with TMSCN
to produce an L1Cu(II)CN species (C). Subsequently, the undecyl
radical reacts with 2-iodo-2,2-difluoroacetophenones through a
radical relay process to afford a benzoyldifluoroalkyl radical
(RCOCF2·), which immediately attacks an alkyne to generate a
vinyl radical intermediate. Finally, the active copper (II) species
(C) reacts with the vinyl radical to produce the desired three-
component products and the regenerated L1Cu(I) species (A).

In summary, we have reported a Cu(I)-catalyzed three-
component reaction of 2-iodo-2,2-difluoroacetophenones, al-

Table 3. Substrate scope of alkynes.[a,b]

[a] Reaction conditions: 1a (0.3 mmol, 1.0 equiv), 2 (0.45 mmol, 1.5 equiv),
TMSCN (0.6 mmol, 2.0 equiv), LPO (0.75 mmol, 2.5 equiv), Cu(CH3CN)4PF6

(10 mol%), L1 (20 mol%), MeOH (1.5 mL), at 70 °C, 5 h, under N2.
[b] Isolated yields.

Scheme 2. The reaction between compound 3 aa and DIBAL.

Scheme 3. Mechanistic studies.
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kynes, and TMSCN for the synthesis of difluoroacyl-substituted
nitriles, which could be served as important synthons in organic
synthesis. The present method offers several advantages
including broad fluorinated substrate scope, good yields of
products, and excellent stereoselectivity. Preliminary mechanis-
tic investigation indicated that a radical-mediated process was
involved in this cyanodifluoroalkylation reaction.
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