Synthesis and Evaluation of Novel Pyrimido-Acridone, -Phenoxadine, and -Carbazole as Topoisomerase II Inhibitors

Junichi Kamata, ${ }^{*, 1)}$ Toshimi Okada, ${ }^{1)}$ Yoshihiko Kotake, Jun Nijuma, Katsuji NaKamura, Toshimitsu Uenaka, Atsumi Yamaguchi, Kappei Tsukahara, Takeshi Nagasu, Nozomu Koyanagi, Kyosuke Kitoh, Kentaro Yoshimatsu, Hiroshi Yoshino, and Hiroyuki Sugumi
Tsukuba Research Laboratories, Eisai Co. Ltd.; 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Received March 10, 2004; accepted June 23, 2004; published online June 25, 2004

Abstract

As part of a series of studies to discover new topoisomerase II inhibitors, novel pyrimidoacridones, pyrimidophenoxadines, and pyrimidocarbazoles were synthesized, and in vitro and in vivo antitumor activities and DNA-protein and/or DNA-topoisomerase II cross-linking activity as an indicator of topoisomerase II-DNA cleavable complex formation were evaluated. The pyrimidocarbazoles possessed high in vitro and in vivo potencies. Compound 26 (ER-37326), 8-acetyl-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione, showed in vitro growth inhibitory activity with respective IC_{50} values of $0.049 \mu_{\mathrm{M}}$ and $0.35 \mu_{\mathrm{M}}$ against mouse leukemia P388 and human oral cancer KB. In vivo, this compound inhibited the tumor growth of mouse sarcoma M5076 implanted into mice with T/C values of 42% and 13% at 3.13 and $6.25 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$ respectively without significantly affecting the body weight. In addition, compound 26 (ER-37326) increased the formation of DNAtopoisomerase II cross-linking in P388 cells.

Key words topoisomerase II inhibitor; cleavable complex; solid tumor; pyrimidocarbazole

Topoisomerase II (Topo II)-inhibiting antineoplastic agents, such as etoposide and doxorubicin are among the most effective antitumor drugs currently available for the treatment of human cancers. ${ }^{2-6)}$ These agents are shown to induce the accumlation of DNA-topo II cleavable complex (cleavable complex) which causes tumor cell death. ${ }^{7}$)

Etoposide (1), an extensively used clinical topo II inhibitor elicits significant antitumor activity against a wide variety of neoplasms, including germ cell malignancies, small cell lung cancer (SCLC), non-Hodgkin's lymphomas, leukemias, Kaposi's sarcoma, neuroblastoma and soft-tissue sarcomas. ${ }^{2,3)}$ Use of etoposide and cisplatin (or carboplatin) is the standard therapy for patients with SCLC. ${ }^{4)}$ Doxorubicin is a topo II inhibitor with various activities such as nuclear helicase inhibitory activity ${ }^{8)}$ and free-radical formation activity. ${ }^{9)}$ Doxorubicin is a primary drug for the treatment of patients with lymphomas, breast cancer and sarcomas. ABVD (doxorubicin, bleomycin, vinblastine and dacarbazine) and CHOP (cyclophosphamide, doxorubicin and prednisone) are used as the standard therapy for advanced Hodgkin's lymphoma and intermediate-grade non-Hodgkin's lymphoma, respectively. ${ }^{5,6)}$

However, these drugs are not used as therapeutics for commonly occurring solid tumors such as non-small-cell lung cancer (NSCLC), colon cancer, gastric cancer and pancreatic cancer.

Continuous effort is being made to apply topo II inhibitors for the treatment of various solid tumors. Amurubicin, ${ }^{10,11)}$ launched on the market in Japan in 2002, shows efficacy against NSCLC and SCLC. Several topo II inhibitors are currently under clinical studies against solid tumors. ${ }^{12-14)}$
Amonafide (3), ${ }^{15}$ which is the basis of our drug design in this program, is also a topo II inhibitor on which intensive clinical studies were conducted in the mid 1990s. In 2003, a phase study was launched in the United States to evaluate amonafide as a potential therapeutic for solid tumors. ${ }^{16)}$

The objective of our study is to create a structurally novel topo II inhibitor effective against various solid tumors such as NSCLC, colon, gastric and pancreatic cancers.

This paper describes our medicinal chemistry program which leads to the discovery of a novel pyrimidocarbazole compound 26 (ER37326) with high in vitro and in vivo potencies.

Chemistry

The structures of synthesized compounds for biological evaluation are presented in Table 1. The synthesis of pyrimidoacridones 6-10 is summarized in Chart 1. The amides 30a-c were prepared from corresponding 9-oxoacridan-4carboxylic acids 29a-c. ${ }^{17,18)}$ Compounds 29a-c were treated with N, N^{\prime}-carbodiimidazole (CDI) in dimethylformamide (DMF) followed by N, N-dimethylethylenediamine to

Fig. 1.

Chart 1. Synthesis of Pyrimidoacridones

Reagents (a) $\mathrm{AcONa}, \mathrm{EtOH}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (c) CDI, DMF, RNH_{2}; (d) 1) NEt_{3}, ClCOOEt, $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2$) $\mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}, \mathrm{AcOH}, \mathrm{MeOH}$; (e) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine

Chart 2. Synthesis of Pyrimidophenoxadines
produce amide 30a-c respectively. Cyclization of 30a-c provided 6, ${ }^{19}$ 31b and 31c respectively. Cyclization of 30a and 30b was carried out by treatment with sodium hydride followed by ethyl chloroformate, instead of the use of phosgene as previously reported in the synthesis of $6 .{ }^{19)}$ Cyclization of $\mathbf{3 0} \mathbf{c}$ was conducted by using Hunig's base and ethyl chloroformate.

The 5- or 9-nitro derivatives 31b and 31c were hydrogenated into the amino derivatives 7 and 9 , which were then acetylated with acetic anhydride to yield acetylamino derivatives $\mathbf{8}$ and $\mathbf{1 0}$ respectively. Ring opening reaction on $\mathbf{8}$ by potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ was carried out to provide 27.

The synthesis of pyrimidophenoxazines 11 and 12 (Chart 2) involved the coupling reaction of 1-chloro-2,4-dinitrobenzene and 3-hydroxyanthranilic acid in the presence of sodium acetate to yield 2-(2,4-dinitrophenylamino)-3-hydroxy benzoic acid 34 . Cyclization of $\mathbf{3 4}$ was conducted in a similar manner to the reported procedure for the synthesis of 7-nitro-10H-phenoxazine. ${ }^{20)}$ Compound 34 was heated in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to give 7-nitro- 10 H -phenoxazine-1-carboxylic acid 35. Then 35 was treated with CDI followed by N, N-dimethylethylenediamine to produce amide 36 which was cyclized in the presence of triethylamine and ethyl chloroformate and then hydrogenated into the amino derivative 11 before acetylation to acetylamino derivative 12 .

The syntheses of pyrimidocarbazoles 13-26 and $\mathbf{2 8}$ are shown in Charts 3-6. As shown in Chart 3, 9 H -carbazole-1carboxylic acid 39a was synthesized by slight modification of the reported procedure. ${ }^{21)}$

Fisher cyclization reaction of cyclohexanone and 2-hydrazino benzoic acid hydrochloride in acetic acid (AcOH) under reflux yielded 5,6,7,8-tetrahydro-9 H -carbazole-1-carboxylic acid in one pot, which was aromatized by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to $9 H$-car-bazole-1-carboxylic acid 39a. Treatment of the 39a with potassium nitrate in sulfuric acid afforded the crude mixture of the mono-nitro regio isomers $\mathbf{3 9 b}$ and $39 \mathbf{c}$, and then the mixture was amidated to afford the mixture of 40 b and 40 c . Compounds 40b and 40c were isolated by separation with silica gel $\left(\mathrm{SiO}_{2}\right)$ column chromatography. Each of them was cyclized into pyrimidocarbazoles 42b and 42c by treatment with sodium hydride followed by ethyl chloroformate. They were converted into amino and acetylamino derivatives 14 17 in a manner similar to the synthesis of pyrimidoacridones.

The 8-aminopyrimidocarbazole derivative $\mathbf{1 4}$ and its free base 44b were used as key intermediates to produce various 8 -substituted derivatives (Charts 3, 4). Compound $\mathbf{1 4}$ was mesylated with methanesulfonic anhydride to yield 22. Compound 25 was prepared from 44b by acylation with n-butyryl chloride. 44b was diazotized, and then hydrolyzed in the presence of CuI and $\mathrm{Cu}_{2} \mathrm{O}$ to give hydroxy derivative 19 , which was converted into methoxy derivative $\mathbf{2 0}$ with sodium hydride and methyl iodide. Compound 23 was prepared by heating 44b with 2,5-dimethoxy-tetrahydrofuran in AcOH .
As shown in Chart 5, 8-methyl derivative $\mathbf{1 8}$ was prepared by the Fisher cyclization reaction of 4-methylcyclohexanone and 2-hydrazino benzoic acid hydrochloride followed by the same procedure for the synthesis of $\mathbf{1 3}$.

Reagents (a) 1) AcOH , 2) DDQ , Toluene; (b) $\mathrm{KNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$; (c) CDI, DMF, RNH_{2}
(d) $\mathrm{NaH}, \mathrm{ClCOOEt}, \mathrm{DMF}$; (e) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (latm), AcOH with or without 1 N HCl
(f) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine or methanesulfonic anhydride, pyridine or $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Chart 3. Synthesis of Pyrimidocarbazoles (I)

Reagents (a) 2,5-dimethoxytetrahydrofuran, AcOH ;
(b) $\mathrm{NaNO}_{2}, \mathrm{Cu}_{2} \mathrm{O}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$; (c) $\mathrm{NaH}, \mathrm{MeI}, \mathrm{DMF}$

Chart 4. Synthesis of Pyrimidocarbazoles (II)

Reagents (a) 1) 4-methylcyclohexanone, AcOH ; 2) DDQ , Toluene;
(b) 1) CDI, $\mathrm{RNH}_{2}, \mathrm{DMF} ; 2$ 2) NaH, ClCOOEt, DMF;

Chart 5. Synthesis of Pyrimidocarbazoles (III)

Friedel-Craft reaction of $\mathbf{3 9 a}$ with acetic anhydride or n butyryl chloride in the presence of AlCl_{3} gave the desired 8acylated products 46 a and $\mathbf{4 6 b}$ respectively almost exclusively (Chart 6). Compounds 46a and 46b were converted into 26 and 24 in a similar manner described above.

Results and Discussion

The results of in vitro growth inhibitory activity against murine leukemia P388 and human oral cancer KB and DNAprotein cross-linking formation activity of compounds 6-28 and reference compounds are presented in Table 1 and Fig. 2. DNA-protein cross-linking formation is considered to be an indicator for the ability of a compound to stabilize the cleavable complex of the compound, DNA, and topo II.

The results of the in vivo activity of selected compounds against P388 and M5076 are shown in Table 2 and Table 3 respectively.

At the commencement of our program, we evaluated in vitro growth inhibitory activities of amonafide (3), N -acetylamonafide (4) and unsubstituted 1,8 -naphthalic imide (5) to examine the importance of the amino substituent of amonafide and the acetylamino substituent of N -acetylamonafide. Amonafide and N-acetylamonafide showed higher in vitro growth inhibitory activities than the unsubstituted 1,8-naphthalic imide (5) (Table 1).

Based on the above results of the amino and acetylamino substituent playing a key role in their activities, we designed and synthesized compounds ($\mathbf{7 - 1 0}$) with pyrimidoacridone chromophore ${ }^{19,22)}$ bearing the amino or acetylamino substituent on 5- or 9-position. Compound 6, previously reported by Antonini et al. ${ }^{19)}$ was also prepared and evaluated. In comparison to $\mathbf{6}$, compounds $\mathbf{8}$ and $\mathbf{1 0}$ showed almost equal activities in the in vitro P388 model and higher activities in vitro KB model.

Compounds 6, 8, 10 were evaluated in the in vivo P388 model (Table 2). Compound $\mathbf{8}$ showed the most potent activity among them with a maximum increase in lifespan (ILS) of $>125 \%$ at $25 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$.

The superiority of $\mathbf{8}$ over $\mathbf{6}$ in their activities in vivo P388 could be attributed to the higher activity of $\mathbf{8}$ in the DNAprotein cross-linking formation activities than 6 .
As we found an active compound $\mathbf{8}$ in in vivo P388 model, this compound was evaluated in in vivo solid tumor model M5076 which is a more appropriate model for screening

Reagents (a) $\mathrm{Ac}_{2} \mathrm{O}$ or $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COCl}, \mathrm{AlCl}_{3}, \mathrm{CHCl}_{3}$
(b) CDI, RNH, DMF, (c) NaH, ClCOOEt, DMF

Chart 6. Synthesis of Pyrimidocarbazoles (IV)

Table 1. In Vitro Growth Inhibition and DNA-Protein Cross-Linking Formation

No.	Form	R_{1}	R_{2}	In vitro growth inhibition $\mathrm{IC}_{50}(\mu \mathrm{M})^{\text {a }}$		DNA-protein cross linking ${ }^{b)}$
				P388	KB	
6	A	H	H	0.98	4.4	+ (2) ${ }^{\text {c }}$
7	A	NH_{2}	H	5.4	4.6	+ (2)
8	A	AcNH	H	0.86	1.5	$++(10)$
9	A	H	NH_{2}	63	22	++(10)
10	A	H	AcNH	0.85	0.70	$+++(10)$
11	B	NH_{2}	H	0.078	0.13	++(10)
12	B	AcNH	H	0.073	0.085	$+++(10)$
13	C	H	H	0.11	0.12	$+++(2)$
14	C	NH_{2}	H	0.032	0.15	++(2)
15	C	AcNH	H	0.078	0.28	$+++(10)$
16	C	H	NH_{2}	0.011	0.075	$+++(2)$
17	C	H	AcNH	0.015	0.068	$+++(2)$
18	C	Me	H	0.13	0.54	++(10)
19	C	OH	H	0.020	0.13	++(2)
20	C	OMe	H	0.51	0.29	++(2)
21	C	NO_{2}	H	0.29	1.1	$++(10)$
22	C	$\mathrm{MeSO}_{2} \mathrm{NH}$	H	0.13	0.26	$++(2)$
23	C	1-Pyrrolyl	H	0.43	0.43	$+++(10)$
24	C	n-Butyryl	H	0.038	0.19	$+++(10)$
25	C	n-Pentanoylamino	H	0.018	0.17	$+++(10)$
$26^{\text {d }}$	C	Acetyl	H	0.049	0.35	$++(10)$
$27^{\text {e) }}$		-		22	12	$+(10)$
$28^{\text {f }}$		-		9.4	5.6	$\mathrm{n} . \mathrm{d}^{\text {g }}$)
Etoposide (1)				$0.16 \pm 0.01^{h)}$	$0.25 \pm 0.01^{h)}$	$+++(50)$
mAMSA (2)				0.044 ± 0.013^{i}	0.10 ± 0.05^{i}	i)
Amonafide (3)				0.28	1.4	$+++(10)$
Acetylamonafide (4)				0.75	2.4	$+++(50)$
$5^{k)}$				0.93	5.7	$++(50)$

$a, b)$ See experimental. c) The dose $(\mu \mathrm{m})$ at which maximum DNA-protein cross-linking was detected are indicated. As for the classification of,,++++++ , see experimental. d) ER-37326. e) See Chart 1 for structure. f) See Chart 6 for structure. g) No data. h) SEM for 73 times of experiments. i) SEM for 2 times of experiments. j) mAMSA was used as the reference compound. See experimental. k) N, N-Dimethylaminoethyl 1,8 -naphthalic imide. See Fig. 1 for structure.
compounds effective against solid tumors. As a result, compound $\mathbf{8}$ also showed good efficacy in in vivo M5076 model with 18\% T/C (Table 3).

While 8 was attractive because of its efficacy, it indicated significant body weight loss in mice, (relative body weight (RBW) on day 7 was 0.78 .), with chemical instability even under neutral condition, ${ }^{23)}$ which is an unwanted property as a drug.

Many anticancer topo II inhibitors, such as amonafide, amsacrine, doxorubicin, and ellipticine ${ }^{24)}$ contain a planer chro-
mophore which can intercalate into the DNA helix. Since we speculated that these pyrimidoacridones are included in this class of intercalative topo II inhibitors, replacement of the acridone portion by other planer tricyclic chromophore was considered to be possible. Therefore we thought to explore other planer chromophores to improve the biological potency and chemical stability.

Thus the novel pyrimidophenoxadines 11, $\mathbf{1 2}$ and pyrimidocarbazoles 13-26 were designed, synthesized, and evaluated.

Table 2. In Vivo Activity against P388 Leukemia in Mice ${ }^{a)}$

No.	Dose (mg/kg/d)	ILS (\%)	RBW-7 ${ }^{\text {b }}$	No.	Dose (mg/kg/d)	ILS (\%)	RBW-7
$6^{\text {c) }}$	6.25	0.0	1.18	Amonafide (3)	$6.25{ }^{\text {d }}$	20.0	n.d
	25	17.5	1.12		$25^{\text {d) }}$	70.0	n.d
	100	-30.0	n.d. ${ }^{\text {e }}$		$100^{\text {d }}$	-30.0	n.d
8	6.25	25.0	1.10	N-Acetyl amonafide (4)	6.25	17.5	1.10
	25	>125	0.81		25	82.5	1.01
	100	-27.5	0.69		100	-27.5	0.72
10	1.56	14.8	1.09	Etoposide (1)	12.5	>160	1.10
	6.25	24.2	1.05				
	25	-25.0	0.79				

a) P388 leukemia cells were implanted i.p. and the compounds were administered i.p. with q1d $\times 4$ (days $1,2,3,4$). See experimental for details. b) Relative body weight on day 7. c) In vivo activity of this compound against P388 leukemia in mice was reported previously. ${ }^{19,26)}$ The maximum effect of 60% ILS was shown at $25 \mathrm{mg} / \mathrm{kg} / \mathrm{d} \mathrm{q} 1 \mathrm{~d} \times 5$ (days $1,2,3,4,5) . \quad d$) This compound was administered ip with $\mathrm{q} 1 \mathrm{~d} \times 5$ (days $1,2,3,4,5$). e) All mice died before day 7 .

Table 3. In Vivo Activity against M5076 Sarcoma in Mice ${ }^{a)}$

No.	Dose ${ }^{\text {b) }}$	T/C (\%)	$\mathrm{RBW}^{\text {c }}$	Tox ${ }^{\text {d }}$	No.	Dose	T/C (\%)	RBW	Tox
8	25	111	1.03	0/6	22	6.25	79	1.02	0/5
	50	51	0.88	0/6		12.5	30	0.86	0/5
	100	18	0.78	0/6		25	$26^{\text {e }}$	0.78	2/5
12	6.25	-	0.84	6/6	23	12.5	31	1.02	0/5
14	1.56	52	1.07	0/5		25	10	0.86	1/5
	3.13	26	1.02	0/5	26^{g}	3.13	42	1.01	0/5
	6.25	4^{e}	0.82	3/5		6.25	13	0.96	0/5
15	1.56	71	1.02	0/5		12.5	9^{e}	0.83	1/5
	3.13	41	1.01	0/5	Amonafide (3)	12.5	84	1.06	0/6
	6.25	-	0.78	5/5		25	42	1.06	0/6
17	0.78	69	1.05	0/5		50	-	-	6/6
	1.56	-	1.01	5/5	Etoposide (1)	6.25	59	1.07	0/6
19	12.5	53	$1.06{ }^{\text {f }}$	$0 / 5$		12.5	50	1.10	0/6
	25	-	-	5/5		25	18	0.85	1/6
20	12.5	69	1.09	0/5					
	25	34	1.01	0/5					
	50	-	0.75	5/5					

a) M5076 sarcoma cells were implanted sc and the compounds were administered i.p. with $\mathrm{q} 1 \mathrm{~d} \times 4$ (days $1,2,3,4$). See experimental for details. b) $\mathrm{mg} / \mathrm{kg} / \mathrm{d}$. c) Relative body weight on day 7 unless otherwise stated. d) Number of toxic death/total number of mice. e) Average T/C of survivors was indicated. f) Relative body weight on day 8 . g) ER-37326.

In the subset of the amino and acetylamino substituentcontaining analogues (Table 1), pyrimidophenoxadines and pyrimidocarbazoles were much more potent than their corresponding pyrimidoacridones in in vitro growth inhibitory activity and DNA-protein cross-linking formation assay (7 vs . 11 vs. 14, $\mathbf{8}$ vs. $\mathbf{1 2}$ vs. 15, 9 vs. 16, 10 vs. 17). In addition, pyrimidocarbazoles were chemically more stable than pyrimidoacridones. ${ }^{25)}$

Although pyrimidophenoxadines were highly potent in vitro, in vivo efficacy of $\mathbf{1 2}$ was elusive because of its relatively severe toxicity. In most cases, the body weight of mice treated with our compounds recovered after the termination of drug administration. In the experiment, the body weight of mice treated by $\mathbf{1 2}$ continued to decrease even after day 7 with eventual death.

In the subset of pyrimidocarbazoles, the amino and acetylamino substituents contributed to their potency on the basis of in vitro growth inhibitory activities against P388 cells (13 vs. 14 -17). 5 -Substitution contributed more to the in vitro potency against both of P388 and KB cells than 8 -substitution ($\mathbf{1 4}$ vs. 16, 15 vs. 17). In vivo, this trend reversed (Table 3). Compounds $\mathbf{1 4}$ and $\mathbf{1 5}$ were effective at a dose which did not cause the serious body weight decrease observed in case of $\mathbf{8}$. However, $\mathbf{1 7}$ did not show potent in vivo activity.

This result indicated that 8 -substitution in pyrimidocarbazoles is more favorable in terms of their potency in the M5076 model than 5 -substitution. This trend is similar to the in vivo SAR of pyrimidoacridones in which 9-acetylamino 8 was more potent than 5 -acetylamino $\mathbf{1 0}$. Compound 27 was inactive in vitro, indicating the importance of pyrimidoacridone chromophore.

Based on the fact that 8-substituted pyrimidocarbazoles 14 and $\mathbf{1 5}$ are effective in vivo, other kinds of substitutent on position 8 of pyrimidocarbazole were further investigated (1826).

In in vitro experiments, 19, 24, 25, and 26 (ER37326) showed similar or higher activity than 14 and 15.

As a result of screening using the M5076 model, we found ER-37326 with efficacy of $42 \% \mathrm{~T} / \mathrm{C}$ at $3.13 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$ and $13 \% \mathrm{~T} / \mathrm{C}$ at $6.25 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$ without significantly affecting the body weight, and its potency surpassed that of etoposide. DNA-protein cross-linking was detected in P388 cells treated with 26 (ER37326) as shown in Table 1 and Fig. 2. To determine if DNA-protein cross-linking by 26 (ER37326) was dependent on topo II, immunoblot assay was performed to detect DNA-topo II cross-linking. As shown in Fig. 3, 26 (ER37326) and etoposide indicated DNA-topo II cross-linking with $0.4,2.0,10 \mu \mathrm{M}$, but not with $50 \mu_{\mathrm{M}}$ of $\mathbf{2 6}$

Fig. 2. Effects of Compounds on the Formation of DNA-Protein CrossLinking in P388 ${ }^{a}$

a) See experimental for details.

Fig. 3. Effects of $\mathbf{2 6}$ (ER-37326) and Etoposide (1) on the Formation of DNA-Topoisomerase II Cross-Linking in P388 ${ }^{a}$
a) See experimental for details.
(ER37326). This result is consistent with that derived from the DNA-protein cross-linking assay (Fig. 2), in which DNAprotein cross-linking was not observed at $50 \mu \mathrm{M}$ of $\mathbf{2 6}$ (ER37326), indicating DNA-topo II cleavable complex in P388 cells was induced by 26 (ER37326).

Conclusion

As part of a series of studies to discover potent topo II inhibitors, novel pyrimidoacridones, pyrimidophenoxadines, and pyrimidocarbazoles were synthesized and evaluated in the present study. The pyrimidocarbazoles possessed the most potent in vitro and in vivo antitumor activities.

Of these, 26 (ER-37326), in particular, showed more potent efficacy than etoposide without severe toxicity in the in vivo solid tumor model (M5076). In conclusion, we have found a novel lead compound 26 (ER-37326) worthy of further investigation as a potent anticancer agent against solid tumors.

Experimental

Syntheses of Compounds Melting points (mp) were measured using a Yanako melting point apparatus and are uncorrected. The proton nuclear magnetic resonance (${ }^{1} \mathrm{H}-\mathrm{NMR}$) spectra were recorded on a varian Unity 400 (400 MHz) spectrometer or Mercury $400(400 \mathrm{MHz})$ spectrometer, and chemical shifts are expressed in ppm downfield from tetramethylsilane (TMS) as an internal standard unless otherwise stated. Mass spectra (MS) were obtained on a SSQ 7000 mass spectrometer. High resolution mass spectra (HR-MS) were obtained on a Q-Tof Ultima global mass spectrometer (micromass U.K.). Elemental analysis was performed with vario EL or vario ELIII or Yanaco MT-3 at Toray Research Center, or Yanaco MT-5 at the Analytical Chemistry Section of Eisai Research Laboratories. Samples for elemental analysis were dried under reduced pressure at $30^{\circ} \mathrm{C}$ for 2 h , using a drying apparatus (MINI drier; Yazawa, 1-32 model) and an oil rotary vacuum pump (SATO vacuum machinery, SW-150).

Results obtained were within $\pm 0.4 \%$ of the theoretical value. Materials
used in the study were of commercial grades. SiO_{2} (Kiesel 60, Merck) was used for column chromatography. Organic extracts were removed with a rotary evaporator under reduced pressure.
N-[2-(Dimethylamino)ethyl]-7-nitro-9,10-dihydro-9-oxo-4-acridinecarboxamide (30b) CDI $(6.25 \mathrm{~g}, 38.5 \mathrm{mmol})$ was added to a stirred solution of 7-nitro-9,10-dihydro-9-oxo-4-acridine carboxylic acid ${ }^{17)}$ 29b (5.47 g , $19.2 \mathrm{mmol})$ in DMF $(100 \mathrm{ml})$ at room temperature (r.t.) and the mixture was stirred for 1 h . N, N-Dimethylethylenediamine $(8.45 \mathrm{ml}, 77.0 \mathrm{mmol})$ was added to the reaction mixture, which was stirred overnight and treated with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. The precipitate obtained was collected by filtration to yield the title compound $(4.54 \mathrm{~g}, 12.8 \mathrm{mmol}, 67 \%)$ as a pale yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}) $\delta^{27)} 2.30(6 \mathrm{H}, \mathrm{s}), 2.57-2.64(2 \mathrm{H}, \mathrm{m}), 3.51(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz})$, $7.41(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.90-7.97(1 \mathrm{H}, \mathrm{m}), 8.31(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.0 \mathrm{~Hz})$, $8.39-8.44(2 \mathrm{H}, \mathrm{m}), 8.86(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz})$.

2-[2-(Dimethylamino)ethyl]-9-nitropyrimido[5,6,1-de]acridine-1,3,7trione Hydrochloride (31b) Sodium hydride ($1.12 \mathrm{~g}, 25.7 \mathrm{mmol}, 55 \%$ dispersion in oil) was added to a stirred solution of $\mathbf{3 0 b}(4.54 \mathrm{~g}, 12.8 \mathrm{mmol})$ in DMF $(50 \mathrm{ml})$ and the mixture was stirred for 30 min at r.t. The mixture was treated with ethyl chloroformate $(2.46 \mathrm{ml}, 25.7 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and then the mixture was stirred for 30 min at the same temperature. An excess amount of 1 N aqueous hydrogen chloride (1 N HCl (aq.) and $\mathrm{AcOH}(45 \mathrm{ml})$ were added to the reaction mixture and the precipitate obtained was collected by filtration to yield the title compound as a white solid $(3.80 \mathrm{~g}, 9.12 \mathrm{mmol}$, $71 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.90(6 \mathrm{H}, \mathrm{s}), 3.45-3.54(2 \mathrm{H}, \mathrm{m}), 4.46(2 \mathrm{H}, \mathrm{t}$, $J=6.0 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 8.64(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 8.69(1 \mathrm{H}$, dd, $J=1.6,7.6 \mathrm{~Hz}), 8.71(1 \mathrm{H}, \mathrm{dd}, J=2.8,9.6 \mathrm{~Hz}), 9.00(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz})$, $9.04(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 9.97(1 \mathrm{H}, \mathrm{br}$ s).

9-Amino-2-[2-(dimethylamino)ethyl]pyrimido[5,6,1-de]acridine-1,3,7trione Dihydrochloride (7) A mixture of 31b $(2.64 \mathrm{~g}, 6.33 \mathrm{mmol})$ and 10% palladium on carbon $(\mathrm{Pd}-\mathrm{C})(260 \mathrm{mg})$ in $\mathrm{AcOH}(300 \mathrm{ml})$ and 1 N HCl (aq.) $(50 \mathrm{ml})$ was stirred under hydrogen at 1 atm for 5 h . The catalyst was removed by filtration and washed with methanol (MeOH), and the filtrate was concentrated in vacuo. The residue was neutralized with an aqueous sodium hydrogen carbonate solution $\left(\mathrm{NaHCO}_{3}\right.$ (aq.)) and the mixture was extracted with ethyl acetate (EtOAc)-tetrahydrofuran (THF) solution ($1: 1$ in volume). The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine before being concentrated in vacuo. The solid obtained was washed with ethanol (EtOH) and isopropyl ether and suspended in EtOH with stirring and then acidified with an excess amount of HCl in MeOH solution. The precipitate obtained was collected by filtration, washed with EtOH and isopropyl ether and then dried in vacuo to yield the title compound as a orange solid $(2.10 \mathrm{~g}, 4.96 \mathrm{mmol}, 78 \%), \mathrm{mp} 267-270^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.d_{6}\right) \delta 2.90(6 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 3.51(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 4.43(2 \mathrm{H}, \mathrm{t}$, $J=5.6 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{s}), 7.72(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $8.54(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 8.62(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 8.71(1 \mathrm{H}, \mathrm{d}$, $J=9.2 \mathrm{~Hz}), 9.92(1 \mathrm{H}, \mathrm{brs})$. ESI-MS m/z: $351(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.71 ; \mathrm{H}, 5.02 ; \mathrm{N}, 12.70$. Found: C, $51.71 ; \mathrm{H}$, 5.12; N, 12.73.

9-Acetylamino-2-[2-(dimethylamino)ethyl]pyrimido[5,6,1-de] acridine-1,3,7-trione Hydrochloride (8) A mixture of $7(450 \mathrm{mg}, 1.06 \mathrm{mmol})$, acetic anhydride $(15 \mathrm{ml})$ and pyridine $(5 \mathrm{ml})$ was stirred under reflux for 1 h . The reaction mixture was concentrated in vacuo and NaHCO_{3} (aq.) was added to the residue, which was extracted with EtOAc-THF solution ($1: 1$ in volume). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}, and then concentrated in vacuo. The solid that formed during evaporation was collected by filtration, washed with EtOH and suspended in EtOH with stirring and followed by treatment with an excess amount of 1 N HCl (aq.). The solid obtained was collected by filtration to yield the title compound ($200 \mathrm{mg}, 0.47 \mathrm{mmol}, 44 \%$) as a pale yellow solid, $\mathrm{mp} 280-283^{\circ} \mathrm{C}$ (dec.) (EtOH). ESI-MS $m / z: 393(\mathrm{M}+\mathrm{H})^{+}, 807(2 \mathrm{M}+\mathrm{Na})^{+} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right)$ $\delta 2.90(6 \mathrm{H}, \mathrm{s}), 3.45-3.51(2 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{dd}, J=2.4,9.6 \mathrm{~Hz}), 8.57(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz})$, $8.63-8.65(2 \mathrm{H}, \mathrm{m}), 8.85(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 9.84(1 \mathrm{H}, \mathrm{br}), 10.48(1 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: C, $54.25 ; \mathrm{H}, 5.42 ; \mathrm{N}, 12.05$. Found: C, 54.55; H, 5.65; N, 12.21.
N-[2-(Dimethylamino)ethyl]-2-nitro-9,10-dihydro-9-oxo-4-acridinecarboxamide (30c) This compound was obtained from 3-nitro-9,10-dihydro-9-oxo-4-acridine carboxylic acid ${ }^{18)} \mathbf{2 9 c}(2.00 \mathrm{~g}, 7.04 \mathrm{mmol})$ in a similar manner to the preparation of $\mathbf{3 0 b}$ as an orange solid $(1.09 \mathrm{~g}$, $3.08 \mathrm{mmol}, 44 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.31(6 \mathrm{H}, \mathrm{s}), 2.57(2 \mathrm{H}, \mathrm{t}$, $J=5.6 \mathrm{~Hz}), 3.55(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 7.16-7.26(1 \mathrm{H}, \mathrm{m}), 7.64-7.72(2 \mathrm{H}$, m), $8.18(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 9.02(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 9.12(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$.

2-[2-(Dimethylamino)ethyl]-5-nitropyrimido[5,6,1-de] acridine-1,3,7trione (31c) To a stirred solution of $\mathbf{3 0 c}(1.09 \mathrm{~g}, 3.08 \mathrm{mmol})$ in DMF
$(50 \mathrm{ml})$ was added diisopropylethylamine $(1.74 \mathrm{ml}, 10 \mathrm{mmol})$ and ethyl chloroformate $(0.96 \mathrm{ml}, 10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 6 h at r.t. $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture, which was extracted with EtOAc-THF solution ($1: 1$ in volume) and the organic layer was washed with brine and then concentrated in vacuo. The solid obtained was crystallized from EtOH-isopropyl ether to yield the title compound $(530 \mathrm{mg}$, $1.39 \mathrm{mmol}, 45 \%$) as orange crystals. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.27(6 \mathrm{H}, \mathrm{s})$, $2.58-2.68(2 \mathrm{H}, \mathrm{m}), 4.22(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.96-$ $8.01(1 \mathrm{H}, \mathrm{m}), 8.38(1 \mathrm{H}, \mathrm{dd}, J=2.0,7.6 \mathrm{~Hz}), 8.77(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 9.04$ $(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 9.13(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz})$.

5-Amino-2-[2-(dimethylamino)ethyl]pyrimido[5,6,1-de]acridine-1,3,7trione Dihydrochloride (9) The title compound was obtained from 31c $(530 \mathrm{mg}, 1.39 \mathrm{mmol})$ in a similar manner to the preparation of 7 to yield an ocher solid ($580 \mathrm{mg}, 1.37 \mathrm{mmol}, 99 \%$), mp 294-297 ${ }^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-$ NMR (DMSO-d $\left.{ }_{6}\right) \delta 2.91(6 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 3.49(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}), 4.42$ $(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 7.56-7.60(1 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}$, $J=2.8 \mathrm{~Hz}), 7.85-7.92(1 \mathrm{H}, \mathrm{m}), 8.35(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}), 8.95(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}), 9.61(1 \mathrm{H}, \mathrm{brs})$. ESI-MS m/z: $351(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 2 \mathrm{HCl} \cdot 1.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.50 ; \mathrm{H}, 5.05 ; \mathrm{N}, 12.64$. Found: C, 51.65 ; H, 5.30; N, 12.43.

5-Acetylamino-2-[2-(dimethylamino)ethyl]pyrimido[5,6,1-de]acridine-1,3,7-trione Hydrochloride (10) The title compound was obtained from 9 $(300 \mathrm{mg}, 0.71 \mathrm{mmol})$ in a similar manner to the preparation of $\mathbf{8}$ as a pale green solid ($180 \mathrm{mg}, 0.42 \mathrm{mmol}, 59 \%$), mp $289-291^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-$ NMR $\left(\right.$ DMSO $\left.d_{6}\right) \delta 2.91(6 \mathrm{H}, \mathrm{s}), 3.44-3.54(2 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{t}$, $J=5.6 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.91-7.96(1 \mathrm{H}, \mathrm{m}), 8.38(1 \mathrm{H}, \mathrm{dd}$, $J=2.0,7.6 \mathrm{~Hz}), 8.80(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 8.90(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 8.92(1 \mathrm{H}, \mathrm{d}$, $J=9.2 \mathrm{~Hz}), 9.52(1 \mathrm{H}, \mathrm{brs}), 10.66(1 \mathrm{H}, \mathrm{brs})$. ESI-MS m/z: $393(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.32 ; \mathrm{H}, 4.99 ; \mathrm{N}, 12.96$. Found: C, 58.30; H, 5.06; N, 12.97.

2-[2-(Dimethylamino)ethyl]pyrimido[5,6,1-de]acridine-1,3,7-trione Hydrochloride (6) Synthesis of the title compound previously reported by Antonini et al. ${ }^{19)}$ was obtained in our laboratory from N-[2-(dimethylamino) ethyl]-9,10-dihydro-9-oxo-4-acridinecarboxamide ${ }^{19)}$ 30a ($457 \mathrm{mg}, \quad 1.48$ $\mathrm{mmol})$ using DMF $(20 \mathrm{ml})$, triethylamine $(0.56 \mathrm{ml}, 4.0 \mathrm{mmol})$ and ethyl chloroformate $(0.19 \mathrm{ml}, 1.99 \mathrm{mmol})$ in a similar manner to the preparation of 31c. Yield: $178 \mathrm{mg}, 0.479 \mathrm{mmol}, 32 \%$. mp $278-279^{\circ} \mathrm{C}\left(\right.$ lit $^{19)} 281-283^{\circ} \mathrm{C}$) ESI-MS $m / z: 336(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 61.38; H, 4.88; N, 11.30. Found: C, 61.42; H, 4.86; N, 11.35.

7-Acetylamino- N-[2-(dimethylamino)ethyl]-9,10-dihydro-9-oxo-4acridinecarboxamide Hydrochloride (27) A mixture of 8 (20 mg , $0.047 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg})$ in $\mathrm{MeOH}(2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was stirred for 1 h . After additing ammonium chloride (200 mg) the mixture was concentrated in vacuo untill most of MeOH was evaporated. The mixture was extracted with EtOAc-THF solution ($1: 1$ in volume). The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4} before evaporation. $\mathrm{EtOH}(0.4 \mathrm{ml})$ and an excess amount of 1 N HCl (aq.) were added to the residue and then concentrated in vacuo. The residue was recrystallized from EtOH -isopropyl ether to yield 10 mg of the title compound as yellow crystals ($10 \mathrm{mg}, 0.025 \mathrm{mmol}, 53 \%$), mp $278-280^{\circ} \mathrm{C}$ (dec.) (EtOH-isopropyl ether). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.09(3 \mathrm{H}, \mathrm{s}), 2.88(6 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.32-$ $3.39(2 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.8 \mathrm{~Hz}), 8.83(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.45-$ $8.48(2 \mathrm{H}, \mathrm{m}), 9.23(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 9.78(1 \mathrm{H}, \mathrm{brs}) 10.19(1 \mathrm{H}, \mathrm{s}), 12.29$ $(1 \mathrm{H}, \mathrm{s})$. HR-MS m/z: 367.1776 (Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 367.1770).

2-(2,4-Dinitrophenylamino)-3-hydroxybenzoic Acid (34) A mixture of 1-chloro-2,4-dinitrobenzene $32(1.06 \mathrm{~g}, 5.23 \mathrm{mmol})$, 3-hydroxyanthranilic acid $33(0.76 \mathrm{~g}, 4.96 \mathrm{mmol})$ and sodium acetate $(1.72 \mathrm{~g}, 21.0 \mathrm{mmol})$ in EtOH $(20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was stirred under reflux for 24 h . The mixture was allowed to stand at r.t. and acidified with 1 N HCl (aq.). The precipitate obtained was collected by filtration and dissolved in EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over MgSO_{4} before concentration in vacuo to yield the title compound as a dark brown solid $(1.40 \mathrm{~g}$, $4.39 \mathrm{mmol}, 89 \%$), $\mathrm{mp} 270-273^{\circ} \mathrm{C}$ (dec.) (ether-hexane). HR-MS m/z: 318.0372 (Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{7}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 318.0362$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right) \delta 6.66(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{dd}, J=2.8,9.6 \mathrm{~Hz}), 8.90$ $(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 0.31(1 \mathrm{H}, \mathrm{s}), 10.50(1 \mathrm{H}, \mathrm{s})$.
7-Nitro-10H-phenoxazine-1-carboxylic Acid (35) A mixture of 34 $(1.35 \mathrm{~g}, 4.23 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(350 \mathrm{mg})$ in DMF $(10 \mathrm{ml})$ was stirred under reflux for 12 h . The mixture was allowed to stand at r.t. and acidified with 1 N HCl (aq.). The precipitate obtained was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}$ and then, recrystallized from EtOH to yield the title compound as
orange crystals $(0.91 \mathrm{~g}, 3.3 \mathrm{mmol}, 79 \%), \mathrm{mp}>300^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$) $\delta 6.75(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}), 7.36-7.39(2 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}), 9.53(1 \mathrm{H}, \mathrm{s})$. HR-MS m/z: 271.0401 (Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: 271.0355).

N -[2-(Dimethylamino)ethyl]-7-nitro-10H-phenoxazine-1-carboxamide (36) DMF $(0.5 \mathrm{ml})$ and phosphorus trichloride $(2 \mathrm{ml})$ was added to a suspension of $35(435 \mathrm{mg}, 1.60 \mathrm{mmol})$ in chloroform $\left(\mathrm{CHCl}_{3}\right)(15 \mathrm{ml})$ and then, the mixture was stirred overnight at r.t. The mixture was then concentrated in vacuo. Toluene was added to the mixture, which was again concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and treated with a solution of N, N-dimethylethylenediamine ($1.0 \mathrm{ml}, 9.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and stirred overnight at r.t. NaHCO_{3} (aq.) was added to the mixture and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was filterd through celite and the filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ to yield the title compound as an amorphous solid $(507 \mathrm{mg}, 1.48 \mathrm{mmol}, 93 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.28(6 \mathrm{H}, \mathrm{s}), 2.52(2 \mathrm{H}, \mathrm{t}$, $J=6.2 \mathrm{~Hz}), 3.42(2 \mathrm{H}, \mathrm{q}, J=6.2 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.64-6.72(2 \mathrm{H}$, $\mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.5 \mathrm{~Hz}), 6.96-7.02(1 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{d}$, $J=2.5 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{dd}, J=2.5,8.6 \mathrm{~Hz}), 9.88(1 \mathrm{H}, \mathrm{brs})$. HR-MS m / z : 343.1384 (Calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 343.1406\right)$.

9-Amino-2-[2-(dimethylamino)ethyl]-1H-pyrimide[5,6,1-kl]phenoxa-dine-1,3(2H)-dione Dihydrochloride (11) Compound 36 (49 mg , 0.143 mmol) was converted to the crude product of 9-Nitro-2-[2-(dimethyl-amino)ethyl]-1H-pyrimido[5,6,1-kl]phenoxadine-1,3(2H)-dione ($50 \mathrm{mg}, 0.14$ mmol) in a similar manner to the preparation of 31c using triethylamine $(0.30 \mathrm{ml}, 2.2 \mathrm{mmol})$, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(5 \mathrm{ml})$ and ethyl chloroformate $(0.03 \mathrm{ml}, 0.3 \mathrm{mmol})$. The title compound was obtained from the crude product ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) in a similar manner to the preparation of 7 as a yellowish green solid ($48 \mathrm{mg}, 0.12 \mathrm{mmol}, 86 \%$), mp $286-289^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta^{27)} 2.84(6 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.36-3.40(2 \mathrm{H}$, m), $4.29(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 6.78-6.81(2 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $7.36(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{d}$, $J=9.2 \mathrm{~Hz}), 10.16(1 \mathrm{H}, \mathrm{brs})$. ESI-MS m/z: $339(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 2 \mathrm{HCl} \cdot 1.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.15 ; \mathrm{H}, 5.19$; N, 13.00. Found: C, 49.94; H, 5.26; N, 13.09.

9-Acetylamino-2-[2-(dimethylamino)ethyl]-1 H-pyrimido[5,6,1-kl]phe-noxadine-1,3(2H)-dione Hydrochloride (12) The title compound was obtained from $11(150 \mathrm{mg}, 0.37 \mathrm{mmol})$ in a similar manner to the preparation of 8 as a white solid ($114 \mathrm{mg}, 0.27 \mathrm{mmol}, 74 \%$), mp $275-278^{\circ} \mathrm{C}$ (dec.) $(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.06(3 \mathrm{H}, \mathrm{s}), 2.88(6 \mathrm{H}, \mathrm{s}), 3.38-3.44(2 \mathrm{H}$, m), $4.32(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{dd}, J=1.2,9.6 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{td}$, $J=1.6,7.6 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 7.64$ $(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6 \mathrm{~Hz}), 8.44(1 \mathrm{H}, \mathrm{dd}, J=1.6,9.6 \mathrm{~Hz}), 9.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 10.30$ $(1 \mathrm{H}, \mathrm{s})$. ESI-MS m/z: $381(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot$ $1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 54.12 ; \mathrm{H}, 5.45 ; \mathrm{N}, 12.62$. Found: C, $54.37 ; \mathrm{H}, 5.53 ; \mathrm{N}, 12.71$.
$\mathbf{9 H}$-Carbazole-1-carboxylic Acid (39a) ${ }^{21)}$ A solution of cyclohexanone $37(10.4 \mathrm{ml}, 0.100 \mathrm{~mol})$ in $\mathrm{AcOH}(20 \mathrm{ml})$ was dropped into a stirred suspension of 2-hydrazinobenzoic acid hydrochloride 38 ($19.8 \mathrm{~g}, 0.105 \mathrm{~mol}$) in $\mathrm{AcOH}(180 \mathrm{ml})$ at $80^{\circ} \mathrm{C}$ and the mixture was stirred under reflux for 6 h , and allowed to stand at r.t. $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture and the precipitate obtained was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}$ to yield $5,6,7,8$ -tetrahydro- 9 H -carbazole-1-carboxylic acid $^{21,28)}$ as a pale yellow solid $\left(10.0 \mathrm{~g}, 0.465 \mathrm{mmol}, 47 \%\right.$ based on cyclohexanone), mp $198-200^{\circ} \mathrm{C}\left(\mathrm{lit}^{21}\right)$ $201-203^{\circ} \mathrm{C}$). A mixture of 5,6,7,8-tetrahydro- 9 H -carbazole-1-carboxylic acid $(4.3 \mathrm{~g}, 20 \mathrm{mmol})$ and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone $(10.0 \mathrm{~g}, 44 \mathrm{mmol})$ in toluene $(100 \mathrm{ml})$ was stirred under reflux for 2 h before standing at r.t. The precipitate obtained was collected and purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to yield the title compound as a solid $(2.46 \mathrm{~g}, 11.6 \mathrm{mmol}, 58 \%) \mathrm{mp} 271-272^{\circ} \mathrm{C}\left(\mathrm{lit}^{21)} \mathrm{mp} 270-\right.$ $271{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 7.19-7.23(1 \mathrm{H}, \mathrm{m}), 7.26(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}), 7.40-7.45(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{dd}$, $J=0.8,7.6 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 11.34$ $(1 \mathrm{H}, \mathrm{brs}), 13.18\left(1 \mathrm{H}\right.$, brs). HR-MS m/z: 210.0540 (Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{NO}_{2}$ ([M-H] ${ }^{-}$): 210.0555).

N -[2-(Dimethylamino)ethyl]-9H-Carbazole-1-carboxamide
(40a) This compound was obtained from 39a ($1.06 \mathrm{~g}, 5.02 \mathrm{mmol}$) in a similar manner to the preparation of $\mathbf{3 0 b}$ as an oil $(1.40 \mathrm{~g}, 4.98 \mathrm{mmol}, 99 \%) .{ }^{1} \mathrm{H}-$ NMR (DMSO- d_{6}) $\delta 2.22(6 \mathrm{H}, \mathrm{s}), 2.46-2.54(2 \mathrm{H}, \mathrm{m}), 3.68(2 \mathrm{H}, \mathrm{q}$, $J=6.8 \mathrm{~Hz}), 7.15-7.24(2 \mathrm{H}, \mathrm{m}), 7.37-7.44(1 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.29(1 \mathrm{H}$, dd, $J=0.8,7.6 \mathrm{~Hz}), 8.56(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 11.43(1 \mathrm{H}, \mathrm{s}) . \mathrm{HR}-\mathrm{MS} m / \mathrm{z}$: 282.1604 (Calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 282.1606\right)$.

2-[2-(Dimethylamino)ethyl]-1H-pyrimido[5,6,1-]carbazole-1,3(2H)-
dione Hydrochloride (13) This compound was obtained from 40a ($350 \mathrm{mg}, 1.24 \mathrm{mmol}$) in a similar manner to the preparation of $\mathbf{3 1 b}$ (200 mg , $0.58 \mathrm{mmol}, 47 \%$), mp $278-280^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.90$ ($6 \mathrm{H}, \mathrm{brs}$), $3.44-3.49(2 \mathrm{H}, \mathrm{m}), 4.41(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 7.55-7.60(1 \mathrm{H}, \mathrm{m})$, $7.67-7.72(2 \mathrm{H}, \mathrm{m}), 8.10(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 8.34-8.37(1 \mathrm{H}, \mathrm{m})$, $8.38-8.41(1 \mathrm{H}, \mathrm{m}), 8.58(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 9.62(1 \mathrm{H}, \mathrm{brs})$. ESI-MS $m / z: 308(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 62.88 ; \mathrm{H}, 5.28 ; \mathrm{N}$, 12.22. Found: C, $62.64 ;$ H, 5.33 ; N, 12.12.

N -[2-(Dimethylamino)ethyl]-6-nitro-9H-carbazole-1-carboxamide (40b) and N -[2-(Dimethylamino)ethyl]-3-nitro-9H-carbazole-1-carboxamide (40c) A solution of potassium nitrate ($1.01 \mathrm{~g}, 10.0 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(2.5 \mathrm{ml})$ was added dropwise to a stirred solution of $\mathbf{3 9 a}(2.0 \mathrm{~g}, 9.5 \mathrm{mmol})$ in $\mathrm{AcOH}(250 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring overnight at r.t., $\mathrm{H}_{2} \mathrm{O}$ was slowly added to the mixture. The precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo to yield 2.3 g of crude product which was subsequently dissolved in DMF (100 ml). The solution was treated with CDI $(2.9 \mathrm{~g}$, 18 mmol), and stirred for 2 h . The reaction mixture was treated with N, N-dimethylethylenediamine $(4.0 \mathrm{ml}, 36 \mathrm{mmol})$, stirred overnight before addition of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with EtOAc-THF solution ($1: 1$ in volume). The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$ (aq.), and brine and then concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right)$ to yield $40 \mathrm{~b}(1.46 \mathrm{~g}$, $4.47 \mathrm{mmol}, 47 \%)$ and $40 \mathrm{c}(0.21 \mathrm{~g}, 0.64 \mathrm{mmol}, 7 \%)$. Analytical samples were obtained by converting each free base into hydrochloride salts 41b and 41c in a usual manner as a yellow solid.
\boldsymbol{N}-[2-(Dimethylamino)ethyl]-6-nitro-9H-carbazole-1-carboxamide Hydrochloride (41b) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta^{27)} 2.85(6 \mathrm{H}, \mathrm{brs}), 3.26-3.38$ $(2 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{dd}, J=2.2,9.0 \mathrm{~Hz}), 8.60(1 \mathrm{H}$, d, $J=7.6 \mathrm{~Hz}), 9.04(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 9.22(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 9.93(1 \mathrm{H}$, br s), $12.14(1 \mathrm{H}, \mathrm{s})$.

N -[2-(Dimethylamino)ethyl]-3-nitro-9H-carbazole-1-carboxamide $\mathbf{H y}$ drochloride (41c) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \quad \delta^{27)} 2.84(6 \mathrm{H}, \mathrm{brs}), 3.20-3.40$ $(2 \mathrm{H}, \mathrm{m}), 3.65-3.80(2 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}), 7.81(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.90(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}), 9.20-9.28(1 \mathrm{H}, \mathrm{m}) 9.35(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 9.64-9.86(1 \mathrm{H}, \mathrm{m})$, 12.14 (1H, br s).

2-[2-(Dimethylamino)ethyl]-8-nitro-1 H-pyrimido[5,6,1-jk]carbazole$\mathbf{1 , 3 (2 H})$-dione Hydrochloride (21) Sodium hydride $(1.75 \mathrm{~g}, 40 \mathrm{mmol}$, 55% dispersion in oil) was added to a stirred solution of $40 \mathrm{~b}(5.82 \mathrm{~g}$, $17.8 \mathrm{mmol})$ in DMF $(200 \mathrm{ml})$ and the mixture was stirred for 1 h at r.t. under nitrogen atmosphere. Then the mixture was added a solution of ethyl chloroformate $(3.8 \mathrm{ml}, 40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and stirred for 30 min at the same temperature. The reaction mixture was acidified with 1 N HCl (aq.) and the precipitate was collected before recrystallization from EtOH to yield the title compound as pale yellow crystals $(5.54 \mathrm{~g}, 14.2 \mathrm{mmol}, 80 \%)$, mp 288-290 ${ }^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.89(6 \mathrm{H}, \mathrm{brs})$, $3.46-3.50(2 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 8.19$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.53-8.60(2 \mathrm{H}, \mathrm{m}), 8.80(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 9.38(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}), 10.18(1 \mathrm{H}, \mathrm{brs})$. ESI-MS m/z: $353(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 2.15 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.57$; H, 5.02; N, 13.10. Found: C, 50.49; H, 4.69; N, 13.09.

8-Amino-2-[2-(dimethylamino)ethyl]-1H-pyrimido [5,6,1-jk]carbazole-1,3(2H)-dione (44b) and 8-Amino-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione Hydrochloride (14) A mixture of $21(5.54 \mathrm{~g}, 14 \mathrm{mmol})$ and $50 \% \mathrm{Pd}-\mathrm{C}(550 \mathrm{mg})$ in $\mathrm{AcOH}(200 \mathrm{ml})$ and 1 N HCl (aq.) (50 ml) was stirred under 1 atm of hydrogen overnight. The catalyst was removed by filtration and the filtrate was concentrated in vacuo. The residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and NaHCO_{3} (aq.), and then the mixture was extracted with EtOAc. The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4} before being concentrated in vacuo. The residual solid was recrystallized from EtOH to yield 44 b (3.74 g , $12 \mathrm{mmol}, 81 \%$) as yellow crystals. Compound $\mathbf{4 4 b}$ ($430 \mathrm{mg}, 1.3 \mathrm{mmol}$) was suspended in $\mathrm{EtOH}(20 \mathrm{ml})$ and 1 N HCl (aq.) was added and stirred overnight. The precipitate obtained was collected by filtration to yield the title compound $14(480 \mathrm{mg}, 100 \%)$ as pale yellow crystals, $\mathrm{mp} 281-283{ }^{\circ} \mathrm{C}$ (dec.) (EtOH).

44b (Free Base): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.36(6 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}), 7.29(1 \mathrm{H}$, d, $J=2.4 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 8.09-8.12(2 \mathrm{H}, \mathrm{m}), 8.23(1 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}$).

14 (HCl Salt): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta 2.91(6 \mathrm{H}, \mathrm{brs}), 3.44-3.50(2 \mathrm{H}$, m), $4.39(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 7.04-7.08(1 \mathrm{H}, \mathrm{m}), 7.54-7.56(1 \mathrm{H}, \mathrm{m}), 7.63$ $(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$,
$8.44(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 9.60(1 \mathrm{H}, \mathrm{brs})$. ESI-MS $m / z: 323(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 1.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.56 ; \mathrm{H}, 5.70 ; \mathrm{N}, 14.66$. Found: C, 56.21; H, 5.31; N, 14.56.

8-Acetylamino-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]car-bazole-1,3(2H)-dione Hydrochloride (15) A mixture of 44b (1.61 g, $4.99 \mathrm{mmol})$ and acetic anhydride $(15 \mathrm{ml})$ and pyridine $(15 \mathrm{ml})$ was stirred at r.t. for 3 h . The reaction mixture was added ethyl acetate and the precipitate obtained was collected by filtration before being suspended in EtOH. The suspension was treated with an excess amount of 1 N HCl (aq.), and the precipitate obtained was collected to yield the title compound as a white solid ($1.81 \mathrm{~g}, 4.51 \mathrm{mmol}, 90 \%$), mp $285-287^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}\right) \delta 2.12(3 \mathrm{H}, \mathrm{s}), 2.92(6 \mathrm{H}, \mathrm{brs}), 3.45-3.52(2 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{t}$, $J=5.6 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}), 8.10(1 \mathrm{H}$, dd, $J=0.8,7.6 \mathrm{~Hz}), 8.30(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.53(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz})$, $8.62(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 9.29(1 \mathrm{H}, \mathrm{brs}), 10.32(1 \mathrm{H}, \mathrm{s})$. ESI-MS m/z: 365 $(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.35 ; \mathrm{H}, 5.53 ; \mathrm{N}$, 13.38. Found: C, 57.18; H, 5.42; N, 13.31.

8-Pentanoylamino-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1$\boldsymbol{j k}$]carbazole-1,3(2H)-dione Hydrochloride (25) A mixture of 44b ($64 \mathrm{mg}, 0.20 \mathrm{mmol}$) and n-pentanoyl chloride $(0.028 \mathrm{ml}, 0.24 \mathrm{mmol})$ and triethylamine $(0.084 \mathrm{ml}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was stirred at r.t. for 3 h . The reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$ and then extracted with EtOAc. The organic layer was washed successively with NaHCO_{3} (aq.) and brine. The organic layer was dried over MgSO_{4} and then concentrated in vacuo. The residue was dissolved in EtOH and treated with an excess amount of 1 N HCl (aq.) before evaporation. The residual solid was suspended in EtOH -hexane ($1: 1$ in volume). The precipitate was collected to yield the title compound as a pale yellow solid ($65 \mathrm{mg}, 0.15 \mathrm{mmol}, 75 \%$), $\mathrm{mp} 234-$ $236{ }^{\circ} \mathrm{C}(\mathrm{EtOH}-$ hexane $) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 0.93(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $1.36(2 \mathrm{H}, \mathrm{m}), 1.63(2 \mathrm{H}, \mathrm{m}), 2.38(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.46-3.49(2 \mathrm{H}, \mathrm{m})$, $4.39(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{dd}, J=2.0$, $8.8 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.28(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.51(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 8.63(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 9.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 10.22(1 \mathrm{H}, \mathrm{s})$. ESI-MS $m / z: 407(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.78 ; \mathrm{H}$, 6.43; N, 11.92. Found: C, 58.71; H, 6.40; N, 12.22.

2-[2-(Dimethylamino)ethyl]-8-methanesulfonylamino-1H-pyrim-ido[5,6,1-jk]carbazole-1,3(2H)-dione Hydrochloride (22) A mixture of $14(200 \mathrm{mg}, 0.56 \mathrm{mmol})$ and methanesulfonic anhydride ($976 \mathrm{mg}, 5.6 \mathrm{mmol}$) and pyridine (20 ml) was stirred under reflux for 1 h . The mixture was evaporated and NaHCO_{3} (aq.) was added, which was extracted with EtOAc-THF solution (1:1 in volume). The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over MgSO_{4}, and then concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to furnish the title compound as a free base, which was hydrochlorinated to yield the title compound as a brown solid ($110 \mathrm{mg}, 0.25 \mathrm{mmol}, 45 \%$), mp $285-288{ }^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta^{27)} 2.90(6 \mathrm{H}, \mathrm{br}$ s), 3.05 $(3 \mathrm{H}, \mathrm{s}), 3.42-3.52(2 \mathrm{H}, \mathrm{m}), 4.35-4.42(2 \mathrm{H}, \mathrm{m}), 7.47-7.55(1 \mathrm{H}, \mathrm{m}), 7.67$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 8.06-8.16(2 \mathrm{H}, \mathrm{m}), 8.32(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.57(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 9.35(1 \mathrm{H}, \mathrm{brs}), 10.01(1 \mathrm{H}, \mathrm{s})$. ESI-MS m/z: $401(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$: C, 50.16; H, 5.10; N, 12.32. Found: C, 50.17; H, 5.02; N, 12.30.

2-[2-(Dimethylamino)ethyl]-5-nitro-1H-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione Hydrochloride (43c) The title compound's free base (42c) was obtained from $40 \mathrm{c}(210 \mathrm{mg}, 0.64 \mathrm{mmol})$ in a similar manner to the preparation of 21. Yield of 42c: $165 \mathrm{mg}, 0.47 \mathrm{mmol}, 73 \%$. A part of 42c $(10 \mathrm{mg}, 0.028 \mathrm{mmol})$ obtained above was converted into its HCl salt $(\mathbf{4 3 c})$ in a usual manner as a white solid $(10 \mathrm{mg}, 0.026 \mathrm{mmol}, 93 \%$ based on the free base 42c).

42c (Free Base of 43c): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.24(6 \mathrm{H}, \mathrm{s}), 2.56(2 \mathrm{H}, \mathrm{t}$, $J=6.8 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 7.61-7.65(1 \mathrm{H}, \mathrm{m}), 7.75-7.79(1 \mathrm{H}$, m), $8.42(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.57(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 8.75(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}), 9.52(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$.

43c: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.83(6 \mathrm{H}, \mathrm{brs}), 3.28-3.46(2 \mathrm{H}, \mathrm{m}), 4.36-$ $4.44(2 \mathrm{H}, \mathrm{m}), 7.63-7.68(1 \mathrm{H}, \mathrm{m}), 7.77-7.82(1 \mathrm{H}, \mathrm{m}), 8.41-8.44(1 \mathrm{H}, \mathrm{m})$, $8.59-8.62(1 \mathrm{H}, \mathrm{m}), 8.78(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 9.57(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 9.60-$ $9.88(1 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 54.59 ; \mathrm{H}, 4.53$; N, 14.15. Found: C, $54.65 ; \mathrm{H}, 4.36$; N, 14.14.

5-Amino-2-[2-(dimethylamino)ethyl]- $1 H$-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione Dihydrochloride (16) The title compound was obtained from 42c $(150 \mathrm{mg}, 0.43 \mathrm{mmol})$ in a similar manner to the preparation of 7 as a white solid ($170 \mathrm{mg}, 0.43 \mathrm{mmol}, 99 \%$), mp $294-297^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.84-2.94(6 \mathrm{H}, \mathrm{m}), 3.42-3.52(2 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}$, $\mathrm{t}, J=5.6 \mathrm{~Hz}), 7.54-7.59(1 \mathrm{H}, \mathrm{m}), 7.67-7.73(1 \mathrm{H}, \mathrm{m}), 7.86(1 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 8.32-8.38(2 \mathrm{H}, \mathrm{m}), 10.05(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

ESI-MS m/z: $323(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 50.12; H, 5.61; N, 12.99. Found: C, 50.24; H, 5.26; N, 13.07.

5-Acetylamino-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]car-bazole-1,3(2H)-dione Hydrochloride (17) This compound was obtained from $16(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ in a similar manner to the preparation of $\mathbf{1 5}$ ($20 \mathrm{mg}, 0.050 \mathrm{mmol}, 98 \%$) as a pale yellow solid, $\mathrm{mp}>300^{\circ} \mathrm{C}$ (dec.) $(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.15(3 \mathrm{H}, \mathrm{s}), 2.89-2.94(6 \mathrm{H}, \mathrm{m}), 3.45-$ $3.51(2 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}), 7.54-7.58(1 \mathrm{H}, \mathrm{m}), 7.67-7.72(1 \mathrm{H}$, $\mathrm{m}), 8.30(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.34-8.38(2 \mathrm{H}, \mathrm{m}), 8.66(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$, $9.57(1 \mathrm{H}, \mathrm{brs}), 10.53(1 \mathrm{H}, \mathrm{s})$. ESI-MS m/z: $365(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.87$; H, 5.38; N, 13.73. Found: C, 58.95; H, 5.40; N, 13.47.

2-[2-(Dimethylamino)ethyl]-8-(1-pyrrolyl)-1H-pyrimido[5,6,1-jk]car-bazole-1,3(2H)-dione Hydrochloride (23) To a stirred solution of 44b $(96 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{AcOH}(10 \mathrm{ml})$ was added 2,5-dimethoxytetrahydrofuran $(0.039 \mathrm{ml}, 0.30 \mathrm{mmol})$. The mixture was stirred under reflux for 30 min , and then allowed to stand at r.t. The reaction mixture was concentrated in vacuo. NaHCO_{3} (aq.) was added to the residue and then the mixture was extracted with EtOAc. The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}, and then concentrated in vacuo. The residual solid was recrystallized from EtOH -hexane to yield the free base of the title compound ($85 \mathrm{mg}, 0.21 \mathrm{mmol}$) which was hydrochlorinated in a usual manner to yield the title compound as a pale yellow solid (80 mg , $0.196 \mathrm{mmol}, 65 \%$), mp $258-260^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta$ $2.90(6 \mathrm{H}, \mathrm{s}), 3.47(2 \mathrm{H}, \mathrm{m}), 4.41(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 6.34(2 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz})$, $7.51(2 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.8 \mathrm{~Hz})$, $8.12(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 8.38(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{dd}, J=0.8$, $7.6 \mathrm{~Hz}), 8.62(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 9.62(1 \mathrm{H}, \mathrm{brs})$. ESI-MS $m / z: 373(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.96 ; \mathrm{H}, 5.33 ; \mathrm{N}, 13.35$. Found: C, $62.78 ; \mathrm{H}, 5.42$; N, 13.33.

2-[2-(Dimethylamino)ethyl]-8-hydroxy-1 H-pyrimido[5,6,1-jk]car-bazole-1,3(2H)-dione Hydrochloride (19) To a stirred suspension of 44b ($160 \mathrm{mg}, 0.50 \mathrm{mmol}$) in sulfuric acid $(1.5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$, a solution of sodium nitrite $(42 \mathrm{mg}, 0.61 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ was added dropwise with stirring at $0^{\circ} \mathrm{C}$. After stirring at the same temperature for 20 min , urea $(60 \mathrm{mg}, 1.0 \mathrm{mmol})$, a solution of copper nitrate trihydrate $(2.4 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$, and copper (I) oxide ($90 \mathrm{mg}, 0.63 \mathrm{mmol}$) were added and the reaction mixture was stirred at r.t. for 3 h . The reaction mixture was added NaHCO_{3} (aq.), before extraction with EtOAc. The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right)$ to furnish the title compound as a free base, which was converted into HCl salt in a usual manner to yield the title compound as a yellow solid (50 mg , $0.14 \mathrm{mmol}, 28 \%$), mp $286-287{ }^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta^{27)} 2.87(6 \mathrm{H}, \mathrm{brs}), 3.36-3.48(2 \mathrm{H}, \mathrm{m}), 4.32-4.40(2 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{dd}$, $J=2.4,8.8 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.48(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 9.30(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $9.84(1 \mathrm{H}, \mathrm{s})$. ESI-MS m/z: $324(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl}$: C, 60.09; H, 5.04; N, 11.68. Found: C, 59.91; H, 5.19; N, 11.53.

2-[2-(Dimethylamino)ethyl]-8-methoxy-1H-pyrimido[5,6,1-jk]car-bazole-1,3(2H)-dione Hydrochloride (20) Sodium hydride (5.0 mg , $0.11 \mathrm{mmol}, 55 \%$ dispersion in oil) was added to $19(18 \mathrm{mg}, 0.050 \mathrm{mmol})$ in DMF (20 ml) and the mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$. After addition of methyl iodide $(0.003 \mathrm{ml}, 0.05 \mathrm{mmol})$, the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and then acidified with 1 N HCl (aq.). The mixture was neutralized with NaHCO_{3} (aq.), which was extracted with EtOAc-THF solution (1:1 in volume). The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine and then dried over MgSO_{4} and the organic layer was concentrated in vacuo. The solid obtained was washed with isopropyl ether and EtOH to furnish the title compound as a free base, which was hydrochlorinated in a usual manner to yield the title compound as an orange solid ($6.0 \mathrm{mg}, 0.016 \mathrm{mmol}, 32 \%$), mp $280-281{ }^{\circ} \mathrm{C}$ (dec.) (EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.92(6 \mathrm{H}, \mathrm{brs}), 3.46-$ $3.51(2 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.40(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{dd}, J=$ $2.6,9.0 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 8.09$ $(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 8.26(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.57(1 \mathrm{H}, \mathrm{dd}, J=0.8$, $7.6 \mathrm{~Hz}), 9.43(1 \mathrm{H}, \mathrm{brs})$. ESI-MS m/z: $338(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.46 ; \mathrm{H}, 5.45 ; \mathrm{N}, 11.13$. Found: C, $60.43 ; \mathrm{H}$, 5.37; N, 11.08 .

6-Acetyl-9H-carbazole-1-carboxylic Acid (46a) Acetic anhydride $(0.208 \mathrm{ml}, 2.20 \mathrm{mmol})$ was added to a stirred suspension of $\mathrm{AlCl}_{3}(0.880 \mathrm{~g}$, 6.60 mmol) in dry $\mathrm{CHCl}_{3}(12 \mathrm{ml})$ with stirring and then a suspension of $\mathbf{3 9 a}$ $(422 \mathrm{mg}, 2.00 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(4 \mathrm{ml})$ was added to the mixture at $0^{\circ} \mathrm{C}$. After being allowed to stand at r.t. and stirred overnight. Then, the reaction mixture was poured into ice-water and an excess amount of 1 N HCl (aq.)
was added and the mixture was extracted with EtOAc-THF solution ($1: 1$ in volume). Organic layer was separated and NaHCO_{3} (aq.) was added to the organic layer until the aqueous phase was neutralized to pH 7 . The organic layer was separated and washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over MgSO_{4}, and then concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to yield the title compound ($370 \mathrm{mg}, 1.46 \mathrm{mmol}, 73 \%$) as a solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 2.68$ $(3 \mathrm{H}, \mathrm{s}), 7.34(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.03-8.06(1 \mathrm{H}, \mathrm{m})$, $8.06(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.8 \mathrm{~Hz}), 8.55(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.91(1 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}), 11.73(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

6-Acetyl- N -[2-(dimethylamino)ethyl]-9H-carbazole-1-carboxamide Hydrochloride (28) The free base of the title compound was obtained from $46 \mathbf{a}(430 \mathrm{mg}, 1.70 \mathrm{mmol})$ in a similar manner to the preparation of $\mathbf{3 0 b}$. Yield: $450 \mathrm{mg}, 1.39 \mathrm{mmol}, 82 \%$ based on 46 a . A portion of the free base $(175 \mathrm{mg}, 0.54 \mathrm{mmol})$ was hydrochlorinated in a usual manner to yield the title compound as a white solid $(170 \mathrm{mg}, 0.47 \mathrm{mmol}, 87 \%$ based on the free base of the title compound), mp $188-190^{\circ} \mathrm{C}(\mathrm{EtOH})$.

Free Base of 28: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.22(6 \mathrm{H}, \mathrm{s}), 2.47-2.52(2 \mathrm{H}$, m), $2.67(3 \mathrm{H}, \mathrm{s}), 3.48(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.76(1 \mathrm{H}$, d, $J=7.7 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.7 \mathrm{~Hz}), 8.45$ $(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.87(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 11.85(1 \mathrm{H}, \mathrm{brs})$.

The Title Compound (28): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.68(3 \mathrm{H}, \mathrm{s}), 2.87(6 \mathrm{H}$, s), $3.27-3.47(2 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.78$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.02-8.06(2 \mathrm{H}, \mathrm{m}), 8.50(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}), 8.96(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 9.84(1 \mathrm{H}, \mathrm{brs}), 11.80(1 \mathrm{H}, \mathrm{s})$. HR-MS $m / z: 324.1711$ (Calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 324.1712\right)$.

8-Acetyl-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione Hydrochloride (26) The free base of 26 (180 mg , 0.56 mmol) was obtained from $46 \mathrm{a}(300 \mathrm{mg}, 1.2 \mathrm{mmol})$ in a similar manner to the preparation of $\mathbf{3 0 b}$ and $\mathbf{3 1 b}$. The free base of $\mathbf{2 6}(180 \mathrm{mg}, 0.56 \mathrm{mmol})$ was hydrochlorinated into the title compound in a usual manner to yield a white solid, mp 282-284 ${ }^{\circ} \mathrm{C}$ (dec.) (EtOH). Yield: $125 \mathrm{mg}, 0.32 \mathrm{mmol}, 27 \%$ based on 46a. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.75(3 \mathrm{H}, \mathrm{s}), 2.90-2.94(6 \mathrm{H}, \mathrm{m})$, $3.48-3.52(2 \mathrm{H}, \mathrm{m}), 4.42(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 8.16$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.31(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.8 \mathrm{~Hz}), 8.49(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $8.73(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 9.05(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 9.44(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. ESI-MS m/z: $350(\mathrm{M}+\mathrm{H})^{+}$, Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl}: \mathrm{C}, 62.26 ; \mathrm{H}, 5.22 ; \mathrm{N}$, 10.89. Found: C, 61.97; H, 5.26; N, 10.80 .

6-Butyryl-9H-carbazole-1-carboxylic Acid (46b) This compound was obtained from 39a ($422 \mathrm{mg}, 2.00 \mathrm{mmol}$) using n-butyryl chloride $(0.208 \mathrm{ml}$, $2.00 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(0.800 \mathrm{~g}, 6.00 \mathrm{mmol})$ in a similar manner to the preparation of 46 a as a solid. $(500 \mathrm{mg}, 1.78 \mathrm{mmol}, 89 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta$ $0.99(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.66-1.76(2 \mathrm{H}, \mathrm{m}), 3.12(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.34$ $(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.03-8.06(2 \mathrm{H}, \mathrm{m}), 8.57(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}), 8.92(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 11.72(1 \mathrm{H}, \mathrm{brs})$.

8-Butyryl-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]car-bazole-1,3(2H)-dione Hydrochloride (24) CDI ($580 \mathrm{mg}, 3.6 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{4 6 b}(500 \mathrm{mg}, 1.8 \mathrm{mmol})$ in DMF $(30 \mathrm{ml})$ at r.t. and stirred for 1.5 h . Then, N, N-dimethylethylenediamine $(0.79 \mathrm{ml}$, 7.2 mmol) was added and the mixture was stirred overnight. After being treated with $\mathrm{H}_{2} \mathrm{O}$, the mixture was extracted with EtOAc. The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$ (aq.) and brine, and dried over MgSO_{4}, and then concentrated in vacuo. The residue was stirred in EtOAc-EtOH-hexane ($1: 1: 1$ in volume) and the precipitate obtained was collected to yield crude N-[2-(dimethylamino)ethyl]-6-butyryl- 9 H -car-bazole-1-carboxamide $(420 \mathrm{mg})$ which was dissolved in DMF $(20 \mathrm{ml})$. Sodium hydride ($100 \mathrm{mg}, 2.3 \mathrm{mmol}, 55 \%$ dispersion in oil) was added to the mixture at r.t. and stirred for 30 min and added ethyl chloroformate $(0.23 \mathrm{ml}$, 2.4 mmol) at $0^{\circ} \mathrm{C}$ and stirred for 30 min at the same temperature. The mixture was acidified with 1 N HCl (aq.) and then neutralized by NaHCO_{3} (aq.) and then extracted with EtOAc. The extract was washed with brine and dried over MgSO_{4} before being concentrated in vacuo. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right)$ to furnish the title compound as a free base, which was hydrochlorinated to yield the title compound as a white solid ($380 \mathrm{mg}, 0.92 \mathrm{mmol}, 92 \%$), mp $219-220^{\circ} \mathrm{C}(\mathrm{EtOH})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.00(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.67-1.78(2 \mathrm{H}, \mathrm{m}), 2.89$ $(6 \mathrm{H}, \mathrm{brs}), 3.18(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.38-3.55(2 \mathrm{H}, \mathrm{m}), 4.41(2 \mathrm{H}, \mathrm{t}$, $J=5.7 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{dd}, J=0.5,7.7 \mathrm{~Hz}), 8.31(1 \mathrm{H}$, dd, $J=1.6,8.6 \mathrm{~Hz}), 8.48(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.73(1 \mathrm{H}, \mathrm{dd}, J=0.5,7.7 \mathrm{~Hz})$, $9.04(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 9.54(1 \mathrm{H}, \mathrm{brs})$. ESI-MS $m / z: 378(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 1.2 \mathrm{H}_{2} \mathrm{O}$: C, 60.67 ; H, 6.11; N, 9.65. Found: C, 60.76; H, 5.92; N, 9.72.

6-Methyl-9H-carbazole-1-carboxylic Acid (45) A suspension of 2-hydrazinobenzoic acid hydrochloride $\mathbf{3 8}(1.0 \mathrm{~g}, 5.5 \mathrm{mmol})$ in $\mathrm{AcOH}(50 \mathrm{ml})$
was refluxed under stirring and a solution of 4-methylcyclohexanone $(0.61 \mathrm{ml}, 5.0 \mathrm{mmol})$ in $\mathrm{AcOH}(10 \mathrm{ml})$ was dropped to the mixture, and $\mathrm{AcOH}(20 \mathrm{ml})$ was added. The mixture was stirred under reflux for 6 h and then allowed to cool. After adding $\mathrm{H}_{2} \mathrm{O}$, the precipitate that formed was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo to yield crude 6-methyl-5,6,7,8,9H-carbazole-1-carboxylic acid $(1.04 \mathrm{~g})$ as a white solid. The crude product $(1.04 \mathrm{~g})$ was added mesitylene $(50 \mathrm{ml})$ and $10 \% \mathrm{Pd}-\mathrm{C}$ (300 mg). The reaction mixture was stirred under reflux for 10 h and allowed to cool. The catalyst was removed by filtration and washed with THF. The filtrate was concentrated in vacuo and the crystals formed during evaporation was collected and washed with EtOH to yeild the title compound as a white solid ($560 \mathrm{mg}, 2.49 \mathrm{mmol}, 50 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.47(3 \mathrm{H}, \mathrm{s})$, $7.20-7.26(2 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.95-7.98(2 \mathrm{H}, \mathrm{m}), 8.34(1 \mathrm{H}$, dd, $J=0.8,7.6 \mathrm{~Hz}$).

2-[2-(Dimethylamino)ethyl]-8-methyl-1 H-pyrimido[5,6,1-jk]car-bazole-1,3(2H)-dione Hydrochloride (18) This compound was obtained from $45(560 \mathrm{mg}, 2.49 \mathrm{mmol})$ in a similar manner to the preparation of 24 as a white solid ($400 \mathrm{mg}, 1.12 \mathrm{mmol}, 45 \%$), mp 284-286 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 2.51(3 \mathrm{H}, \mathrm{s}), 2.88(6 \mathrm{H}, \mathrm{brs}), 3.42-3.47(2 \mathrm{H}, \mathrm{m}), 4.38(2 \mathrm{H}, \mathrm{t}$, $J=5.8 \mathrm{~Hz}), 7.47-7.50(1 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{dd}$, $J=0.8,7.6 \mathrm{~Hz}), 8.12-8.14(1 \mathrm{H}, \mathrm{m}), 8.23(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.49(1 \mathrm{H}, \mathrm{dd}$, $J=0.8,7.6 \mathrm{~Hz}), 9.65(1 \mathrm{H}, \mathrm{brs})$. ESI-MS $m / z: 322(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.14 ; \mathrm{H}, 5.69 ; \mathrm{N}, 11.63$. Found: C, 63.00; H, 5.61; N, 11.58.

Biological Experiment. Cells Murine leukemia P388 was obtained from the Cancer Chemotherapy Center, Japan Foundation for Cancer Research (Tokyo, Japan). Human oral cancer KB was purchased from American Type Culture Collection (Rockville, MD, U.S.A.).

In Vitro Growth Inhibition Assay Exponentially growing tumor cells $\left(1.25 \times 10^{3}\right.$ cells) in 0.1 ml of medium were seeded in 96 -well plates on day 0 . On day $1,0.1 \mathrm{ml}$ aliquots of medium containing graded concentrations of test drugs were added to the cell plates. After incubation at $37^{\circ} \mathrm{C}$ for 72 h , the cell number was determined by MTT assay. ${ }^{29}$) 50% inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ values were calculated as the drug concentrations that reduced the number of cells to 50% of the control number.
DNA-Protein Complex Formation Assay Using the SDS-KCl DNA-protein complex formation was detected by using the SDS-KCl method as described by Trask et al. ${ }^{30,31)}$ with some modifications. P388 cells $\left(1 \times 10^{5}\right.$ cells in 1 ml of culture medium) were radiolabeled with $0.4 \mu \mathrm{Ci} / \mathrm{ml}$ of $\left[{ }^{3} \mathrm{H}\right]$ thymidine at $37^{\circ} \mathrm{C}$ for 24 h , washed with 1 ml of PBS and incubated in culture medium for 12 h . Cells were treated with each drug at the concentration of $2 \mu \mathrm{M}, 10 \mu \mathrm{M}$ and $50 \mu_{\mathrm{M}}$ at $37^{\circ} \mathrm{C}$ for 1 h , collected using a microcentrifuge and then lysed at $65^{\circ} \mathrm{C}$ in 1.25% SDS, 5 mm EDTA (pH 8.0), $0.4 \mathrm{mg} / \mathrm{ml}$ salmon testis DNA. The lysate was incubated at $65^{\circ} \mathrm{C}$ for 10 min and brought to 65 mm KCl (using 325 mm KCl). This mixture was rapidly vortexed for 10 s and held on ice for 30 min . The precipitate that formed was collected using a microcentrifuge, suspended in 1 ml of 10 mm Tris $-\mathrm{HCl}, \mathrm{pH}$ $7.5,10 \mathrm{~mm} \mathrm{KCl}, 2 \mathrm{~mm}$ EDTA and trapped on a GF/C filter (Whatman International Ltd., Maidstone, England). The filter was washed 5 times with 1 ml of 10 mm Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,10 \mathrm{~mm} \mathrm{KCl}, 2 \mathrm{~mm}$ EDTA and then transferred to a liquid scintillation vial for determination of the radioactivity in the pellet.
The ability of a compound to form DNA-protein cross-linking was graded according to the ratio of the maximum radio activity at any concentration $(2.0,10$ or $50 \mu \mathrm{M})$ of a compound to the radioactivity of m-AMSA at $50 \mu \mathrm{M}$. For example, when the maximaum radioactivity of a compound at any concentration was $10-30 \%$ of the radioactivity of m-AMSA at $50 \mu \mathrm{~m}$, the result was indicated as + . Other ratio of the maximum radio activity at any concentration of a compound to the radioactivity of m-AMSA at $50 \mu \mathrm{M}$ were graded accordingly: $30-50 \%(++), 50-70 \%(+++)$.

In Vivo Antitumor Activity The antitumor activity of the compounds was evaluated in two in vivo experimental murine models: P388 leukemia and M5076 ovarian sarcoma. P388 cells were innocuated ip (10^{6} cells/mouse) into CDF1 mice on day 0 . The drugs were dissolved or suspended in saline, and injected ip on day 1 to 4 once daily. The results are expressed as the percent increase in lifespan (ILS). (ILS (\%) $=100 \times$ (lifespan of treated animals-lifespan of controls)/(lifespan of controls)), using the mean values for groups of at least 5 mice each. M5076 cells were implanted sc into the flank of mice on day 0 . The drugs were dissolved or suspended in saline, and injected ip on day 1 to 4 once daily. Mice were sacrificed on day 21, and respective tumor weights were measured. The results are expressed as percent T/C (mean tumor weight of treated animals divided by mean tumor weight of controls $\times 100$), using the mean values for the groups of at least 5 mice. In in vivo experiments, the body weight of mice was measured on day 7 unless as an indicator of toxicity. The relative body weight was ex-
pressed as the mean body weight of treated mice divided by the mean body weight of mice before the treatment on day 0 .

Detection of DNA-Topoisomerase II Cross-Linking Using Antibody to Topoisomerase II DNA-topo II cross-linking was measured as described previously. ${ }^{32,33)} \mathrm{P} 388$ cells $\left(2.5 \times 10^{6}\right.$ cells in 2 ml of culture medium) in the exponential growth phase were treated with $0.4,2,10$ and $50 \mu \mathrm{~m} 26$ (ER-37326) or $50 \mu \mathrm{M}$ etoposide and incubated for 1 h along with a negative control (no drug). Cells were centrifuged and lysed in 1 ml of TE (10 mm Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,1 \mathrm{~mm}$ EDTA) containing 1% Sarkosyl. The lysate was layered onto a CsCl step gradient (1 ml each of 4 different CsCl concentrations) and centrifuged in a Beckman SW50.1 rotor ($31000 \mathrm{rpm}, 18 \mathrm{~h}, 25^{\circ} \mathrm{C}$). Fractions ($200 \mu \mathrm{l}$ each) were carefully collected from the top by using a Pipetman. DNA concentration was determined by reading the absorbance at 260 nm . The DNA peak fractions were collected and the DNA concentration of each solution was adjusted. One hundred microliters of the equal concentration of DNA solution was diluted with $200 \mu 1$ of 25 mm sodium phosphate buffer (pH 6.5) and applied under vacuum to a nitrocellulose membrane, which had been presoaked in 28 mm sodium phosphate buffer (pH 6.5). The nonspecific binding sites were blocked by treatment with 5% Blotto $(50 \mathrm{~mm}$ Tris $-\mathrm{HCl}, \mathrm{pH} 7.4,100 \mathrm{~mm} \mathrm{NaCl}, 5 \%$ nonfat dry milk) in TBS-T (20 mm Tris- $\mathrm{HCl}, \mathrm{pH} 7.6,137 \mathrm{~mm} \mathrm{NaCl}, 0.1 \%$ Tween 20). The membrane was incubated with a rabbit polyclonal antibody to topoisomerase II (TopoGEN, Columbus, OH, U.S.A.) as a primary antibody for 3 h . After three washings with TBS-T (10 min each), the membrane was incubated with goat anti-rabbit conjugated to horseradish peroxidase as a secondary antibody for 1 h . After washing with TBS-T, the final detection of the blot was carried out by using the ECL Western Blotting Detection system (Amersham, Arlington Heights, IL, U.S.A.).

References and Notes

1) These authors contributed equally to this work.
2) O’Dwyer P. J., Leyland-Jones B., Alonso M. T., Marsoni S., Wittes R. E., N. Engl. J. Med., 312, 692-700 (1985).
3) Belani C. P., Doyle L. A., Aisner J., Cancer Chemother. Pharmacol., 34 (Suppl.), S118-126 (1994).
4) Ihde D. C., N. Engl. J. Med., 327, 1434-1441 (1992).
5) Urba W. J., Longo D. L., N. Engl. J. Med., 326, 678-687 (1992).
6) Fisher R. I., Gaynor E. R., Dahlberg S., Oken M. M., Grogan T. M., Mize E. M., Glick J. H., Coltman C. A., Jr., Miller T. P., N. Engl. J. Med., 328, 1002-1006 (1993).
7) Liu L. F., Annu. Rev. Biochem., 58, 351-375 (1989).
8) Bachur N. R., Yu F., Johnson R., Hickey R., Wu Y., Malkas L., Mol. Pharmacol., 41, 993-998 (1992).
9) Myers C. E., McGuire W. P., Liss R. H., Ifrim I., Grotzinger K., Young R. C., Science, 197, 165-167 (1977).
10) Hanada M., Noguchi T., Murayama T., Nippon Yakurigaku Zasshi, 122, 141—150 (2003).
11) Hanada M., Mizuno S., Fukushima A., Saito Y., Noguchi T., Yamaoka T., Jpn. J. Cancer Res., 89, 1229-1238 (1998).
12) Ashizawa T., Shimizu M., Gomi K., Okabe M., Anticancer Drugs., 9, 263-271 (1998).
13) Vassal G., Merlin J. L., Terrier-Lacombe M. J., Grill J., Parker F., Sainte-Rose C., Aubert G., Morizet J., Sevenet N., Poullain M. G., Lucas C., Kalifa C., Cancer Chemother. Pharmacol., 51, 385-394 (2003).
14) Utsugi T., Shibata J., Sugimoto Y., Aoyagi K., Wierzba K., Kobunai T., Oh-hara T., Tsuruo T., Yamada Y., Cancer Res., 56, 2809-2814 (1996).
15) Sami S., Dorr R. T., Alberts D. S., Remers W. A., J. Med. Chem., 36, 765-770 (1993).
16) CHEMGENEX Therapeutics Inc. 〈http://www.chemgenex.com/news. php
17) Gordon W. R., William A. D., Synthesis, 1985, 217-220 (1985).
18) Gordon W. R., William A. D., Synthesis, 1985, 220-222 (1985).
19) Antonini I., Cola D., Martelli S., IL Farmaco, 47, 1035-1046 (1992).
20) Musso H., Chem. Ber., 96, 1927-1935 (1963).
21) Norton P. P., Shyam S., J. Heterocyclic Chem., 14, 1147-1150 (1977).
22) Antonini I., Cola D., Porucci P., Bontemps-Gracz M., Borowski E., Martelli S., J. Med. Chem., 38, 3282-3286 (1995).
23) After $8(10 \mathrm{mg})$ was strirred in pH 7.4 phoshate buffer $(10 \mathrm{ml})$ and $\mathrm{MeOH}(10 \mathrm{ml})$ at r.t. for $24 \mathrm{~h}, 34 \%$ of decomposition of $\mathbf{8}$ was observed. One of main product was 27 which was less active than $\mathbf{8}$ in vitro.
24) Brana M. F., Cacho M., Gradillas A., de Pascual-Teresa B., Ramos A.,

Current Pharmaceutical Design, 7, 1745-1780 (2001).
25) No decomposition was observed for $\mathbf{1 5}$, and 0.5% and 2.6% decomposition were observed for $\mathbf{1 3}$ and 26 (ER37326) respectively when they were treated on the same condition for $\mathbf{8}$ in ref. 23.
26) This compound was reported to have activity against P 388 in vivo. ($\mathrm{q} 1 \mathrm{~d} \times 5,60 \%$ of ILS at $25 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$). See literature in ref. 19.
27) The residual peak of DMSO at $\delta 2.49$ was used as the reference.
28) Barclay B. M., Campbell N., J. Chem. Soc., 1945, 530-533 (1945).
29) Alley M. C., Scudiero D. A., Monks A., Hursey M. L., Czerwinski M. J., Fine D. L., Abbott B. J., Mayo J. G., Shoemaker R. H., Boyd M. R.,

Cancer Res., 48, 589-601 (1988).
30) Trask D. K., Muller M. T., Nucleic Acid Res., 11, 2779-2800 (1983).
31) Trask D. K., DiDonato J. A., Muller M. T., EMBO J., 3, $671-676$ (1984).
32) Martinez E. J., Owa T., Schreiber S. L., Corey E. J., Proc. Natl. Acad. Sci. U.S.A., 96, 3496-3501 (1999).
33) Nakamura K., Sugumi H., Yamaguchi A., Uenaka T., Kotake Y., Okada T., Kamata J., Niijima J., Nagasu T., Koyanagi N., Yoshino H., Kitoh K., Yoshimatsu K., Mol. Cancer Ther., 1, 169-175 (2002).

