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The diastereoselective substitution of 3-bromolactam derived from (R)-(�)-2-phenylglycinol with a vari-
ety of arylcuprate reagents is presented. The stereochemical outcome of the substitution reaction is dis-
cussed. The method provides an efficient and straightforward route to enantiopure 3-arylpiperidines.

� 2011 Elsevier Ltd. All rights reserved.
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Scheme 1. Diastereoselective arylation of an enantiopure 3-bromopiperidin-2-one
with arylcuprate reagents.
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Scheme 2. Preparation of (10R,3S)-3-bromopiperidin-2-one 2.
A large number of piperidine-containing compounds, either
natural or synthetic, are biologically and medicinally interesting.1

As a consequence, the development of new methods for the enan-
tioselective synthesis of piperidine derivatives by stereoselective
introduction of substituents at the carbon positions of the hetero-
cycle constitutes an area of current interest.2 In the context of the
enantioselective synthesis of 3-substituted piperidines, the enolate
alkylation of the amide carbonyl of lactams derived from phenyl-
glycinol with alkyl halides takes place with high diastereoselectiv-
ity to ultimately give enantiopure 3-alkylpiperidines in good
yields.3 However, this amide-enolate alkylation method cannot
be extended to aryl halides, as a consequence the stereoselective
arylation at the a-position to the carbonyl group of lactams de-
rived from phenylglycinol has been limited by the lack of a suitable
approach.4 In fact, the preparation of enantiopure 3-arylpiperi-
dines derived from phenylglycinol has been achieved through the
condensation of this amino alcohol with a substrate containing
the aromatic ring at the beginning of the synthesis, which involves
that it is required to follow the entire synthesis to accomplish each
derivative.5a,b

In this communication we present a novel and efficient proce-
dure for the diastereoselective arylation of an enantiopure 3-brom-
opiperidin-2-one derived from (R)-(�)-2-phenylglycinol, involving
a substitution reaction with arylcuprate reagents. To illustrate the
stereochemical outcome we have prepared enantiopure 3-arylpi-
peridines derived from phenylglycinol, which had been applied
to the synthesis of the alkaloid 3-PPP (Preclamol) and its analogs5

Scheme 1.
Compound 2 was obtained, starting from lactam 1,6 as a epi-

meric mixture of 3-bromopiperidin-2-ones in 95:5 ratio following
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Juárez).
the procedure described by Quirion and co-workers.7 Separation of
this mixture by chromatography gave (10R,3S)-3-bromolactam 2 in
70% yield as a single diastereoisomer detectable by 1H NMR
Scheme 2.

The substitution reaction of 3-bromopiperidin-2-one 2 was ini-
tially attempted with phenylmagnesium bromide, as a nucleophile,
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Figure 1. ORTEP of piperidine 5�HCl.

Table 1
Nucleophilic substitution of 3-bromolactam 2
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Entry Cupper(I)
source

T (�C) Solvent
[0.05 M]

Ratioa

3:4
Yield 3/
4(%)

1 0 �57 to 25 THF 0 0b

2 CuI�S(Me)2 �57 to 25 THF/S(Me)2 5:95 4/87
3 CuI�S(Me)2 �57 to

�25
THF/S(Me)2 40:60 35/53

4 CuI�S(Me)2 �57 THF/S(Me)2 70:30 60/24
5 CuI�S(Me)2 �57 THF/S(Me)2

c 95:5 80/2
6 CuI �57 THFc 80:20 63/14

a Compound 3 was the single diastereoisomer detected by 1H NMR from the
reaction mixture.

b Only PhMgBr reagent was used as the nucleophile.
c The concentration of the reaction was 0.025 M.
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Scheme 3. Reduction of compound 3.
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in THF at �57 �C for 12 h.8 Under these reaction conditions, only
starting material was observed, even when the reaction was
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Scheme 4. A proposed mechanism for the n
additionally stirred at room temperature for 12 h (Table 1, entry
1). However, treatment of lactam 2 with phenylmagnesium bro-
mide and CuI�0.75S(Me)2in THF-S(Me)2 solvent under similar reac-
tion conditions gave the desired product 3-phenylpiperidin-2-one
3 although in poor yield (4%).9 The major product was dimer 4 ob-
tained in 87% yield (entry 2).10 When this arylation reaction was
performed at �57 �C for 24 h, the ratio of products 3:4 was 70:30
(entry 4). The best result was achieved when the substitution reac-
tion was carried out at �57 �C for 24 h and the concentration of the
reaction was 0.025 M to avoid the formation of dimer 4. Under
these conditions compound 3 was obtained in 80% yield and the ra-
tio 3:4 was 95:5 (entry 5).
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Table 2
Diastereoselective arylation of compound 2 with arylcuprate reagents
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Entry Ar Time (h) Producta Yield (%)

1 2-Methoxyphenyl 36 N
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6 4-Tolyl 12 N
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a Onlythe (3R)diastereoisomers 6a–f were observed by 1H-NMR from the crude
reaction mixtures.

b Ratio product/dimer 4 was 95:5.
c In this case, the ratio product/dimer4 was 90:10.
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Additionally, in order to examine the reactivity of the phenyl-
cuprate reagent in the absence of S(Me)2, lactam 2 was treated
with phenylmagnesium bromide and CuI, as a cooper (I) source,
in THF without S(Me)2 at �57 �C for 24 h. In this case, compound
3 was achieved in 60% yield and the ratio of compounds 3:4 was
80:20 (entry 6).11

The absolute configuration at the C-3 of piperidin-2-one 3 was
determined by reduction of the lactam carbonyl group to give
the known piperidine 5 (absolute configuration at the piperidine
3-position had previously assigned as R)5b Scheme 3.

In addition, compound 5�HCl was crystallized and its X-ray
crystallographic analysis confirmed the (R) configuration at C-312

Figure 1.
The stereochemical outcome of the arylation reaction can be

explained by coordination of the amide oxygen to magnesium atom
of the phenylcuprate reagent in half-chair conformation A or B. In
the conformation A the attack of the phenylcuprate reagent is hin-
dered by the axial hydrogen at the C-3. Whereas, in the conforma-
tion B the delivery of the phenyl group takes place from the same
face of the C–Br bond, affording 3-phenylpiperidone 3 with reten-
tion of the configuration at C-3 Scheme 4.

Following our finding, the efficiency of diastereoselective aryla-
tion of 3-bromopiperidin-2-one 2 with various arylcuprate re-
agents under optimized reaction conditions was investigated. All
results are summarized in Table 2.

It is worth nothing that treatment of lactam 2 with sterically
demanding nucleophiles, such as 2-methoxyphenyl- and 2-tolyl-
cuprate gave the corresponding products in moderate yields (en-
tries 1 and 4). Additionally, less sterically hindered arylcuprate
reagents provided similar yields (entries 2, 3, 5, and 6) than when
employing the phenylcuprate reagent. It is also worth mentioning
that in all cases only the (3R) diastereoisomers were identified by
1H NMR from the crude reaction mixtures.

Finally, compound 6b was employed in the synthesis of the
alkaloid (+)-3-PPP. Thus, treatment of 6b with BH3-S(Me)2 in THF
afforded compound 7 in quantitative yield. The spectroscopic data
of compound 7 are in good agreement with the data reported in the
literature for the (1R,3R) enantiomer.5a Then, starting from 7 and
following the methodology described by Marazano and co-workers
the synthesis of (+)-3-PPP was achieved in two steps in 96% yield5a

Scheme 5.
In conclusion, an efficient method for the diastereoselective

arylation of 3-bromopiperidin-2-one derived from (R)-(�)-2-phe-
nylglycinol with arylcuprate reagents has been developed.

The stereochemical outcome has been studied and we showed
that the nucleophilic substitution occurs with the retention of con-
figuration via a coordinated transition state. Finally, to the best of
our knowledge this is the first example of a nucleophilic substitution
of an enantiopure a-bromolactam with an arylcuprate reagent.
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