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Abstract 
A simple and novel methodology for the synthesis of vinyl thiocyanates from decarboxylative cross-coupling reaction of 
cinnamic acids with KSCN under the synergistic interactions of visible light irradiation, Cs2CO3, Rose Bengal as the pho-
tocatalyst and air as the terminal oxidant at room temperature is reported. The reaction takes place by a radical pathway as 
evidenced from our experiments and literature. The report is the first example on the visible-light mediated thiocyanation 
of cinnamic acids, which employs environmentally benign and inexpensive starting materials and is characterized by easily 
removable by-product CO2.
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1  Introduction

Recently, visible-light-mediated decarboxylative cross-
coupling reactions have emerged as an attractive strategy 
to construct C–C, C–P, C–S, C–O and C–N bonds [1–6]. 
The credit of such widespread recognition of the strategy 

is linked with the potential advantages associated with it, 
e.g. environmental sustainability, cost-effectiveness, higher 
efficiency, greater selectivity and easily removable by-prod-
uct [7–10]. Despite the great advances in the visible-light-
mediated decarboxylative reactions, the formation of C–S 
bond via this strategy remains an underdeveloped process 
and deserves greater attention from the synthetic community 
[11, 12].

In synthetic organic chemistry, thiocyanation is a con-
venient method to form C-S bond [13–15]. In general, 
Pb(SCN)2, KSCN, NaSCN, AgSCN and NH4SCN salts are 
used as a SCN source to introduce the sulfur functional-
ity to a substrate [16–21]. Thiocyanates, the product of this 
reaction, are valuable and versatile intermediates for the 
synthesis of sulfur containing heterocycles [22–25]. They 
also exhibit significant drug properties and biological activi-
ties, such as antifungal, antimicrobial and antiparasitic [26]. 
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In this context, significant efforts have been undertaken to 
develop efficient methods for the formation of aryl or vinylic 
thiocyanates. However, the reports on the construction of 
Cvinyl-SCN bonds are limited [27–32]. In 1990, Kitamura 
et al. reported the use of bromoalkenes as substrates to get 
thiocyanates under photochemical conditions [33].Thereaf-
ter, some attractive methods to synthesize Cvinyl-SCN com-
pounds were consequently reported by Chen [34] and Kawa-

bata [35] with the use of activated olefins (Scheme 1, eq 
a). Simultaneously, vinyl thiocyanates were prepared from 
alkynes and their derivatives by Jiang [36], Dwivedi [37] 

and Wu [38] (Scheme 1, eq b). It is valuable to remark that 
most of the previous methods suffer from at least one of the 
following general drawbacks such as low-to-moderate yields, 
long reaction time, harsh conditions and use of toxic as well 
as expensive metals or complex reagents. Thus, the develop-
ment of greener and straightforward approach for the synthe-
sis of vinyl thiocyanates is highly desirable. Recently, Yang 
et al. reported the synthesis of thiocyanates from the decar-

boxylative coupling of cinnamic acids with NH4SCN via 
electrochemical protocol [39] (Scheme 1, eq c). However, to 
the best of our knowledge, there is no report in the literature 
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on the visible-light-mediated decarboxylative thiocyanation 
of cinnamic acids which can overcome the limitations of the 
previously reported methods. With this background in mind 
and in continuation of our efforts on visible light photoredox 
catalysis [40, 41], we have developed the synthesis of vinyl 
thiocyanates via a visible light induced photoredox catalysis 
reaction between cinnamic acids and potassium thiocyanates 
using Rose Bengal as a photoredox catalyst and Cs2CO3 as a 
base (Scheme 1, eq d). This method has advantages over the 
traditional transition-metal catalyzed cross-coupling reac-
tions in terms of the stereoselectivity, simple operation and 
easily removable by-product CO2.

2 � Experimental Section

2.1 � General Remarks

All chemicals were reagent grade and purchased from 
Aldrich, Alfa Aesar, Merck, Spectrochem and Qualigens and 
were used without purification. The reactions were moni-
tored using pre-coated TLC plates of silica gel G/UV-254 

of 0.25 mm thickness (Merck 60 F-254). NMR spectra 
were recorded on a BrukerAvance-II 400FT spectrometer 
at 400 MHz (1H) and 100 MHz (13C) in CDCl3 using TMS as 
an internal reference. Mass spectra were recorded on a JEOL 
SX-102 (FAB) mass spectrometer at 70 eV. Mass Spectra 
(ESIMS) were obtained on Micromassquadro II spectrom-
eter. Melting points were determined by open glass capillary 
method and were uncorrected.

3 � General Experimental Procedure

In a flame-dried round bottom flask was equipped with a 
magnetic stirrer bar, cinnamic acid 1 (0.5 mmol, 1 equiv), 
KSCN 2 (1.5 mmol, 3 equiv), Rose Bengal (1 mol%, 0.005 
equiv) and Cs2CO3 (1.5 mmol, 3 equiv) were added in 5 mL 
acetonitrile. The resulting mixture was stirred under irradia-
tion with 23 W CFL at room temperature. Upon completion 
of the reaction (monitored by TLC) after 12 h, the reaction 
mixture was quenched with water and extracted with EtOAc 
(3 × 5 mL). The combined organic layers were dried over 
Na2SO4 and concentrated in vacuo and the crude product 

Scheme 2   Control experiments
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was purified by silica gel chromatography (EtOAc/n-hexane, 
1:6) to afford an analytically pure sample of (E)-vinyl thio-
cyanates 3.

4 � Result and Discussion

At the outset of our investigation, a model reaction was per-
formed between cinnamic acid (1a) and potassium thiocy-
anate (2) using Ru(bpy)3Cl2.6H2O as a photocatalyst and 
Cs2CO3 as a base in THF under the irradiation of 23 W 
CFL. It was found that desired product (3a) was formed in 
72% yield (Table 1 entry1). Encouraged by preliminary suc-
cess, we screened the various reaction conditions. Initially, 
we used different photoredox catalysts such as Ir(ppy)3, 
Ru(bpy)3(PF6)2, Eosin-Y and Rose Bengal (Table 1 entries 
2–5). Although Ru(bpy)3(PF6)2 (Table 1 entry 3) was more 
effective than Rose Bengal (Table 1 entry 5) but we opted 
to use Rose Bengal as a catalyst due to its low cost and 
the transition-metal-free nature. Next, we focused our inter-
est to optimize the solvent. A range of solvents were tested 
(Table 1 entries 6–9). When CH3CN was used as the sol-
vent, the yield of product increased to 74% (Table 1 entry 9 
vs entry 5). Under neat condition, the desired product (3a) 
was obtained in 25% yield (Table 1 entry 10). Selection of 
a suitable base was another important factor which was the 
cornerstone of our protocol. A series of bases (Na2CO3, 
K2CO3, Na3PO4, DBU and NaOH) were screened (Table 1 
entries 11–15) but Cs2CO3 remained the best choice (Table 1 
entry 9). We noticed that on increasing the amount of two 
(1.2 mmol. to 1.5 mmol. or 2.4 equiv to 3.0 equiv), a respect-
able 79% yield of the product was recorded (Table 1 entry 
16) but on further increasing the loading of 2 (1.75 mmol. or 
3.5 equiv.) and Cs2CO3 (3.5 equiv), there was no significant 
change in the yield of 3a (Table 1 entry 17). However, the 
yield of 3a decreased on decreasing the amount of Cs2CO3 
(2.5 equiv) (Table 1 entry 18). On switching from KSCN to 
NH4SCN, again a decrement in the yield of 3a was observed 
(Table 1 entry 19). We next investigated the visible light 
source. In the presence of 18 W green LED and blue LED 
lamps, the desired product was isolated in trace and 20% 
yield respectively (Table 1 entries 20 and 21). No product 
formation could be detected in the dark (Table 1, entry 22).

After achieving these results in hand, we focused on 
investigating the scope of the reaction with respect to the 
cinnamic acids. As illustrated in Table  2, this reaction 
was compatible with many functional groups on cinnamic 
acids. Electron donating groups such as methyl and meth-
oxy groups gave 58–82% yield of target molecules (Table 2, 
3b-3f). It was noticed that electron withdrawing groups such 
as CHO, CN, −CF3 and −NO2 on the aromatic ring of cin-
namic acids (Table 2, entries 3g, 3l, 3n and 3p) gave lesser 
yield of the decarboxylative product in comparison to the 

electron donating groups. A 12% yield of 3o was found when 
3-(2-pyridyl) acrylic acid (1o) was used. The substrate 3, 
3-diphenylacrylic acid (1q) also gave low yield of the corre-
sponding thiocyanation product (Table 2, 3q). Unfortunately, 
no product (3r) was obtained when (E)-4-phenylbut-2-enoic 
acid (1r) was used as the substrate.

Several control experiments were performed to shed light 
on the reaction pathway, the results of which are illustrated 
in Scheme 2. When 3 equivalents of TEMPO (a radical scav-
enger) were added to the reaction mixture, no yield of the 

Table 1   Optimization of reaction conditions

a Reaction conditions: cinnamic acid (1a, 0.5  mmol, 1  eq.), KSCN 
(2, 1.2  mmol, 2.4  eq.), catalyst (1  mol %), solvent (5  mL), base 
(1.5 mmol, 3 eq.), open to air, irradiation under a 23 W CFL at room 
temperature for 12 h
b Isolated yield
c 2 (1.5 mmol. or 3.0 eq.)
d 2 ( 1.75 mmol. or 3.5 eq.) and Cs2CO3 ( 3.5 eq.)
e Cs2CO3 ( 2.5 eq.)
f NH4SCN was used in place of KSCN
g 18 W green LED lamps
h 18 W blueLED lamps
i In the dark. n.d. (Not detected)

Entry Catalyst Base Solvent Yieldb

1 Ru(bpy)3Cl2.6H2O Cs2CO3 THF 72
2 Ir(ppy)3 Cs2CO3 THF 30
3 Ru(bpy)3(PF6)2 Cs2CO3 THF 75
4 Eosin Y Cs2CO3 THF 40
5 Rose Bengal Cs2CO3 THF 67
6 Rose Bengal Cs2CO3 toluene 30
7 Rose Bengal Cs2CO3 DMSO 16
8 Rose Bengal Cs2CO3 EtOH 41
9 Rose Bengal Cs2CO3 CH3CN 74
10 Rose Bengal Cs2CO3 Neat 25
11 Rose Bengal Na2CO3 CH3CN trace
12 Rose Bengal K2CO3 CH3CN n.d
13 Rose Bengal Na3PO4 CH3CN 10
14 Rose Bengal DBU CH3CN 40
15 Rose Bengal NaOH CH3CN n.d
16 Rose Bengal Cs2CO3 CH3CN 79c

17 Rose Bengal Cs2CO3 CH3CN 80d

18 Rose Bengal Cs2CO3 CH3CN 68e

19 Rose Bengal Cs2CO3 CH3CN 25f

20 Rose Bengal Cs2CO3 CH3CN n.d.g

21 Rose Bengal Cs2CO3 CH3CN 20 h

22 Rose Bengal Cs2CO3 CH3CN n.di
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product was obtained which confirms that the reaction was 
proceeding through a radical pathway. In the absence of vis-
ible light, Cs2CO3, Rose Bengal and O2, product formation 
was inhibited, thus verifying that reproducible construction 
of 3a involves all of these.

4.1 � Mechanism

Based on above investigation and literature reports [42–44], 
a tentative mechanism has been proposed in Fig. 1. On expo-
sure to visible light, a thiocyanate radical A is generated via 
single electron transfer to excited-state species Rose Bengal 

RB*, which is then converted into RB.−. The RB.− further 
undergoes single electron transfer to molecular oxygen 
to complete the photoredox cycle. Simultaneously, base 
abstracts the proton from cinnamic acid 1a to form interme-
diate (B). Subsequently, radical A attacks intermediate (B) 
leading to the formation of intermediate (C) which is fur-
ther oxidized to cationic intermediate (D) (via O2 to O2

.−). 
Finally, intermediate (D) undergoes decarboxylation to yield 
the final product 3a. Detection of H2O2 by KI/starch indica-
tor proves the generation of the superoxide radical anion 
during the reaction [45].

Table 2   Substrate Scope a, b

a Reaction conditions: cinnamic acids (1, 0.5  mmol, 1  eq.), KSCN (1.5  mmol, 3  eq.), Rose Bengal (1  mol %), CH3CN (5  mL), Cs2CO3 
(1.5 mmol, 3 eq.), open to air, irradiation under a 23 W CFL at room temperature for 12 h.
b Isolated yield.
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5 � Conclusion

In conclusion, we have developed a novel technology for 
vinyl thiocyanate formation via transition-metal-free visible 
light photoredox catalysis. We have synthesized a series of 
vinyl thiocyanates having numerous useful functionalities. 
They could be easily produced in good-to-excellent yields 
with only carbon dioxide as the byproduct under consider-
ably mild reaction conditions. The established protocol, in 
contrast with the conventional methods, refrains from the 
use of a strong oxidant, transition-metal catalyst and high 
temperature. Moreover, this method provides a straightfor-
ward and environmentally benign process for the construc-
tion of vinyl thiocyanates from cinnamic acid and KSCN via 
decarboxylative radical pathway.
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