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Abstract 
We prepared a series of substituted aminocyanopyrroles and another of aminocynaothiophenes. We describe an efficient new 
one-step synthetic strategy via the condensation of an alkyl sarcosinate and ethoxymethylenemalononitrile, through a Gewald-
like reaction. The UV-visible absorption and steady-state and time resolved fluorescence properties of some representative 
compounds, as well as their acid-base behavior, is also presented. The compounds might be useful for medicinal applications and 
as bioimaging probes. 
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1. Introduction 

Pyrrole and thiophene derivatives are frequently found in 
naturally occurring compounds, many of which exhibit useful 
biological activity [1,2]. Polyfunctional derivatives of 3-
aminopyrroles are an important family of compounds [1], 
with many applications as antibacterial, antiviral, 
anticonvulsant, anti-inflammatory, analgesic and antipyretic 
agents [3-6]. Pyrroles are also building blocks for porphyrins 
[7], and polymers of pyrroles have found use as conducting 
polymers and materials for non-linear optics [8]. Different 
methods for the preparation of this heterocyclic system have 
been proposed [9-13]. They can also further undergo a wide 
variety of chemical reactions including electrophilic 
substitution reactions, acylation and alkylation reactions at the 
nitrogen [14]. 

In the other hand, multi-substituted thiophene compounds 
have demonstrated a broad spectrum of uses, including in 
agrochemical applications [15], as potential antioxidant and 
anti-inflammatory agents [16,17], anti-HIV PR inhibitors 
[18], anti-breast cancer [19], anti-avian influenza virus 
(H5N1) [20], multitarget kinase inhibitors [21], AMPK 
activators [22], antitubercular agents [23], and as fluorescent 
bioimaging dyes [24]. For this purpose there is also the 
potential of enhancing the fluorescence properties through 
aggregation-induced emission by immobilization of the dyes 
in nanoparticles [25-43]. 

Hence, the development of substituted aminopyrroles and 
aminothiophenes is of great interest in organic synthesis as 
well as in photochemistry. 

Here we aim to synthesize heterocyclic compounds with 
pyrrole and thiophene groups functionalized with amine, 
nitrile and esther groups at specific positions through simple 
methods. These compounds are potentially biologically active 
and might serve as building blocks for other useful molecules. 
We also expect them to have interesting photophysical 
properties that might make them useful for bioimaging, 
especially with fluorescence-related microscopies including 
confocal microscopy. 

2. Results and discussion 

2.1. Synthesis 

Synthetic methods for preparing a series of substituted 
pyrrole by amines at position 3 have rarely been reported [44-
46]. The synthesis of aminocyanopyrroles 3 was carried out, 
using a multi-component reaction, through two steps. The first 
step was an esterification reaction of an acetylchloride with an 
alcohol which generated hydrochloric acid in the medium. 
Sarcosine 1 was then added, and transformed into the 
corresponding salt 1’, which in the presence of HCl and of an 
excess of the alcohol underwent esterification to give the 
corresponding hydrochloride of alkyl sarcosinate 2. In the 
following steps, we have added to the mixture DMF and 
K2CO3 as alkaline reagent (releasing one molecule of 
hydrochloric acid and turning 2 into the corresponding alkyl 
sarcosinate) and ethoxymethylenemalononitrile. The reaction 
was heated under reflux for 6 hours at 60°C, yielding the 
corresponding aminocyanopyrrole 3 (Scheme 1). 

Several methods for the preparation of thiophenes have 
been reported as well as their applications in the synthesis of 
useful compounds [15-24,47,48]. Most thiophenes are formed 
by reaction of a 3-thionate salt acrylic ester or acrylonitrile 

with a halogen compound. In this work, the 3-amino-4-
cyanothiophene-2-carboxylates 4 (Scheme 2) were 
synthesized via a single step process of a 3-alkyl-3-
alkoxyacrylonitrile malononitrile and a mercaptoacetic ester 
in DMF and K2CO3 by a modified reaction of the Gewald 
method [48-50]. The structures of the synthesized compounds 
were confirmed by NMR and IR spectroscopies and by mass 
spectrometry. 

 

2.2. Fluorescence, UV-Vis Absorption and Acid-base 
Properties 

The structure of the different compounds is very similar in 
terms of ionizable groups, so we have studied one 
representative compound of each of the pyrrole and thiophene 
families, 3a and 4a, as well as the pyrrole derivative with a 
conjugated phenyl group 3d. 

In Figure 1 we present UV-Vis absorption (a), fluorescence 
emission (b) and fluorescence excitation (c) spectra of 4a. 
Other fluorescence emission spectra of 4a can be found in 
Supplementary Material (fig. S1). The molar absorptivity 
coefficients of the thiophene 4a (see Figures 1a, S2a and S3a 
and table S1) and its respective fluorescence are more intense 
than those of the pyrrole compounds 3a and 3d, and those of 
3d (with the phenyl group) are more intense than those of 3a.  

Scheme 1.  One-pot strategy used for pyrroles synthesis. 
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Scheme 2 . Synthetic strategy for thiophenes 4. 

C C
OEt

R2NC

NC

4a  R1: CH3

 R2: CH3

4b  R1: CH3

 R2: H

4c  R1: C2H5

 R2: CH3

SH CH2 CO2R1+

S CH2 CO2R1R2

CNNC

S

NC NH2

R2 CO2R1

4

DMF / K2CO3



In order to have a better view the behavior of the 
absorption and fluorescence of the compounds depending on 
the pH and to determine the ionization constants, we show 
titration curves of the lone compounds at representative 
wavelengths in Fig. 2. Bearing in mind the possibility of 
ratiometric imaging [51,52], we show the fluorescence curves 
as a ratio of fluorescence intensities at two wavelengths. We 
also present in the plots the speciation curves which were 
simulated with the HySS2009 software package [53]. By 
fitting the experimental data with simulated curves of 
absorption or fluorescence intensity, we obtain the ionization 
constants (Table 1). In Table S1 we also present the 
estimations for molar absorption coefficients resulting from 
the fittings of the absorption spectra with the estimated pKa 
values. 

The titration of compound 4a (Fig. 2a) shows the existence 
of one acid-base equilibrium, which provokes a great change 

in the absorption around 400-450 nm, and the corresponding 
change in the fluorescence intensity when exciting at this 
wavelength. The compound can still be excited at 460 nm, 
making it usable in confocal microscopy. The titration curve 
shown in Fig. 2a was obtained using this excitation 

wavelength.  

In Figure 2b and 2c we also present the titration curves for 
the pyrrole compounds 3a and 3d at representative 
wavelengths. Their UV-visible, fluorescence emission and 
excitation spectra can be seen at Supplementary Material 
figures S1 and S2. We propose possible acid-base equilibria 
in Scheme S1. 

The pyrrole compounds 3a, 3d have an extra ionization 
constant when compared to the thiophene 4a, as expected due 

Figure 1.  UV-Visible absorption (a), fluorescence emission (λexc = 
435 nm) (b) and excitation (λem = 500 nm) (c) spectra of 4a (from red 
to violet: pH 1.2; 1.8; 2.56; 3.13; 3.60; 4.20; 4.70; 5.23; 5.85; 6.47; 
7.06; 7.73; 8.73; 9.53; 10.32; 1.02; 11.60). 
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Figure 2.  Titration curves overlapped with the calculated speciation 
curves (thin solid lines) and titration fitting curves (thick dashed 
lines): (a) 4a (Emission, λexc = 460 nm. Blue: I(λem = 480 nm)/I(λem

= 600 nm); (b) 3a (Emission, I(λem = 370 nm)/I(λem = 430 nm). Blue: 
λexc = 270 nm; red: λexc = 340 nm; (c) 3d (Red: Normalized UV-vis 
absorption, λ = 285 nm; blue: emission, λexc = 345 nm, I(λem = 550 
nm)/I(λem = 450 nm). I: Intensity 
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to the nitrogen in the pyrrole ring. The presence of the 
hydrophobic phenyl group makes compound 3d more acidic 
than 3a, possibly in part due to the extra gain in stability in 
water if the compound is protonated. 

 
We have also measured the fluorescence lifetimes of 4a, 3a 

and 3d at representative pH values. The decays were analyzed 
with a sum of three exponential functions, yielding good 
fitting results (see Supplementary Material Tables S3, S4 and 
S5). An example of a decay is shown in Figure 3. The 
remaining decays can be seen in Supplementary Material 
figures S4 to S22. 

Table 1.  Ionization constants obtained by fitting of the 
spectrofluorimetric and spectrophotometric titration curves 
with the calculated speciation curves. Proposed acid-base 
equilibria are depicted at Scheme S1 (Supplementary 
Material) 

Compound pKa1 pKa2 

4a 3.1±0.2 - 

3a 2.5±0.2 6.5±0.2 

3d  1.3±0.2 4.3±0.2 

 

As can be seen in Table S3 (Supplementary Material), in 
the case of the thiophene compound 4a we observe that the 
decays are relatively unchanged by the acid-base equilibria, 
but are faster for the emission band appearing at 410 nm than 
when collected at 350 nm. At pH ≈ 2, when exciting at 335 
nm and collecting at 420 nm, the decay lifetime values of the 
different components remain relatively unchanged from when 
exciting at 285 nm, although the average lifetime is shorter 
due to a greater weight of the shortest component. 

In the case of the pyrrole compound 3a, the longer 
components τ2 and τ3 are also not too much affected by pH, 
but there is a diminishing of the value of the shortest 
component τ1 with pH, especially when passing from pH ≈ 3 
to pH ≈ 9. There is also a decrease in the relative weight w1 
with the corresponding increase in w2 and w3 . 

In the pyrrole compound 3d, the decays also are not very 
much affected by pH. There is, however, a diminishing in the 
value of τ2 when exciting at 335 nm and passing from pH ≈ 3 
to 6. The average lifetime 〈τ〉 is also shorter when exciting at 

290 nm and collecting at 450 nm than when exciting at 335 
nm due to a greater weight in the shortest component. The 
average lifetime 〈τ〉 is also generally shorter for 3d than for 
3a. 

We conclude that 3d has a greater molar absorptivity and 
fluorescence intensity when comparing with 3a due to the 
presence of the phenyl group. This group also seems to lower 
slightly the pKa values of 3d relatively to 3a, and its decays 
become faster. 

 

Conclusions 

In summary, we have developed an efficient new strategy 
of preparation of 3-amino-4-cyano-1H-pyrrole-2-
carboxylates, in two steps from commercially available 
inexpensive starting materials. We also describe an easy 
protocol for the preparation of 2-aminothiophenes. These 
products constitute building blocks useful in the access to 
many nitrogen and sulphur heterocycles with potential 
therapeutic interest or which could serve as precursors for 
many useful biologically active molecules. They could also be 
potentially useful fluorescent dyes for bioimaging 
applications, especially in the case of thiophene derivatives, 
which can be excited at 460 nm, making them usable in 
confocal microscopy applications. 

Some representative compounds described herein were 
tested for their UV-visible absorption and fluorescence 
properties, as well as their acid-base behavior. We have seen 
that the molar absorptivity and fluorescent intensity of the 
thiophene compound 4a are significantly higher than those of 
the pyrrole compounds 3a and 3d, and that the presence of the 
phenyl group of 3d also affects the absorption and 
fluorescence properties. The fluorescence and UV-visible 
absorption capabilities of these compounds might enable 
further studies of their biological activities by these 
techniques.  

Experimental 

IR Spectra were determined for KBr on a Jasco Fourier 
transform FT–IR 420 spectrometer with precision of 2 cm-1 
covering the field of 400–4000 cm-1. 

The 1H NMR and 13C NMR spectra were recorded in 
solution in dimethyl sulfoxide (DMSO-d6) on a Bruker 
spectrometer (1H at 400 MHz, 13C at 100 MHz). The chemical 
shifts are expressed in parts per million (ppm). The 
multiplicities of the signals are indicated by the following 
abbreviations: s, singlet; d, doublet; t, triplet; q, quadruplet; 
and m, multiplet, and coupling constants are expressed in 
hertz. 

Mass spectra were acquired in a Bruker Daltonics 
micrOTOF-Q spectrometer with Electrospray ionization 
(ESI). 

The melting points were determined in an Electrotherma 
l9100 apparatus and are not corrected. 

The reactions were monitored by thin-layer 
chromatography (TLC) using aluminium sheets with silica gel 
60F254 from Merck. 

 

General method for the synthesis of methyl-3-amino-
4-cyano-1,5-dimetyhl-1H-pyrrole-2-carboxylate 

Figure 3.  Fluorescence decay curve of compound 4a at pH 2.2, λexc

= 285 nm, λemi = 350 nm. Weighted residuals are plotted below the 
decay curve. The fluorescence decay lifetimes were obtained by 
fitting the decay curve with a sum of three exponential functions 
(with weights of each decay component τ1, τ2 and τ3 being w1, w2 and 
w3). The average decay lifetime is calculated as 〈τ〉 = w1 × τ1 + w2 ×
τ2 + w3 × τ3 . For 4a at pH 2.2, τ1 = 1.01 ns (w1 = 24%), τ2 = 2.49 ns
(w2 = 28%), τ3 = 10.82 ns (w3 = 48%), 〈τ〉 = 6.1 ns and χ2 = 1.09. 
“Dec exp”: experimental decay; “Dec calc”: calculated decay; “L”: 
Light source. 



2.25 g of sarcosine were added to a cold solution of 5 mL 
of acetyl chloride and 22.5 mL of alcohol. The mixture was 
then heated under reflux for 3 hours, leading to the formation 
of sarcosine chlorohydrate. In the second step, sodium 
carbonate (K2CO3) (10 mmol) was added to the mixture with 
ethoxymethylenemalononitrile (10 mmol) and 
dimethylformamide (DMF) (30 mL). The reaction was heated 
for 6 hours at 60°C. The mixture was then poured into 100 ml 
of water; the compound in the resulting precipitate was then 
filtered and recrystallized from ethanol. 

Compound 3a: methyl 3-amino-4-cyano-1-methyl-1H-
pyrrole-2-carboxylate: 62%; mp: 209 ºC. FTIR : νC=N: 2150 
cm-1, νNH2: 3322-3413 cm-1, νC=O: 1668 cm-1. NMR 1H 
(DMSO-d6, 400 MHz): 7.54 (s, 1H, H9), 5.79 (s, 2H, NH2); 
3.74 (s, 3H, H7); 3.70 (s, 3H, H8). NMR 13C (DMSO-d6, 100 
MHz): C6 160.9, C3 146.0, C5 133.9, C2 120.6, C10 115.0, 
C4 79.6, C7 50.5, C8 37.7. +MS m/z 180.07 (M+1)  

Compound 3b: methyl 3-amino-4-cyano-1,5-dimethyl-1H-
pyrrole-2-carboxylate: 92%; mp: 187 ºC. FTIR : νC=N: 2212 
cm-1, νNH2: 3332-3423 cm-1,  

νC=O : 1661 cm-1. NMR 1H 
(DMSO-d6, 400 MHz): 5.77 (s, 2H, NH2), 3.72 (s, 3H, H7); 
3.63 (s, 3H, H8); 2.24 (s, 3H, H9). NMR 13C (DMSO-d6, 100 
MHz): C6 160.9, C3 145.3, C5 142.4, C2 115.3, C10 104.2, C4 
80.8, C7  50.4, C8 33.1, C9 11.2. +MS m/z 194.09 (M+1). 

Compound 3c: methyl 3-amino-4-cyano-5-ethyl-1-methyl-
1H-pyrrole-2-carboxylate: 85%; mp: 165 ºC. FTIR : νC=N: 
2215 cm-1, νNH2: 3346-3446 cm-1, νC=O: 1668 cm-1. NMR 1H 
(DMSO-d6, 400 MHz): 5.75 (s, 2H, NH2), 3.73 (s, 3H, H7); 
3.66 (s, 3H, H8); 2.66 (q, J=7.6 Hz, 2H, H9); 1.13 (t, J=7.6Hz, 
3H, H10). NMR 13C (DMSO-d6, 100 MHz): C6 161.0, 
C3 147.2, C5 145.5, C2 115.1, C4 104.3, C7 79.8, C8 50.4, C11 
32.9, C10 18.5, C9 12.7. +MS m/z 208.10 (M+1)  

Compound 3d: methyl 3-amino-4-cyano-1-methyl-5-
phenyl-1H-pyrrole-2-carboxylate: 82%; mp: 145 ºC. FTIR:  
νC=N: 2211 cm-1, νNH2: 3342-3435 cm-1, νC=O: 1671 cm-1. 
NMR 1H (DMSO-d6, 400 MHz): 7.5 (m, 5H, phenyl group); 
5.88 (s, 2H, NH2), 3.78 (s, 3H, H7); 3.62 (s, 3H, H8). 
NMR 13C (DMSO-d6, 100 MHz): C6 161.1, C3 145.7, 
C5 145.7, C10 143.8, C9 129.7, C12 128.8, C11 127.9, C2 115.2, 
C13 105.6, C4 81.3, C7 50.71, C8 35.1. +MS m/z 256.10 (M+1) 

Compound 3e: methyl 3-amino-4-cyano-1-ethyl-5-methyl-
1H-pyrrole-2-carboxylate: 87%; mp: 164 ºC. FTIR : νC=N : 
2193 cm-1, νNH2: 3328-3425 cm-1, νC=O: 1668 cm-1. NMR 1H 
(DMSO-d6, 400 MHz): 5.73 (s, 2H, NH2), 4.21 (q, J= 7.2 Hz, 
2H, H7); 3.63 (s, 3H, H9); 2.25 (s, 3H, H10), 1.28 (t, J = 7.2 
Hz, 3H, H8). NMR 13C (DMSO-d6, 100 MHz): C6 160.5, 
C3 145.3, C5 142.3, C2 118.9, C11 104.3, C4  80.8, C7 58.9, C8 
33.2, C9 14.4, C10 11.3. +MS m/z 208.10 (M+1) 

Compound 3f: methyl 3-amino-4-cyano-1-ethyl-1H-
pyrrole-2-carboxylate: 60%; mp : 192ºC. FTIR : νC=N: 2150 
cm-1, νNH2: 3322-3402 cm-1, νC=O: 1669 cm-1. NMR 1H 
(DMSO-d6, 400 MHz): 7.83 (s, 1H, H10), 5.07 (s, 2H, NH2); 
3.51 (s, 3H, H9); 2.89 (q, J = 7.2 Hz, 2H, H7), 2.22 (t, J = 7.2 
Hz, 3H, H8). NMR 13C (DMSO-d6, 100 MHz): C6 163.5, 
C3 144.3, C5 138.4, C2 120.43, C10 114.2, C4 80.8, C7 50.4, C8 
44.9, C9 28.8. +MS m/z 194.09 (M+1)  

General method for the synthesis of 3-amino-4-cyano-
1,5-dimetyhl-1H-thiophene-2-carboxylate 

A mixture of the corresponding 3-alkyl-3-
alkoxyacrylonitrile (10 mmol) and mercaptoacetic ester (10 
mmol) in DMF (15 ml) with sodium carbonate (K2CO3) was 
heated under reflux for 1h. The resulting precipitate was then 
washed with water. 

Compound 4a: methyl 3-amino-4-cyano-5-
methylthiophene-2-carboxylate: 66%; mp: 240 ºC. FTIR : 
νC=N: 2208 cm-1, νNH2: 3388-3421 cm-1, νC=O: 1665 cm-1. NMR 
1H (DMSO-d6, 400 MHz): 6.81 (s, 2H, NH2), 3.74 (s, 3H) 
2.51 (s, 3H). NMR 13C (DMSO-d6, 100 MHz): C6 162.9, C5 
157.1, C3 153.4, C2 113.0, C4 101.3, C9 96.1, C7 51.3, C8 15.4. 
+MS m/z 197.03 (M+1) 

Compound 4b: methyl 3-amino-4-cyanothiophene-2-
carboxylate: 68%; mp: 250 ºC. FTIR : νC=N: 2215 cm-1, νNH2: 
3345-3446 cm-1, νC=O: 1669 cm-1. NMR 1H (DMSO-d6, 400 
MHz): 7.7 (s, H5) 6.80 (s, 2H, NH2), 3.8 (s, 3H). NMR 13C 
(DMSO-d6, 100 MHz): C6 163.1, C5 158.3, C3 153.6, C2 113.1, 
C4 101.9, C8 95.9, C7 51.8. +MS m/z 183.01 (M+1)  

Compound 4c: ethyl 3-amino-4-cyano-5-methylthiophene-
2-carboxylate: 78%; mp: 205 ºC. FTIR : νC=N: 2192 cm-1, 
νNH2: 3329-3425 cm-1, νC=O: 1680 cm-1. NMR 1H (DMSO-d6, 
400 MHz): 6.79 (s, 2H, NH2), 4.22 (q, J=7.2 Hz, 2H), 2.51 (s, 
3H), 1.24 (q, J=7.2 Hz, 3H). NMR 13C (DMSO-d6, 100 
MHz): C6 162.6, C5 157.0, C3 153.4, C2 113.0, C4 101.2, C9 
96.4, C7 60.0, C8 15.3, C10 14.2. +MS m/z 211.05 (M+1) 

 
UV-visible Absorption and Fluorescence Measurements 

Absorption, steady-state and time-resolved fluorescence 
spectra of the different pyrrole and thiophene derivatives were 
measured in aqueous solutions with sodium pyrophosphate 
buffer 0.01 M. The pyrrole samples were prepared at the 
concentration of 1 mM and the thiophene sample at 10 µM, 
corresponding to an optical density of A ≈ 0.1 at 350 nm (3a, 
3d) or 435 nm (4a). UV-visible absorption spectra were 
obtained in a JASCO V-660 spectrometer, using quartz cells 
(l = 1 cm), unless indicated otherwise. The fluorescence 
spectra were recorded on a Horiba Jobin Yvon Fluorolog 3-22 
spectrofluorimeter using quartz cells (l = 1 cm), excitation 
slits with 3 nm bandwidth, emission slits with 1 nm 
bandwidth, integration time of 0.1 s/point, maximum 
sensitivity, and right angle mode.  

The fluorescence quantum yields were determined for 3a, 
3d and 4a relative to standards using the procedure 
recommended by IUPAC [54,55]. The compounds were 
dissolved in phosphate buffer 0.01 M at neutral, acidic and 
basic pH. For 3a and 3d quinine sulphate in H2SO4 0.5 M (ϕ = 
0.546, λdem = 350−665 nm, λex=340 nm) was used as standard 
and for 4a we used coumarin 153 in H2O (ϕ = 0.12, λdem = 
432−650 nm, λex=420 nm) as standard [54]. The absorption 
and emission spectra of each compound and of the 
corresponding standard (with excitation at the same 
wavelength) were measured for at least 5 different 
concentrations. 

Fluorescence intensity decay curves with picosecond 
resolution were obtained by the single-photon timing 
technique using a laser excitation system that consists of a de-
locked Coherent Inova 440-10 argon ion laser synchronously 
pumping a cavity dumped Coherent 701-2 dye laser 
(Rhodamine 6G or DCM), which delivers 5-6 ps pulses at a 
repetition rate of 460 kHz. Intensity decay measurements 



were made by alternate collection of excitation and decay 
curves, using an emission polarizer set at the magic angle. 
The excitation profile was recorded at the excitation 
wavelength with a scattering suspension. For the decays, a 
cut-off filter was used to remove all excitation light. The 
emission signal passed through a depolarizer, a Jobin-Yvon 
HR-320 monochromator with a grating of 100 lines/mm and 
was detected with a Hamamatsu 2809U-01 microchannel 
plate photomultiplier (MCP-PT). The instrument response had 
as effective FWHM of 35 ps. 

Fluorescence intensity decay curves were obtained by 
excitation light at 285 or 290 nm using the rhodamine dye 
laser and at 435 nm using the titanium-sapphire laser. The 
decay curves were analyzed using home-made non-linear 
least-square reconvolution software based on the Marquard 
algorithm [56], and the quality of the fit was evaluated by the 
reduced χ2, the weight residuals and the autocorrelation of the 
residuals. 
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Table 1. Ionization constants obtained by fitting of the spectrofluorimetric and spectrophotometric 
titration curves with the calculated speciation curves. Proposed acid-base equilibria are depicted at 
Scheme S1 (Supplementary Material) 

Compound pKa1 pKa2 

4a 3.1±0.2 - 

3a 2.5±0.2 6.5±0.2 

3d  1.3±0.2 4.3±0.2 
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Highlights: 

• A series of substituted aminocyanopyrrole esthers has been synthesized; 

• A series of substituted aminocyanotiophene esthers has also been synthesized; 

• Efficient one-pot synthetic strategies are described; 

• The fluorescence, UV-vis absorbance and acid-base behaviour of the compounds is 

presented; 

• These compounds might be useful for medicinal applications and as bioimaging probes. 
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