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Ethenesulfonyl Fluoride (ESF): An On-Water Procedure for the Kilogram-Scale 

Preparation. 

 

Qinheng Zheng, Jiajia Dong,† and K. Barry Sharpless* 

Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States 

 

Abstract: A two-step, on-water procedure for the synthesis of ethenesulfonyl fluoride (ESF) 

is described. 2-Chloroethanesulfonyl fluoride is made via a neat reaction with an aqueous, 

near saturated potassium bifluoride solution from readily available 2-chloroethanesulfonyl 

chloride. The subsequent dehydrochlorination of 2-chloroethanesulfonyl fluoride proceeds 

neatly with magnesium oxide as the base in an aqueous suspension to give ESF. This recipe 

enables the preparation of ESF in 98% yield on kilogram scale. 

 

Ethenesulfonyl fluoride (ESF, 1) consists of a vinyl moiety directly linked to a sulfonyl fluoride 

group (CH2=CH–SO2F). First reported in 1953,1 this compound has been successfully applied 

to several productive fields, including: dyestuffs,2 functional materials (ion exchange 

membrane,3 photoresist material,4 etc.), lubricating oil additives,5 and medicinal chemistry.6 

The most noteworthy feature is that ESF ranks tops in the reactivity hierarchy of known 

Michael acceptors, from which most of the aforementioned applications stemmed.7 The 

extraordinary Michael reactivity of ESF was demonstrated in depth by John Hyatt and co-
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workers in a masterful 1979 full paper,8 where nearly 100 examples at 1/20 mol or larger 

scale are presented. In our ongoing pursuit of the best small and connective modules for 

click chemistry,9 ESF appears to be the perfect one. At present, the uses of ESF in a wider 

range of applications are limited by its high price.  

Earlier routes to ESF include: (1) aqueous potassium fluoride mediated chloride-fluoride 

exchange from ethenesulfonyl chloride;1 (2) chloride-fluoride exchange from 2-

chloroethanesulfonyl chloride followed by a base-mediated dehydrochlorination.10 In 1979 

Hyatt et al. summarized previous syntheses and reported a two-step synthesis on a 1.7 mole 

scale (54% overall yield).8 From our experience with “on-water” reactivity, we saw 

opportunities for further improvements. In 2012, we discovered that interfacial-treatment 

with saturated aqueous K(FHF) solution (pH around 3.0) was remarkably effective for the 

synthesis of sulfonyl fluorides from the corresponding sulfonyl chlorides.7a Given here are 

complete details of our bifluoride improved process for RSO2Cl → RSO2F, as applied in the 

conversion of 2-chloroethanesulfonyl chloride (2) to ESF on a kilogram scale.  

As shown in Scheme 1, the readily available 2 is converted to ESF in two simple steps: 

First, 2-chloroethanesulfonyl fluoride (3) is made via the sulfonyl chloride-fluoride exchange 

using saturated K(FHF) solution; Second, MgO mediated elimination (dehydrochlorination) of 

3 in aqueous medium affords 1.  

 

Scheme 1. Kilogram-scale preparation of ethenesulfonyl fluoride 
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A 10-L Nalgene® polypropylene carboy11 was equipped with a Teflon®-coated octagonal 

stir bar (14 mm × 74 mm). This reaction vessel was charged with water (4400 mL), to which 

potassium bifluoride [K(FHF), 1.70 kg, 21.8 mol] was added in one portion. With a magnetic 

stirring (600 rpm), K(FHF) started to dissolve into water, and a rapid endotherm was 

observed (internal temperature reached ~ 8 ºC). A near saturated K(FHF) solution formed 

after 1 h,12 when the solution approached room temperature (~ 22 ºC). At this point, 2 (960 

mL, 1.50 kg, 95% purity, 8.73 mol) was added in one portion to the K(FHF) solution. The 

biphasic mixture was stirred vigorously (480 rpm) to form an emulsion and with continued 

stirring the emulsion was maintained for 2 h at room temperature, or rather, autogenous 

temperature,13 when 1H NMR or GC-MS indicated the completion of the reaction. The 

stationary mixture separates into two phases. The upper phase is an aqueous solution of 

salts,14 and the lower phase is virtually pure 2-chloroethanesulfonyl fluoride. With the aid of 

a funnel, the biphasic mixture was poured into a 6-L separatory funnel. The lower phase (ca. 

750 mL) was drained into a 1000-mL glass Erlenmeyer flask, dried over anhydrous MgSO4 

(10 g), and filtered, giving 3 (1.10 kg, 7.51 mol). Three 1000-mL portions of methylene 

chloride were used to wash the reaction vessel and the MgSO4 used to dry neat 3, and to 

extract the upper aqueous phase. The combined organic phase was washed by 2 L brine, 
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dried over 100 g anhydrous MgSO4, and filtered through a 600-mL sintered glass Buchner 

funnel. The filtrate was concentrated by rotary evaporation (18 ºC, 0.05 bar) to afford 

additional 0.17 kg 3. In total, 3 (1.27 kg, 8.67 mol, 99.3%) was obtained as a slightly yellow 

liquid. 

A 4-L glass Erlenmeyer flask was equipped with a Teflon®-coated octagonal stir bar (14 

mm × 74 mm) and was supported by a beaker chain clamp. The flask was charged with 

water (1000 mL) and 3 (1.27 kg, 8.67 mol). Under magnetic stirring (600 rpm), an emulsion 

was formed. After adding 1.0 kg crushed ice, the mixture cooled to ~ 10 ºC. Magnesium 

oxide (MgO, 174 g, 4.35 mol) was added portion-wise over 15 min to the stirred emulsion 

creating a white “slurry”,15 which was then allowed to warm to room temperature. The 

reaction was judged complete by 1H NMR after 3 h. The insoluble MgO is consumed in the 

reaction creating soluble MgCl2, hence, the white “slurry” eventually turns to an emulsion. 

The stationary emulsion separated into two phases. With the aid of a funnel, the mixture 

was poured into a 4-L separatory funnel. The upper aqueous phase is a MgCl2 solution (ca. 

2 mol•L–1). The lower phase is virtually pure ESF (ca. 600 mL), which was drained into a 1000 

mL Erlenmeyer flask, dried over anhydrous MgSO4 (10 g), and filtered, giving neat 1 (0.85 kg, 

7.7 mol). Three 500 mL portions of methylene chloride were used to wash the reaction 

vessel and the MgSO4 used to dry the neat 1, and to extract the aqueous phase. The 

combined organic phase was washed with brine (1 L), dried over anhydrous MgSO4 (50 g), 

and filtered through a 600-mL sintered glass Buchner funnel. The filtrate was concentrated 

by rotary evaporation (18 ºC, 0.05 bar) to afford an additional 0.10 kg of 1.16 Totally, 1 (0.94 

kg, 8.6 mol, 98%) was obtained as a slightly yellow liquid, which was judged pure by 1H 
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NMR. Further short-path distillation under reduced pressure (85 ºC, 0.53 bar) helped to 

remove the color and gave 0.90 kg colorless 1. 

In conclusion, 1.42 kg 2-chloroethanesulfonyl chloride (2) was converted to 0.94 kg 

ethenesulfonyl fluoride (ESF, 1, 98% overall yield). This interfacial, on-water sequence, which 

requires little more than stirring and liquid-liquid phase separation, should be practical on a 

commercial scale.  However, our present goal is just to increase access to ESF by the 

chemical research community. 

 

Experimental Section 

Caution! ESF is a toxic substance, which has a pungent odor and strong tear-exciting action. 

All operations handling ESF and precursors should be performed in a well vented hood. 

Glassware used in this process should be soaked in 3 mol•L–1 NaOH solution or aqueous 

ammonia overnight to remove any remaining sulfonyl halide (1, 2 or 3) before normal 

cleaning. John Hyatt and co-workers illustrated that ESF is highly toxic orally and extremely 

toxic intraperitoneal to laboratory animals. The oral LD50 is approximately 50 mg/kg for rats 

and approximately 10 mg/kg for mice. The intraperitoneal LD50 is 1–5 mg/kg for rats and < 

5 mg/kg for mice. The liquid was absorbed through the intact skin, the skin absorption LD50 

is 1–5 mL/kg. The material acts as a severe lachrymator. 

2-Chloroethanesulfonyl fluoride (3). bp 171 °C (1 atm). 1H NMR (500 MHz, CDCl3): δ 3.94–

3.90 (m, 2H), 3.83–3.78 (m, 2H). 13C NMR (101 MHz, CDCl3): δ 52.7 (d, J = 7.2 Hz), 35.0. 19F 

NMR (376 MHz, CDCl3): δ 56.7. GC-MS tR = 3.624 min (flow rate 2 mL/min; column 
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temperature 50 ºC for 4 min, then 20 ºC/min to 280 ºC, then hold 2 min), EI (70 eV)-

quadrupole MS calcd for C2H4ClFO2S [M+] 145.96, m/z (%) 62.0 (70), 63.0 (100), 64.0 (32), 

65.0 (32), 67.0 (24), 83.0 (10), 146.0 (0.3). 

Ethenesulfonyl fluoride (1). bp 119 °C (1 atm). 1H NMR (500 MHz, CDCl3): δ 6.82 (ddd, J = 

16.6, 9.1, 2.1 Hz, 1H), 6.76 (d, J = 16.5 Hz, 1H), 6.47 (dd, J = 9.2, 5.2 Hz, 1H). 13C NMR (126 

MHz, CDCl3):  δ 134.5 (d, 3JC–F = 3.0 Hz), 130.2 (d, 2JC–F = 28.2 Hz). 19F NMR (376 MHz, 

CDCl3): δ 56.8. 
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 1H, 13C and 19F NMR spectra for compounds 3 and 1. 
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(13) Little exotherm was noted. Hence, no heat control is needed, at least at the present 

scale. 

(14) This aqueous solution contained potassium bifluoride [K(FHF), 4.37 mol], potassium 

dihydrogen trifluoride [K(FHFHF), 8.73 mol], and potassium chloride (KCl, 8.73 mol). The 

pH of this solution was 1.0, as measured by a pH test strip (1–14 range, 1.0 precision). 

To minimize fluoride waste, the solution for sulfonyl chloride-fluoride transformation 

can be regenerated by adding potassium fluoride (508 g, 8.73 mol) to this solution. A 

rapid exotherm is observed. After cooling to room temperature, the pH of this solution 

is again 3.0. This regenerated bifluoride solution can be used in the preparation of a 

new batch of ESF. We found this K(FHF)-K(FHFHF) solution could be used for at least 

three cycles without apparent change in the effectiveness of the reaction. 

(15) Magnesium oxide has poor solubility in water, see: Roy, D. M.; Roy, R. Am. J. Sci. 1957, 

255, 573. Hence, this “slurry” condition approximated “slow addition”, which simplifies 

the operation. 

(16) Alternatively, this combined organic phase can be used as a stock solution of ESF in 

methylene chloride. In this case, it was determined by quantitative NMR that the 

solution (3.91 kg) contained 0.10 kg ESF. The concentration could be further confirmed 

by a “titration” using an equimolar reaction between ESF and 1-phenylpiperazine. 
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