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Abstract The facile access to the tetracyclic skeleton of podophyllo-
toxin, a medicinally important lignan natural product, was efficiently
achieved via a unique intramolecular alkylarylation of the tethered
alkene in a dihalide under mild conditions using reductive nickel cataly-
sis.

Key words nickel, reductive coupling, intramolecular, cyclization,
synthesis

Over the past decade, reductive cross-electrophile cou-
plings catalyzed by nickel complex have evolved into a ver-
satile method for the formation of carbon–carbon bonds
under the mild conditions.1 Notably, recent progress to-
wards reductive 1,2-dicarbofunctionalization of alkenes re-
ceived more attentions because two vicinal C–C bonds
across unactivated or electronically biased olefins could be
installed simultaneously by this strategy.2 As shown in
Scheme 1 (top), an aromatic halide with a olefin side chain
will cyclize first, then followed by the interception of an-
other electrophile.3 Meanwhile, nickel-catalyzed intermo-
lecular three-component dicarbofunctionalization reac-
tions under reductive conditions appeared as well.4

We were earlier involved in the field of reductive cou-
pling trigger by nickel complex.5 In particular, our interests
focused on the undeveloped area: fully intramolecular re-
actions and their synthetic applications for total synthesis
of bioactive natural products and pharmaceuticals.5a,d,5f–i In
this work, a dihalide 1 bearing a double bond in the mole-
cule was designed (Scheme 1, bottom), and a tandem cy-
clization across this double bond would occur to deliver a
tetracyclic skeleton 2 embedded in Podophyllum lignans
through a single operation. As a representative member of
this family, podophyllotoxin (3, Scheme 2) has been used
for the treatment of angogenital warts. Its sugar derivatives

Scheme 2  Selected previous synthesis for podophyllotoxin (3)
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Scheme 1  Reductive 1,2-dicarbofunctionalization of alkene by Ni-ca-
talysis: state of the art
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have also been developed as chemotherapy drugs. The de-
scribed transformation herein was thus very valuable for a
rapid access to the core structure of this medicinally im-
portant molecule.6 Especially, several radical cyclzation-
based routes had been reported.6j,t

The precursor for this fully intramolecular 1,2-dicarbo-
functionalization of alkene was prepared according to the
synthetic route demonstrated in Scheme 3 and Scheme 4.
Firstly, an aryl lithium reagent derived from easily synthe-
sized 3,4,5-trimethoxyl bromobenzene5f was added into a
solution of commercially available 6-bromopiperonal. The
generated diaryl carbinol was then converted into the cor-
responding iodide via Br–Li exchange protocol. Through an
oxidative reaction mediated with pyridinium dichromate
(PDC), the desired diaryl ketone 4 was thus obtained in 43%
overall yield. Next, one-carbon homologation of ketone 4
was carried out. The initial epoxidation proceeded smooth-
ly under Corey–Chaykovsky reaction conditions, and the re-
sulting epoxide 5 could further rearrange to diaryl acetal-
dehyde 6 under ZnI2.7 Upon subjection of this labile alde-
hyde to the ylide, which was generated in situ from
(methoxylmethyl)triphenylphosphonium chloride,8 the
enol methylether 7 was produced accordingly in 65% over-

all yield. Notably, only one flash column chromatography
was necessary during the conversion of the ketone 4 into 7.

With sufficient amounts of enol ether 7 in hand, the
synthesis of -bromo acetals 8 was pursued. This seeming
routine task proved to be challenging, which was partly at-
tributed to a competitive bromination on the electron-rich
benzene ring. After extensive experiments with various re-
agents, such as Br2 and NBS, it was found that the employ-
ment of 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCD)9

afforded a fairly good regioselectivity, providing -bromo
acetals 8 as a mixture of diastereomers in 79% yield
(Scheme 4).10

The stage was then set for the intramolecular 1,2-alky-
larylation of alkene 8. Ethyl crotonate (EC), which played a
critical role in our previous studies,5i was still found to be a
best ligand for this fully intramolecular coupling under re-
ductive conditions (Scheme 5). Two separable products 9
and 10 with the core of Podophyllum lignans were obtained
in a combined yield of 77%. As shown in the Supporting In-
formation, the relative stereochemistries of these two dias-
tereomers were assigned by 1H–1H COSY and NOESY spec-
tra, respectively. The typical tetralin structure embedded in
9 and 10 paves the way for the stereodivergent synthesis of
this family of natural products.5h,11

In summary, a diaryl ketone based approach for the syn-
thesis of enol ether 7 was developed, which secured the
supply for the designed bicyclization precursor 8. This bro-
moiodide under reductive nickel catalysis constructed two
vicinal C(sp3)–C(sp3) and C(sp3)–C(sp2) bonds across the
tethered alkene, therefore establishing the core of podo-
phyllotoxin as a therapeutic agent. We believed that this
fully intramolecular conjunctive cross-coupling would find
new utilities in the context of natural products synthesis.

Scheme 3  Preparation of enol ether 7: a diaryl ketone-based approach
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Scheme 4  Preparation of -bromo acetal as a bicyclization precursor
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Scheme 5  Stereoselective synthesis of tetracyclic skeleton embedded Podophyllum lignans
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