ORIGINAL RESEARCH

Synthesis and anthelmintic activity of some novel (*E*)-2-methyl/ propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8tetrahydrobenzo[4,5]thieno[2,3-*d*]pyrimidines

Satya Sri Chitikina¹ · Praveen Buddiga¹ · Pran Kishore Deb² · Raghu Prasad Mailavaram 1 · Katharigatta N. Venugopala^{3,4} · Anroop B. Nair³ · Bilal Al-Jaidi⁵ · Supratik Kar⁶

Received: 1 April 2020 / Accepted: 3 June 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

A series of some novel (E)-2-methyl/propyl-4-[(2-(substitutedbenzylidene)hydrazinyl]-5,6,7,8-tetrahydrobenzo[4,5]thieno [2,3-d]pyrimidines was synthesized and characterized by adopting an appropriate synthetic scheme. The effect of electron withdrawing and electron donating groups at the aromatic ring in presence of methyl and propyl substituents at the 2-position of the scaffold was evaluated for anthelmintic activity against adult Indian earthworms (Pheretima posthuma). Among 2methyl-thieno[2,3-d]pyrimidine analogs, compounds with electron donating methoxy group either at para-position or at meta and para-positions of the aromatic ring showed potent anthelmintic activity at 100 µg/ml (284 and 261.8 µM concentrations) for compounds 5g and 5h with a mean paralytic time of 2.32, 2.22 min, and helminthicidal time of 22.38, 19.43 min, respectively. In contrast, the presence of electron withdrawing chloro group at ortho and para-position of the aromatic ring was found to be favorable for the anthelminthic activity of the compounds 5n and 50 (at concentration of $259.7 \,\mu$ M) with propyl group at the 2-position of the thieno[2,3-d]pyrimidine scaffold, exhibiting mean paralytic time of 2.5 min, 2.81 min and helminthicidal time of 21, 20.03 min, respectively. Anthelmintic activities of these four compounds 5g, 5h, 5n, and 5o (at the concentrations of 284, 261.8, 259.7, and 259.7 µM, respectively) were found to be on par with the standard drug piperazine adipate (time for paralysis and death at 6.25 and 24.5 min, respectively) at concentration of $100 \,\mu g/$ ml (431.03 µM). Overall, the potency of these compounds (5g, 5h, 5n, and 5o) is better than standard drug as they exhibited the same activity at $259.7-284 \,\mu\text{M}$ as that of a standard drug (which has shown the same activity at $431.03 \,\mu\text{M}$). Further, the predicted ADME properties of all the synthesized compounds were found to be in the satisfactory ranges as predicted by SwissADME software and found to have drug-like properties. Thus, further modification of these compounds might lead to the discovery of more potent analogs.

Keywords Anthelmintics · Thienopyrimidines · Benzylidenehydrazines · ADME properties by SwissADME software

Raghu Prasad Mailavaram raghumrp@rediffmail.com

- ¹ Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, West Godavari Dist., Bhimavaram, AP 534 202, India
- ² Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- ³ Department of Pharmaceutical Sciences, College of Clinical

Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia

- ⁴ Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
- ⁵ Faculty of Pharmacy, Yarmouk University, P. O. Box 566, Irbid 21163, Jordan
- ⁶ Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA

Introduction

Helminthiasis is one of the most common parasitic infections and a neglected tropical disease, mainly affecting the poor people and livestock of developing countries due to inadequate sanitation and unhygienic conditions (Knox et al. 2012; Woods et al. 2007; Le et al. 2019; Idris et al. 2019). The helminth parasites mainly reside in the gastrointestinal tract (GIT) of the host, but their larvae can also invade the liver and other organs of the body (Tripathi 2013; Stear et al. 2007). They are harmful to the host by causing malnutrition, anemia, secreting toxins and if untreated, then they can also result in chronic infections by regulating immunemediated inflammation (Elliott and Weinstock 2012; Jones and Berkley 2014; Helmby 2015). Furthermore, the fecal elimination of helminth eggs from the infected people and animals can contaminate the soils in areas with poor sanitation conditions leading to the reinfection in environment (Chander et al. 2014; Idris et al. 2019). The World Health Organization (WHO) estimates that more than 1.5 billion people, or 24% of the world's population harbor soil-transmitted worm infections worldwide, including more than 267 million preschoolage children and over 568 million school-age children as well as women of child bearing age, pregnant women including and occupational groups like fishermen and irrigation field workers for schistosomiasis https://www. who.int/neglected_diseases/news/nobel_prize_2019/en/ (accessed on 15/1/2019).

Anthelmintic drugs can either kill (vermicides) or expel the worms from the GIT and other parts of the body. There are four major classes of common anthelmintics viz. benzimidazoles (e.g., mebendazole, albendazole, fenbendazole, and flubendazole), imidazothiazoles (levamisole), piperazines (phosphate, citrate, and adipate), piperidines (pyrantel and oxantel), macrocyclic lactones (ivermectin and moxidectin), and the aminoacetonitrile derivative, monepantel available for the treatment of nematodes infections (Taman and Azab 2014; Geary et al. 2015). Surprisingly, many of these marketed drugs available for human treatment were first developed as veterinary medicines (Zajíčková et al. 2020). However, most of these drugs are associated with undesirable side effects in the GIT (nausea, vomiting, and abdominal pain), liver, and kidney, including allergic reactions, alopecia, hypotension, and body ache among others. In addition, helminths have been gaining resistance against many drugs including the latest drug monepentel and moxidectin, thereby imposing a big challenge to the chemists for the discovery and development of alternative drugs with improved efficacy, pharmacokinetic and pharmacodynamics properties, devoid of side effects of existing anthelmintic drugs (Kotze and Prichard 2016; Geary 2012; Shalaby 2013; Raza et al. 2016; Lanusse et al. 2018; Martin et al. 2018). It should be noted that anthelmintic drugs mainly acting on the GIT are structurally different showing different mechanism of actions. In recent years, many plants, herbal extracts, and novel chemical compounds belonging to diverse heterocyclic scaffolds have been explored for their antiparasitic and anthelmintic activities (Zajíčková et al. 2020; Romero-Benavides et al. 2017: ba Ndob et al. 2016: Santos et al. 2019: Bauri et al. 2015: Keiser et al. 2016; Preston et al. 2017; Preston and Gasser 2018; Taylor et al. 2013; Tyagi et al. 2018). Interestingly, some of the recently reported molecules with thieno [2,3-d]pyrimidine scaffold have shown promising anthelmintic activities (Meyer et al. 2009; Mavrova et al. 2018; Bahashwan et al. 2013; Partridge et al. 2018). These encouraging results gave us an impetus to synthesize and evaluate the anthelmintic activities of a novel series of (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5] thieno[2,3-d]pyrimidines.

Materials and methods

Chemistry

Experimental

Reactions were routinely monitored by thin layer chromatography (TLC) on silica gel (precoated F254 Merck plates) and the spots were visualized under UV light (254 nm). Melting points were recorded in open capillaries on LABINDIA melting point apparatus and were uncorrected. IR spectra were recorded on Bruker FT-IR Spectrometer (Spectrum RX I) using the KBr pellet technique. ¹H NMR spectra were determined in CDCl₃ or DMSO- d_6 with a Bruker Avance II [400 MHz (¹H)] and signals were recorded in parts per million (δ) downfield from tetramethylsilane (TMS) as an internal standard. Mass spectra (ESI) were recorded on Waters Micromass Q-TOF Micro.

General procedure for the synthesis of compounds

2-Amino-3-carbethoxy-4,5,6,7-tetrahydrobenzo[*b*]thiophene (1) (Gewald et al. 1966; Gewald 1965; Rao et al. 2013), 4-hydroxy-2-methyl/propyl-5,6,7,8-tetrahydrobenzo[4,5]thieno [2,3-*d*]pyrimidines (**2a** and **2b**) (Prasad et al. 2001; Prasad and Kishore 2007a), 4-chloro-2-methyl/propyl-5,6,7,8-tetrahydrobenzo[4,5] thieno[2,3-*d*]pyrimidines (**3a** and **3b**) (Deb et al. 2018; Prasad et al. 2001), 4-hydrazino-2-methyl/propyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-*d*]pyrimidines (**4a** and **4b**) (Prasad et al. 2008, 2007b) were prepared by following reported procedures.

General procedure for the synthesis of 2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8tetrahydrobenzo[4,5]thieno[2,3-*d*] pyrimidines (5a-p)

Compounds **4a** and **4b** (0.002 M, 0.5 g) and appropriate aldehyde (0.002 M) were taken in a round bottom flask containing 20 ml ethanol and 2 drops of glacial acetic acid was added and kept in stirring for about 2 h. The reaction was monitored using TLC. After completion of the reaction the reaction mixture was kept at room temperature overnight. The precipitate formed was filtered, dried and recrystallized with acetone to get the final products **5a–p**.

(E)-4-(2-benzylidenehydrazinyl)-2-methyl-5,6,7,8-tetrahy-

drobenzo[4,5]thieno[2,3-*d*] pyrimidine(5a) White solid, yield: 73%, M.P.: 122–123 °C, IR (KBr) ν_{max} : 3433.94, 2931.10, 2833.56, 1628.42, 1544.92 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.13 (1H, s, HN–N=CH–), 8.41 (1H, s, HN–N=CH),7.98–7.99 (2H, d, *J* = 6.4 Hz, 2ArH), 7.41–7.46 (3H, q, *J* = 7.4 Hz, 2ArH), 2.98–3.00 (2H, m, CH₂), 2.73–2.75 (2H, m, CH₂), 2.42 (3H, s, CH₃), 1.79–1.82 (4H, m, 2CH₂) ppm; MS (ESI) *m/z* (%): 322 (M⁺, 100); 323 (M + H, 30); Elemental analysis: calcd. For C₁₈H₁₈N₄S: C, 67.08; H, 5.59; N, 17.39%. Found: C, 67.10; H, 5.61; N, 17.41%.

(E)-4-((2-(2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidin-4-yl)hydrazono)methyl)phenol (5b) White solid, yield: 70%, M.P.: 215–216 °C, IR (KBr) ν_{max} : 3379.02, 2935.74, 1565.62, 1415.74 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 10.62 (s, 1H, OH), 8.57 (1H, s, HN–N=CH–), 8.19 (1H, s, HN–N=CH–), 7.55–7.57 (2H, d, *J* = 8.2 Hz, 2ArH), 6.73–6.75 (2H, d, *J* = 8.4 Hz, 2ArH), 2.67 (3H, s, –CH₃), 2.62–2.67 (2H, m, CH₂), 2.25–2.2.58 (2H, m, CH₂), 1.70–1.75 (4H, m, 2CH₂) ppm; MS (ESI) *m/z* (%): 338 (M⁺, 100); 339 (M + H, 40); Elemental analysis: calcd. For C₁₈H₁₈N₄OS: C, 63.90; H, 5.33; N, 16.57%. Found: C, 63.92; H, 5.35; N, 16.60%.

(E)-2-methyl-4-(2-(4-nitrobenzylidene)hydrazinyl)-5,6,7,8-

tetrahydrobenzo[4,5] thieno[2,3-*d*]pyrimidine (5c) Light yellow solid, yield: 76%, M.P.: 210–211 °C, IR (KBr) ν_{max} : 3319, 2931.96, 1622.62, 1556.97 cm⁻¹; ¹H NMR (Acetone*d*₆, 400 MHz) δ = 10.95 (1H, s, HN–N=CH–), 8.38 (1H, s, HN–N=CH), 8.11–8.14 (2H, d, *J* = 8.8, 2ArH), 7.95–7.97 (2H, d, *J* = 8.4, 2ArH), 2.92–2.94 (2H, m, CH₂), 2.66–2.68 (2H, m, CH₂), 2.31 (3H, s, –CH₃), 1.72–1.77 (4H, m, 2CH₂) ppm; MS (ESI) *m/z* (%): 367 (M⁺ 100); 368 (M + H, 20); Elemental analysis: calcd. For C₁₈H₁₇N₅O₂S: C, 58.86; H, 4.63; N, 19.07%. Found: C, 58.89; H, 4.66; N, 19.17%.

(*E*)-2-methyl-4-(2-(3-nitrobenzylidene)hydrazinyl)-5,6,7,8tetrahydrobenzo[4,5] thieno[2,3-*d*]pyrimidine (5d) Light yellow solid, yield: 75%, M.P.: 198–199 °C, IR (KBr) ν_{max} : 3350.07, 2932.93, 1629.25, 1521.53 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.37 (1H, s, HN–N=CH–), 8.78 (1H, s, HN–N=CH), 8.55 (1H, s, ArH), 8.44–8.46 (1H, d, *J* = 8.2 Hz, ArH), 8.22–8.24 (1H, d, *J* = 8.2 Hz, ArH), 7.71–7.76 (1H, t, *J* = 8.2, ArH), 2.99–3.01 (2H, m, CH₂), 2.74–2.76 (2H, m, CH₂), 2.45 (3H, s, –CH₃), 1.78–1.79 (4H, d, *J* = 4.8, 2CH₂) ppm; MS (ESI) *m/z* (%): 367 (M⁺, 100); 368 (M + H, 20); Elemental analysis: calcd. For C₁₈H₁₇N₅O₂S: C, 58.86; H, 4.63; N, 19.07%. Found:C, 58.87; H, 4.65; N, 19.20%.

(*E*)-4-(2-(4-chlorobenzylidene)hydrazinyl)-2-methyl-5,6,7,8tetrahydrobenzo[4,5] thieno[2,3-*d*]pyrimidine (5e) Light yellow solid, yield: 81%, M.P.: 170–171 °C, IR (KBr) ν_{max} : 3335.58, 2923.26, 1625.61, 726.79 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.19 (1H, s, HN–N=CH–), 8.41 (1H, s, HN–N=CH), 8.01–8.03 (2H, d, *J* = 8.0 Hz, 2ArH), 7.49–7.51 (2H, d, *J* = 8.4 Hz, 2ArH), 2.97–2.99 (2H, m, CH₂), 2.73–2.75 (2H, m, CH₂), 2.42 (3H, s, –CH₃), 1.78–179 (4H, m, 2CH₂) ppm; MS (ESI) *m/z* (%): 357 (M⁺, 100); Elemental analysis: calcd. For C₁₈H₁₇ClN₄S: C, 60.50; H, 4.76; N, 15.69%. Found: C, 60.54; H, 4.80; N, 15.72%.

(*E*)-4-(2-(2-chlorobenzylidene)hydrazinyl)-2-methyl-5,6,7,8tetrahydrobenzo[4,5] thieno[2,3-*d*]pyrimidine (5f) Light brown solid, yield: 77%, M.P.: 154–156 °C, IR (KBr) ν_{max} : 3323.23, 2920.41, 1625.57, 752.91 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.27 (1H, s, HN–N=CH–), 8.67 (1H, s, HN–N=CH–) 8.53–8.51 (1H, m, ArH), 7.52–7.50 (1H, m, ArH), 7.44–7.42 (2H, m, ArH), 2.98–2.99 (2H, m, CH₂), 2.73–2.74 (2H, m, CH₂), 2.43 (3H, s, –CH₃), 1.79–1.81 (4H, m, 2CH₂) ppm; MS (ESI) *m*/ *z* (%): 356 (M⁺, 100); 357 (M + H, 30); Elemental analysis: calcd. For C₁₈H₁₇ClN₄S: C, 60.50; H, 4.76; N, 15.69%. Found: C, 60.48; H, 4.80; N, 15.70%.

(*E*)-4-(2-(4-methoxybenzylidene)hydrazinyl)-2-methyl-5,6,7,8-tetrahydrobenzo[4,5] thieno[2,3-*d*]pyrimidine (5q)

Light brown solid, yield: 72%, M.P.: 98–99 °C, IR (KBr) ν_{max} : 3393.00, 2934.19, 2835.85, 1609.44 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.05 (1H, s, HN–N=CH–), 8.35 (1H, s, HN–N=CH–) 7.91–7.93 (2H, d, *J* = 8.0 Hz, 2ArH), 6.99–7.01 (2H, d, *J* = 8.4 Hz, 2ArH), 3.81 (3H, s, –OCH₃), 2.97–2.99 (2H, m, CH₂), 2.72–2.74 (2H, m, CH₂), 2.40 (3H, s, –CH₃), 1.78–1.79 (4H, m, 2CH₂) ppm; MS (ESI) *m/z* (%): 352 (M⁺, 100); 353 (M + H, 30); Elemental analysis: calcd. For C₁₉H₂₀N₄OS: C, 64.78; H, 5.68; N, 15.91%. Found: C, 64.82; H, 5.72; N, 15.95%.

(*E*)-4-(2-(3,4-dimethoxybenzylidene)hydrazinyl)-2-methyl-5,6,7,8-tetrahydrobenzo [4,5]thieno[2,3-*d*]pyrimidine (5h) Light brown solid, yield: 73%, M.P.: 120–121 °C, IR (KBr) ν_{max} : 3359.82, 2938.52, 2825, 1601.50 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.10 (1H, s, HN–N=CH–), 8.34 (1H, s, HN–N=CH–) 7.68–7.69 (1H, d, *J* = 8.6 Hz, ArH), 7.38–7.39 (1H, s, ArH), 7.00–7.02 (1H, d, *J* = 8.4 Hz, ArH), 3.86 (3H, s, –OCH₃), 3.81 (3H, s, –OCH₃), 3.86 (3H, s, –OCH₃), 2.97–2.98 (2H, m, –CH₂), 2.72–2.74 (2H, m, –CH₂), 2.40 (3H, s, –CH₃), 1.78–1.80 (4H, m, 2CH₂) ppm; MS (ESI) *m*/*z* (%): 382 (M⁺, 100); 383 (M + H, 30); Elemental analysis: calcd. For C₂₀H₂₂N₄O₂S: C, 62.83; H, 5.76; N, 14.66%. Found: C, 62.87; H, 5.78; N, 14.70%.

(E)-4-(2-benzylidenehydrazinyl)-2-propyl-5,6,7,8-tetrahy-

drobenzo[4,5]thieno[2,3-*d***] pyrimidine (5i)** Light brown solid, yield: 72%, M.P.: 102–103 °C, IR (KBr) ν_{max} : 3348.85, 1628.86, 1583.73, 1545.31, 2926.67, 2956.35 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) $\delta = 11.02$ (1H, s, HN–N=CH–), 8.41 (1H, s, HN–N=CH–), 7.41–7.46 (1H, m, ArH), 7.67–7.70 (2H, d, J = 7.6 Hz, ArH), 7.97–7.98 (2H, d, J = 7.2 Hz, 2ArH), 2.98–3.02 (2H, m, –CH₂CH₂CH₃), 2.77–2.79 (2H, m, –CH₂CH₂CH₃), 1.69–1.78 (8H, m, 4CH₂), 0.94–0.98 (3H, m, –CH₂CH₂CH₃) ppm; MS (ESI) *m/z* (%): 350 (M⁺, 100); Elemental analysis: calcd. For C₂₀H₂₂N₄S: C, 68.57; H, 6.29; N, 16.00%. Found: C, 68.60; H, 6.32; N, 16.10%.

(E)-4-((2-(2-propyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-

d]pyrimidin-4-yl) hydrazono)methyl)phenol (5j) Light brown solid, yield: 76%, M.P.: 210–212 °C, IR (KBr) ν_{max} : 3370.58, 1414.54, 1603.84, 2946.17 cm⁻¹; ¹H NMR (Acetone- d_6 , 400 MHz) $\delta = 10.53$ (1H, s, OH), 8.53 (1H, s, HN–N=CH–), 8.19 (1H, s, HN–N=CH–),7.54–7.56 (2H, d, J = 8.0 Hz, 2ArH), 6.74–6.76 (2H, d, J = 8.4 Hz, 2ArH), 2.90–2.92 (2H, m, CH₂), 2.68–2.70 (2H, m, CH₂CH₂CH₃), 2.63–2.65 (2H, m, CH₂CH₂CH₃), 1.63–1.70 (6H, m, 3CH₂), 0.85–0.88 (3H, t, J = 7.2 Hz, CH₂CH₂CH₃) ppm; MS (ESI) m/z (%): 366 (M⁺, 100); Elemental analysis: calcd. For C₂₀H₂₂N₄OS: C, 65.57; H, 6.01; N, 15.30%. Found: C, 65.61; H, 6.21; N, 15.35%.

(E)-4-(2-(4-nitrobenzylidene)hydrazinyl)-2-propyl-5,6,7,8-

tetrahydrobenzo [4,5]thieno[2,3-*d*]pyrimidine (5k) Light brown solid, yield: 80%, M.P.: 180–182 °C, IR (KBr) ν_{max} : 3343.75, 1623.1, 2918.06, 2931.27, 1530.45 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) $\delta = 10.83$ (1H, s, HN–N=CH–), 8.38 (1H, s, HN–N=CH–), 8.11–8.13 (2H, d, *J* = 8.8 Hz, 2ArH), 7.94–7.96 (2H, d, *J* = 8.4 Hz, 2ArH), 2.92 (2H, m, CH₂), 2.66–2.67 (2H, m, -CH₂CH₂CH₃), 2.57–2.61 (2Hm, -CH₂CH₂CH₃), 1.63–1.70 (6H, m, 3CH₂), 0.85–0.88 (3H, t, *J* = 7.4, -CH₂CH₂CH₃) ppm; MS (ESI) *m/z* (%): 395 (M⁺, 100); Elemental analysis: calcd. For C₂₀H₂₁N₅O₂S: C, 60.76, H, 5.32; N, 17.72%. Found: C, 60.72, H, 5.30; N, 17.70%.

(*E*)-4-(2-(3-nitrobenzylidene)hydrazinyl)-2-propyl-5,6,7,8tetrahydrobenzo [4,5]thieno[2,3-*d*]pyrimidine (5l) Light brown solid, yield: 87%, M.P.: 160–161 °C, IR (KBr) ν_{max} : 3338.05, 1629.44, 2935.38, 1539.96 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.24 (1H, s, HN–N=CH–), 8.76 (1H, s, HN–N=CH–), 8.55 (1H, s, ArH), 8.44–8.46 (1H, d, *J* = 8.0 Hz, ArH), 8.21–8.24 (1H, m, ArH), 8.09–8.11 (1H, d, *J* = 7.6 Hz, ArH), 2.73–2.77 (4H, m, 2CH₂), 1.78–1.82 (4H, m, CH₂CH₂CH₃), 1.70–1.74 (3H t, *m*, CH₂CH₂CH₃), 0.92–0.98 (4H, t, *m*, 2CH₂) ppm; MS (ESI) *m*/*z* (%): 395 (M+, 100); Elemental analysis: calcd. For C₂₀H₂₁N₅O₂S: C, 60.76, H, 5.32; N, 17.72%. Found: C, 60.80, H, 5.35; N, 17.76%.

(E)-4-(2-(2-nitrobenzylidene)hydrazinyl)-2-propyl-5,6,7,8-

tetrahydrobenzo [4,5]thieno[2,3-d]pyrimidine (5m) Light brown solid, yield: 83%, M.P.: 134–136 °C, IR (KBr) ν_{max} : 3324.05, 1629.84, 2926.21, 1528.50 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.12 (1H, s, HN–N=CH–), 8.64 (1H, s, HN–N=CH–), 8.53–8.55 (1H, m, ArH), 8.01–8.04 (1H, m, ArH), 7.80–7.82 (1H, m, ArH), 7.64 (1H m, ArH), 2.71–2.76 (4H, q, *J* = 6.6 Hz, 2CH₂), 1.76–1.82 (4H, q, *J* = 8.1 Hz, –CH₂CH₂CH₃), 1.70–1.74 (3H, t, *J* = 7.6 Hz, –CH₂CH₂CH₃), 0.92–0.98 (4H m, 2CH₂) ppm; MS (ESI) *m/z* (%): 395 (M+, 100); Elemental analysis: calcd. For C₂₀H₂₁N₅O₂S: C, 60.76, H, 5.32; N, 17.72%. Found: C, 60.82, H, 5.36; N, 17.78%.

(E)-4-(2-(4-chlorobenzylidene)hydrazinyl)-2-propyl-5,6,7,8-

tetrahydrobenzo [4,5]thieno[2,3-*d*]pyrimidine(5n) Light brown solid, yield: 83%, M.P.: 132–134 °C, IR (KBr) ν_{max} : 3268, 1625.84, 2934.2, 2950.27, 743.83 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.07 (1H, s, HN–N=CH–), 8.41 (1H, s, HN–N=CH–), 8.00–8.02 (2H, d, *J* = 8.4 Hz, 2ArH), 7.50–7.52 (2H, d, *J* = 8.2 Hz, 2ArH), 2.79–2.80 (2H, m, CH₂CH₂CH₃), 2.70–2.77 (2H, m, CH₂CH₂CH₃), 1.69–1.78 (8H, m, 4CH₂), 0.94–0.98 (3H, m, CH₂CH₂CH₃), ppm; MS (ESI) *m/z* (%): 385 (M+, 100); Elemental analysis: calcd. For C₂₀H₂₁ClN₄S: C, 62.34; H, 5.46, N, 14.55%. Found: C, 62.40; H, 5.48, N, 14.58%.

(*E*)-4-(2-(2-chlorobenzylidene)hydrazinyl)-2-propyl-5,6,7,8tetrahydrobenzo [4,5]thieno[2,3-*d*]pyrimidine(50) Light brown solid, yield: 75%, M.P.: 110–112 °C, IR (KBr) ν_{max} : 3354.05, 1624.7, 2930.78, 2955.28, 750.72 cm⁻¹; ¹H NMR (DMSO-*d*₆, 400 MHz) δ = 11.16 (1H, s, HN–N=CH–), 8.67 (1H, s, HN–N=CH–), 8.48–8.51 (1H t, *J* = 4.6 Hz, ArH), 7.50–7.54 (1H, m, ArH), 7.42–7.44 (2H, t, *J* = 4.6 Hz, 2ArH), 2.71–2.75 (4H, t, *J* = 7.4 Hz, 2CH₂), 1.75–1.82 (4H, m, CH₂CH₂CH₃), 1.69–1.73 (3H, t, J = 7.4 Hz, CH₂CH₂CH₃), 0.92–0.97 (4H, m, 2CH₂) ppm; MS (ESI) *m*/*z* (%): 385 (M+, 100); Elemental analysis: calcd. For C₂₀H₂₁ClN₄S: C, 62.34; H, 5.46, N, 14.55%. Found: C, 62.38; H, 5.50, N, 14.60%.

(*E*)-4-(2-(3,4-dimethoxybenzylidene)hydrazinyl)-2-propyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-*d*]pyrimidine (5p)

Light brown solid, yield: 86%, M.P.: 130–132 °C, IR (KBr) ν_{max} :3346.95, 1627.2, 2926.32, 2946.97, 2846.74 cm⁻¹; ¹H NMR (DMSO- d_6 , 400 MHz) $\delta = 10.99$ (1H, s, HN–N=CH–), 8.34 (1H, s, HN–N=CH-), 8.24 (1H, s, ArH), 7.67–7.68 (1H, d, J = 7.6 Hz, ArH), 7.01–7.03 (1H, d, J = 8.0 Hz, ArH), 3.86 (3H, s, OCH₃), 3.81 (3H, s, –OCH₃), 2.67–2.75 (4H, m, CH₂), 1.75–1.83 (4H, m, –CH₂CH₂CH₃), 1.69–1.73 (3H, m, –CH₂CH₂CH₃), 0.92–0.97 (4H, m, 2CH₂) ppm; MS (ESI) m/z (%): 410 (M⁺100); 411 (M+H, 30); Elemental analysis: calcd. For C₂₂H₂₆N₅O₂S: C, 64.39; H, 6.34; N, 17.07%. Found: C, 64.41; H, 6.37; N, 17.10%.

Anthelmintic assay

All the target compounds (5a-p) were screened for anthelmintic activity as per the reported method (Ajaiyeoba et al. 2008; Garg et al. 2014) by using Indian earthworms (Pheretima posthuma), because of their anatomical and physiological similarity with human intestinal roundworm. All adult Indian earthworms of ~5-8 cm long and 0.4-0.8 mm diameter were collected from local Ramlakshmi vermi compost yard, Palakol. Earthworms were washed with normal saline water and kept in different groups of Petri dishes labeled as control, standard and tests, containing six worms in each plate. Piperazin adipate (37.0% w/w) was used as a standard drug at a concentration of $100 \,\mu\text{g/ml}$ (431.03 μM). The dose of piperazine adipate was optimized by carrying out its activity using different concentrations (10, 20, 50, 80, and 100 µg/ml). At 100 µg/ ml, it showed activity and thus selected as standard dose. Dimethyl sulphoxide (DMSO) 1% was used as control. Test solutions of all the target compounds (5a-p) prepared with 1% DMSO were evaluated at four different concentrations of 20 µg/ml (48.7–62.1 µM), 50 µg/ml (122.0–155.2 µM), 80 µg/ml (195.1–248.4 µM), and 100 µg/ml (243.9-310.5 µM), respectively. Petri plates of the test groups were treated individually with 20 ml of test solutions of each concentration. Motility of worms was recorded after incubating them in a humid chamber with a thermostat at 37 °C (Mavrova et al. 2018). Time taken for complete paralysis and death of earthworms were recorded. Time taken for earthworms to become motionless (except vigorous shaking) was considered as the time of paralysis; whereas the time of death was ascertained based on the observation of complete lack of any movement of worms upon vigorous shaking followed by dipping in warm water (50 °C). *T*-test was run for the biological data of all the compounds. Results of anthelmintic activities are listed in Table 1.

Results and discussion

Chemistry

As illustrated in Fig. 1, the compound 2-amino-3-carbethoxy-4,5,6,7-tetrahydrobenzo[4,5]thiophene (1) was synthesized by stirring molar quantities of cyclohexanone, ethylcyanoacetate and sulfur in ethanol for one hour under basic conditions following the reported procedure (Gewald et al. 1966; Gewald 1965). Compounds (2a) and (2b) were prepared by condensing compound (1) with acetonitrile and butyronitrile, respectively, in the presence of dry hydrogen chloride. Chlorination of compounds 2a and 2b with phosphorous oxychloride at 110 °C for 6 h under anhydrous conditions resulted in the formation of 4-chloro-2-methyl/ propyl-5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidines (3a and 3b), which upon further treatment with hydrazine hydrate resulted in the formation of key intermediate compounds 4-hydrazino-2-methyl/propyl-5,6,7,8tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines (4a and 4b). Compounds 2a, 2b, 3a, 3b, 4a, and 4b were also synthesized by following our previously reported procedure and their melting points were corroborated well with the melting point of these compounds (Prasad et al. 2001, 2008). Compounds 4a and 4b were treated with various aldehydes to obtain the target compounds 5a-p, which were characterized based on their spectrometric analysis.

Anthelmintic activity

All the target compounds (5a-p) were screened for their preliminary anthelmintic activity (Table 1) following the reported method (Ajaiyeoba et al. 2008) by using adult Indian earthworms (P. posthuma) because of its anatomical and physiological similarity with the human intestinal roundworm parasites. Piperazine adipate was used as a standard at $100 \,\mu\text{g/ml}$ (431.03 μM) concentration. All the synthesized compounds were evaluated at four different concentrations of 20 (48.7-62.1 µM) 50 (122.0-155.2 µM), 80 (195.1-248.4 µM), and 100 (243.9-310.5 µM) µg/ml. Six worms were used for each concentration and the time taken for paralysis and death were recorded in minutes. The standard drug piperazine adipate (100 µg/ml, 431.03 µM) showed paralytic activity at a mean time of 6.25 min. At the same concentration [100 µg/ml (243.9-295.8 µM)], compounds 5b, 5e, 5f, 5g, 5h, 5k, 5l, 5m, 5n, 5o, 5p paralyzed

 Table 1 Anthelmintic activity of (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d] pyrimidines 5a–5p

(5a-p)

Comp.	R ₁	R ₂	Concentration (µg/ml)	Concentration (µM)	Time taken for paralysis in minutes (Mean and S.E.M.)	Time taken for death in minutes (Mean and S.E. M.)		
5a	-CH ₃	Н	20	62.1	30.06 ± 0.006	110.35 ± 0.076		
			50	155.2	33.37 ± 0.065	80.74 ± 0.205		
			80	248.4	14.03 ± 0.114	49.91 ± 0.153		
			100	310.5	06.36 ± 0.174	40.22 ± 0.217		
5b	-CH ₃	<i>p</i> -OH	20	59.2	-	_		
			50	147.9	11.46 ± 0.170	40.60 ± 0.748		
			80	236.6	09.96 ± 0.290	57.85 ± 1.298		
			100	295.8	04.24 ± 0.045	38.19 ± 0.045		
5c	-CH ₃	p-NO ₂	20	54.5	42.83 ± 1.740	112.16 ± 4.020		
			50	136.2	36.77 ± 1.007	102.66 ± 2.216		
			80	218.0	15.60 ± 0.887	49.19 ± 3.619		
			100	272.4	08.92 ± 1.655	25.31 ± 0.811		
5d	-CH ₃	m-NO ₂	20	54.5	40.46 ± 0.119	110.45 ± 0.076		
			50	136.2	34.14 ± 0.051	100.31 ± 0.117		
			80	218.0	14.35 ± 0.272	48.49 ± 0.026		
			100	272.4	08.72 ± 0.141	24.98 ± 0.177		
5e	-CH ₃	<i>p</i> -Cl	20	56.0	40.39 ± 0.065	110.58 ± 0.153		
			50	140.0	34.14 ± 0.051	100.19 ± 0.067		
			80	224.0	07.20 ± 0.057	93.04 ± 0.579		
			100	280.1	05.58 ± 0.153	35.71 ± 0.202		
5f	-CH ₃	o-Cl	20	56.0	21.44 ± 1.147	99.14 ± 1.360		
			50	140.0	27.85 ± 2.310	100.50 ± 1.176		
			80	224.0	06.38 ± 0.314	83.18 ± 8.226		
			100	280.1	05.43 ± 0.569	30.55 ± 2.576		
5g	-CH ₃	<i>р</i> - ОСН ₃	20	56.8	_	_		
			50	142.0	09.58 ± 0.153	38.60 ± 0.200		
			80	227.3	05.35 ± 0.012	28.86 ± 0.190		
			100	284.0	02.32 ± 0.007	22.38 ± 0.144		
5h	-CH ₃	<i>m,p</i> -	20	52.3	-	-		
		di- OCH ₃	50	130.9	09.2 ± 0.608	34.57 ± 1.095		
			80	209.4	05.18 ± 0.464	21.88 ± 0.28		
			100	261.8	02.22 ± 0.236	19.43 ± 0.168		
5i	$-C_{3}H_{7}$	Н	20	57.1	33.81 ± 0.580	96.86 ± 0.435		

Table 1 (continued)

Comp.	R ₁	R ₂	Concentration (µg/ml)	Concentration (µM)	Time taken for paralysis in minutes (Mean and S.E.M.)	Time taken for death in minutes (Mean and S.E. M.)		
			50 80	142.9 228.6	33.16 ± 0.468 09.81 ± 0.183	72.16 ± 0.557 63 13 ± 0.416		
			100	285.7	06.08 ± 0.179	49.55 ± 1.079		
5j	-C2H7	<i>n</i> -OH	20	54.6	43.00 ± 2.708	75.15 ± 1.306		
	03117	p on	50	136.6	10.45 ± 0.062	96.49 ± 1.891		
			80	218.6	06.43 ± 0.042	81.89 ± 0.740		
			100	273.2	08.00 ± 1.366	73.55 ± 3.060		
5k	$-C_2H_7$	$p-NO_2$	20	50.6	28.79 ± 1.691	75.49 ± 9.086		
	- 37	<u>r</u> <u>2</u>	50	126.6	23.06 ± 3.424	62.26 ± 6.232		
			80	202.5	13.37 ± 1.274	47.59 ± 7.507		
			100	253.2	05.39 ± 0.337	39.90 ± 7.745		
51	$-C_{3}H_{7}$	m-NO ₂	20	50.6	35.87 ± 0.212	86.08 ± 0.453		
	- 5 7	2	50	126.6	22.08 ± 0.591	61.67 ± 1.021		
			80	202.5	13.01 ± 0.189	52.88 ± 1.109		
			100	253.2	05.49 ± 0.286	43.36 ± 1.184		
5m	$-C_3H_7$	o-NO ₂	20	50.6	33.26 ± 0.358	84.09 ± 0.741		
			50	126.6	24.97 ± 0.346	56.60 ± 1.720		
			80	202.5	14.10 ± 0.312	51.75 ± 0.487		
			100	253.2	05.41 ± 0.046	43.66 ± 0.455		
5n	$-C_3H_7$	p-Cl	20	51.9	36.00 ± 0.620	63.53 ± 0.305		
			50	129.9	05.31 ± 0.065	43.25 ± 0.349		
			80	207.8	03.98 ± 0.150	24.00 ± 0.428		
			100	259.7	02.50 ± 0.058	21.00 ± 0.546		
50	$-C_{3}H_{7}$	o-Cl	20	51.9	36.45 ± 1.970	69.35 ± 5.519		
			50	129.9	05.40 ± 0.236	44.76 ± 2.364		
			80	207.8	03.81 ± 0.321	23.40 ± 2.346		
			100	259.7	02.81 ± 0.273	20.03 ± 2.745		
5p	-C ₃ H ₇	<i>m,p</i> -	20	48.7	33.08 ± 1.012	86.60 ± 0.711		
		di- OCH ₃	50	122.0	29.73 ± 0.615	63.25 ± 0.493		
			80	195.1	08.71 ± 0.237	57.25 ± 0.730		
			100	243.9	05.33 ± 0.193	37.65 ± 0.387		
Piperazine adipate	-	-	100	431.03	06.25 ± 0.062	24.50 ± 1.057		

Fig. 1 Synthesis of (E)-2methyl/propyl-4-[(substitutedbenzylidene) hydrazinyl]-5,6,7,8tetrahydrobenzo[4,5]theino[2,3d]pyrimidines (5a-p). Reagents and conditions: (i) RCN, dry HCI gas 6 h; (ii) POCI₃, 110 °C, 2-8 h (iii) N₂H₄·H₂O, C₂H₅OH, 80 °C; (iv) R2-C₆H₄CHO, stirring room temperature

Fig. 2 Time of paralysis of target compounds 5a-p. Each value is expressed as mean $(n = 6) \pm SEM$

Target compounds

5

48 30 5 5 \$ 5

20 se

the worms in 4.24, 5.58, 5.43, 2.32, 2.22, 5.39, 5.49, 5.41, 2.5, 2.81 and 5.33 min, respectively; whereas at 80 µg/ml (207.8–227.3 µM) concentration, compounds 5g, 5h, 5n, 5o paralyzed the worms in a mean time of 5.35, 5.18, 3.98 and 3.81 min, respectively. Similarly, at $100 \,\mu\text{g/ml}$ (431.03 μM) mean lethal time for the standard drug and compounds 5g, 5h, 5n, 50 (284.0, 261.8, 259.7, and 259.7 µM respectively) were found to be 24.5, 22.38, 19.43, 21 and 20.03 min, respectively. The *t*-test was run for all the compounds using graph pad prism. Compounds 5b, 5d, 5e, 5g, 5h, 5j, 5l, 5m, 5n, 5o, and 5p have shown significant variation in inducing paralysis (p value < 0.05) at all the test concentrations and the compounds 5a, 5b, 5e, 5i, 5j, 5l, 5m, 5n, 5o, and 5p have shown significant helminthicidal activity (p value < (0.05) at all the test concentrations when compared with that of the standard drug (100 µg/ml, 431.03 µM). At 50 µg/ml of test concentration, all the drugs have shown moderate paralytic as well as helminthicidal activity when compared

50 40

30 20 10

Time of Paralysis (min)

Fig. 3 Time of death of target compounds 5a-p. Each value is expressed as mean $(n = 6) \pm SEM$

with that of the standard. Finally, it can be concluded from the results that the compounds 5g, 5h, 5n, 5o have shown potent anthelminthic activity at 100 µg/ml (284.0, 261.8, 259.7, and 259.7 μ M, respectively) with a mean paralytic time of 2.32, 2.22, 2.5, 2.81 min and helminthicidal time of 22.38, 19.43, 21, 20.03 min, respectively, when compared with that of the standard (6.25 and 24.5 min time for paralysis and death) as shown in Figs. 2 and 3.

Prediction of ADME properties and drug-likeness

The ADME (absorption, distribution, metabolism, and excretion) parameters like physicochemical properties, lipophilicity, water solubility, pharmacokinetics, and drug-like nature of the molecules (5a-p) were tested employing SwissADME software (http://swissadme.ch/) (Daina et al. 2017). The details of the calculated parameters are presented in Table 2. Except compounds 5n and 5o, all the compounds satisfied the

Molecule	Piperazine adipate	5a	5b	5c	5d	5e	5f	5g	5h	5i	5j	5k	51	5m	5n	50	5p
MW	232.28	322.4	338.4	367.4	367.4	356.8	356.8	352.4	382.4	350.4	366.4	395.4	395.4	395.4	384.9	384.9	410.5
RB	5	3	3	4	4	3	3	4	5	5	5	6	6	6	5	5	7
HBA	6	3	4	5	5	3	3	4	5	3	4	5	5	5	3	3	5
HBD	4	1	2	1	1	1	1	1	1	1	2	1	1	1	1	1	1
MR	67.16	97.3	99.3	106.1	106.1	102.3	102.3	103.8	110.3	106.9	108.9	115.7	115.7	115.7	111.9	111.9	119.9
F-Csp ³	0.8	0.28	0.28	0.28	0.28	0.28	0.28	0.32	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.41
TPSA	98.66	78.4	98.6	124.2	124.2	78.4	78.4	87.6	96.9	78.4	98.6	124.2	124.2	124.2	78.4	78.4	96.9
iLOGP	1.67	3.25	2.84	2.82	2.78	3.41	3.48	3.3	3.59	3.63	3.28	3.29	3.23	3.32	3.85	3.96	4.08
XLOGP3	-5.34	5.13	4.78	4.96	4.96	5.76	5.76	5.1	5.08	5.92	5.57	5.75	5.75	5.75	6.55	6.55	5.87
Log S	HS	MS	PS	PS	PS												
GIA	High	High	High	High	High	High	High	High	High	High	High	Low	Low	Low	High	High	High
BBB-P	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Pgp-S	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No
CYP1A2i	No	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No						
CYP2C9i	No	Yes															
CYP2D6i	No	No	No	No	No	No	No	No	Yes	No	Yes	No	No	No	No	No	Yes
CYP3A4i	No	Yes															
Lipinski violations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Ghose violations	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BS	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
PAINS-A	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0

Table 2 Predicted physicochemical properties, pharmacokinetics and drug-likeness of (*E*)-2-methyl/propyl-4-(2-(substitutedbenzylidene) hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-*d*]pyrimidines (5a–p) and piperazine adipate

MW molecular weight, *RB* rotatable bonds, *HBA* H-bond acceptor, *HBD*: H-bond donor, *MR* molar refractivity, *F-Csp*³ fraction Csp³ to identify the saturation, iLOGP, *HS* highly soluble, *MS* moderately soluble, *PS* poorly soluble, *GIA* GI absorption, *BBB-P* BBB permeant, *Pgp-S* Pgp substrate, *i* inhibitor for all CYP, *BS* bioavailability score, *PAINS-A* Pan Assay interference structure alerts

Lipinski's rule of five (5). On the contrary, all molecules successfully passed the Ghose drug-like filter. To display the drug-likeness of the identified most active molecules according to anthelmintic assay and activity evaluation, six physicochemical properties have been taken into consideration: lipophilicity, size, polarity, solubility, flexibility, and saturation (Expressed as Lipo, Size, Polar, Insolu, Flex, and Insatu, respectively in Fig. 4), generated Bioavailability Radar plots. A physicochemical range on each axis was defined by descriptors and the pink area in which the radar plot of the compound has to stay completely to be identified as a drug-like molecule. Here, the pink prepared with the optimum range for individual properties (size: MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å^2 , solubility: lipophilicity: XLOGP3 between -0.7 and +5.0, log S not higher than 6, flexibility: no more than 9 rotatable bonds and saturation: the fraction of carbons in the sp³ hybridization not less than 0.25. It can be evident from the plots in Fig. 4 that in case of the most active compounds (5g, 5h, 5n, and 5o), major drug-likeness properties are staying within the acceptable specified pink area which make them probable future lead molecules for anthelmintic activity. To compare the predicted parameters of the synthesized compounds with the standard drug, we have predicted the similar features for piperazine adipate. Interestingly, we found almost similar bioavailability score for piperazine adipate and all the synthesized compounds (**5a–p**). The predicted parameters strongly support the obtained outcomes from the anthelmintic assay and activity of the synthesized compounds (**5a–p**).

Conclusion

A series of some novel (*E*)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo [4,5]thieno[2,3-*d*]pyrimidines was synthesized and characterized. Two different series of compounds having a methyl (**5a–h**) and propyl (**5i–p**) substituents at the 2position of the thieno[2,3-*d*]pyrimidine scaffold with different electron withdrawing and electron donating groups at the aromatic ring were evaluated for their preliminary anthelmintic activity against adult Indian earthworms (*P*.

Fig. 4 Bioavailability Radar plots of the most active compounds 5g, 5h, 5n, and 50

posthuma). Interestingly, compounds 5g and 5h having methyl group at the 2-position of the scaffold with electron donating methoxy group at *para*-position and dimethoxy group at meta and para-positions of the aromatic ring showed potent anthelmintic activity at 100 µg/ml (284.0 and 261.8 µM) with a mean paralytic time of 2.32, 2.22 min, and helminthicidal time of 22.38, 19.43 min, respectively. In contrast, the presence of electron withdrawing chloro group at ortho and para-position of the aromatic ring was found to be favorable for the anthelminthic activity of the compounds **5n** and **5o** with propyl group at the 2-position of the thieno[2,3-d]pyrimidine scaffold, exhibiting mean paralytic time of 2.5, 2.81 min and helminthicidal time of 21, 20.03 min, respectively, at the same concentration (100 µg/ml, 259.7 µM). Anthelmintic activities of these four compounds 5g, 5h, 5n, and 50 were found to be on par with the standard drug piperazine adipate (100 μ g/ml, 431.03 μ M), that showed the time for paralysis and death at 6.25, and 24.5 min, respectively. Overall, the potency of these compounds (5g, 5h, 5n, and 5o) is better than standard drug as they exhibited the same activity at 259.7-284 µM as that of the standard drug (which has shown the same activity at $431.03 \,\mu$ M). The experimental outcomes are strongly supported by their satisfactory ADME and drug-like properties as predicated by the SwissADME software. Thus, further modification of these compounds might lead to the discovery of more potent analogs.

Acknowledgements Authors thank Sri K.V. Vishnu Raju, Chairman-Sri Vishnu Educational Society, Dr. D.B. Raju, Director and Dr. K. Prasad, Principal-Shri Vishnu College of Pharmacy for their constant support and encouragement. They also thank Lila Impex Ltd for spectral and elemental analysis.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval We declare that all the co-authors are aware of and approve of the submission.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- Ajaiyeoba E, Onocha P, Olarenwaju O (2008) In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharm Biol 39(3):217–220
- Bahashwan S, Fayed A, Amr A, Flefel E, Kalmouch A (2013) Synthesis and pharmacological activities of some new triazolo-and tetrazolopyrimidine derivatives. Molecules 18(12):15051–15063
- ba Ndob IB, Mengome LE, Bourobou H-PB, Banfora YL, Bivigou F (2016) Ethnobotanical survey of medicinal plants used as anthelmintic remedies in Gabon. J Ethnopharmacol 191:360–371
- Bauri R, Tigga MN, Kullu SS (2015) A review on use of medicinal plants to control parasites. Indian J Nat Products Resour (Former Nat Prod Radiance) 6(4):268–277

- Chander PA, Sri HY, Sravanthi NB, Susmitha UV (2014) In vitro anthelmintic activity of Barleria buxifolia on Indian adult earthworms and estimation of total flavonoid content. Asian Pac J Trop Dis 4:S233–S235
- Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 7:42717
- Deb PK, Mailavaram R, Chandrasekaran B, Kaki VR, Kaur R, Kachler S, Klotz KN, Akkinepally RR (2018) Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno [2, 3-d] pyrimidine derivatives. Chem Biol Drug Des 91(4):962–969
- Elliott DE, Weinstock JV (2012) Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann NY Acad Sci 1247:83–96
- Garg K, Bansal Y, Bansal G, Goel R (2014) Design, synthesis, and PASSassisted evaluation of novel 2-substituted benzimidazole derivatives as potent anthelmintics. Medicinal Chem Res 23(5):2690–2697
- Geary TG (2012) Are new anthelmintics needed to eliminate human helminthiases? Curr Opin Infect Dis 25(6):709–717
- Geary TG, Sakanari JA, Caffrey CR (2015) Anthelmintic drug discovery: into the future. J Parasitol 101(2):125–133
- Gewald K, Schinke E, Böttcher H (1966) Heterocyclen aus CH-aciden nitrilen, VIII. 2-amino-thiophene aus methylenaktiven nitrilen, carbonylverbindungen und Schwefel. Chem Ber 99(1):94–100
- Gewald K (1965) Heterocyclen aus CH-aciden Nitrilen, VII. 2-Aminothiophene aus α -Oxo-mercaptanen und methylenaktiven Nitrilen. Chem Ber 98(11):3571–3577
- Helmby H (2015) Human helminth therapy to treat inflammatory disorders-where do we stand? BMC Immunol 16(1):12
- Idris OA, Wintola OA, Afolayan AJ (2019) Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. Heliyon 5(1):e01161
- Jones KD, Berkley JA (2014) Severe acute malnutrition and infection. Paediatr Int child Health 34(Suppl 1):S1–S29
- Keiser J, Panic G, Adelfio R, Cowan N, Vargas M, Scandale I (2016) Evaluation of an FDA approved library against laboratory models of human intestinal nematode infections. Parasit Vectors 9(1):376–386
- Knox M, Besier R, Le Jambre L, Kaplan R, Torres-Acosta J, Miller J, Sutherland I (2012) Novel approaches for the control of helminth parasites of livestock VI: summary of discussions and conclusions. Vet Parasitol 186(1-2):143–149
- Kotze A, Prichard R (2016) Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. In: Robin BG, Georg VSH (eds) Advances in parasitology, vol 93. Elsevier, pp 397–428
- Lanusse C, Canton C, Virkel G, Alvarez L, Costa-Junior L, Lifschitz A (2018) Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol 34(8):664–682
- Le TG, Kundu A, Ghoshal A, Nguyen NH, Preston S, Jiao Y, Ruan B, Xue L, Huang F, Keiser J (2019) Novel 1-Methyl-1 H-pyrazole-5-carboxamide derivatives with potent anthelmintic activity. J medicinal Chem 62(7):3367–3380
- Martin F, Höglund J, Bergström TF, Lindsjö OK, Tydén E (2018) Resistance to pyrantel embonate and efficacy of fenbendazole in Parascaris univalens on Swedish stud farms. Vet Parasitol 264:69–73
- Mavrova A, Dimov S, Vuchev D, Anichina K, Yancheva D (2018) Antihelminthic activity of some 2-substituted Thieno [2, 3-d] pyrimidin-4-ones. Lett Drug Des Discov 15(8):887–894
- Meyer T, Schröder J, Uphoff M, Noack S, Heckeroth AR, Gassel M, Rohrwild P, Ilg T (2009) Chemical optimization of anthelmintic compounds—a case study. In: Antiparasitic and antibacterial drug discovery: from molecular targets to drug candidates, WILEY-VCH Verlag GMBH & Co. KGaA, Germany, pp. 357–371
- Partridge FA, Forman R, Willis NJ, Bataille CJ, Murphy EA, Brown AE, Heyer-Chauhan N, Marinič B, Sowood DJ, Wynne GM (2018) 2, 4-Diaminothieno [3, 2-d] pyrimidines, a new class of

anthelmintic with activity against adult and egg stages of whipworm. PLoS Negl Trop Dis 12(7):e0006487

- Prasad MR, Kishore DP (2007a) Multistep, microwave assisted, solvent free synthesis and antibacterial activity of 6-substituted-2, 3, 4-trihydropyrimido [1, 2-c] 9, 10, 11, 12-tetrahydrobenzo [b] thieno [3, 2-e] pyrimidines. Chem Pharm Bull 55(5):776–779
- Prasad MR, Rao AR, Rao PS, Rajan KS, Meena S, Madhavi K (2008) Synthesis and adenosine receptor binding studies of some novel triazolothienopyrimidines. Eur J Med Chem 43(3):614–620
- Prasad MR, Prashanth J, Shilpa K, Kishore DP (2007b) Synthesis and antibacterial activity of some novel triazolothienopyrimidines. Chem Pharm Bull 55(4):557–560
- Prasad MR, Rao ARR, Rao PS, Rajan KS (2001) Microwave-assisted synthesis of novel 5-substituted-2, 3-dihydroimidazo [1, 2-c] thieno [3, 2-e] pyrimidines. Synthesis 2001(14):2119–2123
- Preston S, Jiao Y, Baell JB, Keiser J, Crawford S, Koehler AV, Wang T, Simpson MM, Kaplan RM, Cowley KJ (2017) Screening of the 'Open Scaffolds' collection from Compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber's pole worm and other parasitic nematodes. Int J Parasitol Drugs Drug Resist 7 (3):286–294
- Preston S, Gasser RB (2018) Working towards new drugs against parasitic worms in a public-development partnership. Trends Parasitol 34(1):4–6
- Rao KV, Balakumar C, Narayana BL, Kishore DP, Rajwinder K, Rao AR (2013) Transesterification of trimethyl orthoacetate: an efficient protocol for the synthesis of 4-alkoxy-2-aminothiophene-3carbonitriles. Tetrahedron Lett 54(10):1274–1278
- Raza A, Lamb J, Chambers M, Hunt PW, Kotze AC (2016) Larval development assays reveal the presence of sub-populations showing high-and low-level resistance in a monepantel (Zol-vix®)-resistant isolate of Haemonchus contortus. Vet Parasitol 220:77–82
- Romero-Benavides JC, Ruano AL, Silva-Rivas R, Castillo-Veintimilla P, Vivanco-Jaramillo S, Bailon-Moscoso N (2017) Medicinal plants used as anthelmintics: ethnomedical, pharmacological, and phytochemical studies. Eur J Med Chem 129:209–217
- Santos FO, Cerqueira APM, Branco A, Batatinha MJM, Botura MB (2019) Anthelmintic activity of plants against gastrointestinal nematodes of goats: a review. Parasitology 146(10):1223–1246
- Shalaby HA (2013) Anthelmintics resistance; how to overcome it? Iran J Parasitol 8(1):18–32
- Stear M, Doligalska M, Donskow-Schmelter K (2007) Alternatives to anthelminitics for the control of nematodes in livestock. Parasitology 134(2):139–151
- Taman A, Azab M (2014) Present-day anthelmintics and perspectives on future new targets. Parasitol Res 113(7):2425–2433
- Taylor CM, Wang Q, Rosa BA, Huang SC-C, Powell K, Schedl T, Pearce EJ, Abubucker S, Mitreva M (2013) Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 9(8):e1003505
- Tripathi KD (2013) Essentials of medical pharmacology. Seventh Edition, Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.
- Tyagi R, Maddirala AR, Elfawal M, Fischer C, Bulman CA, Rosa BA, Gao X, Chugani R, Zhou M, Helander J (2018) Small molecule inhibitors of metabolic enzymes repurposed as a new class of anthelmintics. ACS Infect Dis 4(7):1130–1145
- Woods DJ, Lauret C, Geary T (2007) Anthelminitic discovery and development in the animal health industry. Expert Opin Drug Discov 2(Suppl 1):S25–S33
- Zajíčková M, Nguyen LT, Skálová L, Stuchlíková LR, Matoušková P (2020) Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today 25(2):430–437