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ABSTRACT: A novel hydrogen-bond-assisted sequential reaction of silyl glyoxylates is described. This method provides an efficient
strategy for the synthesis of silyl enol ethers with high selectivity. In these transformations, hydrogen bonds from 2-nitroethanol and
its derivatives are critical to the stereochemical outcome. Both E- and Z-isomers are achieved via Henry reaction/Brook
rearrangement/elimination and Henry reaction/Brook rearrangement/retro-Henry reaction/elimination processes, respectively (up
to 99:1 Z-selectivity, and 9.2:1 E-selectivity).

As valuable intermediates, silyl enol ethers have been
widely used in organic synthesis, especially in Mukaiya-

ma-type aldol reactions and Mannich-type reactions.1 Among
various types of silyl enol ethers, trisubstituted silyl enol ethers
bearing an electron-withdrawing group are often utilized as
prochiral substrates in several valuable reactions, generating
products with a new stereogenic center, and the diaster-
eoselectivity often arises from the geometry of trisubstituted
silyl enol ethers.2 The stereocontrolled synthesis of structurally
well-defined silyl enol ethers is highly required in these
reactions.
To date, many synthetic methods have been well developed

from a series of starting materials. Generally, the base-induced
silylation of ketoesters3 and the Horner−Wadsworth−
Emmons (HWE) reaction of aldehydes2g,4 can be conveniently
used for the preparation of trisubstituted silyl enol ethers
(Scheme 1a). However, the high E/Z geometry of trisub-
stituted silyl enol ethers is hampered by many factors, such as
reaction conditions and substituents. Considering the limi-
tations of typical methods, Matsuya and co-workers reported a
novel sequential 1,2-Brook/Wittig reaction of silyl glyoxylates5

for the preparation of silyl enol ethers (Scheme 1b). In this
method, both geometric isomers of silyl enol ethers were
produced using aldehydes (E-selectivity) and tosylimines (Z-
selectivity) as a Wittig electrophile. Despite all this, the
preparation of trisubstituted silyl enol ethers with high E,Z
selectivity and broad substrate scope remains rare. Herein,
based on our previous work of silyl glyoxylates,6 we report a
novel hydrogen-bond-assisted sequential reaction of silyl
glyoxylates 1 and nitroethanols 2, generating products with a
high level of E,Z selectivity (up to 99:1 for Z-selectivity, and
9.2:1 for E-selectivity). To our knowledge, this reaction model
via Henry reaction/Brook rearrangement/elimination or

Henry reaction/Brook rearrangement/retro-Henry reaction/
elimination processes7 has not been reported.
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Scheme 1. Synthesis of Trisubstituted Silyl Enol Ethers
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To realize this new sequential reaction, we first examined the
reaction of 1-nitropropane 2a with silyl glyoxylate 1a8 under
PTC conditions.9 Fortunately, the desired product 3a was
obtained in a yield of 94% (Scheme 2a). However, almost no

selectivity (E/Z = 1.33:1 for 3a) was observed. Subsequently,
1-nitrohexane (2b), (2-nitroethyl)benzene (2c), and 2-(2-
nitroethyl)furan (2d) were examined as nucleophiles to
investigate the reaction scope, and all of the reactions
proceeded well, providing the products (3b−3d) in good
yields (Scheme 2a). Based on chemical shifts of the olefinic
protons, the stereochemistry of the products was determined
by 1H NMR spectra,5a,10 and the data of product 3b from
Scheme 2a and 3ap from Scheme 4a were consistent with the
data from ref 5a. However, a mixture of geometric isomers (E/
Z = 1.52:1−1:1.09) was achieved in all cases (Scheme 2a).
Considering that the carbonyl group of silyl glyoxylate could be
strongly activated by hydrogen bonds in our previous work,6

we envisioned that nucleophiles with hydrogen groups, such as
2-nitroethanol (2e), may be beneficial to increase stereo-
selectivity. As shown in Scheme 2b, if hydrogen bonds between
the alkoxide and OH group of 2e formed after the nucleophilic
addition of 2-nitroethanol (2e) to silyl glyoxylate (1a), the
transition state (TS-I) was formed to enhance the selectivity
obtained from the sequential reaction. To our delight, the Z-
selectivity was greatly improved to 99:1 when the reaction was
catalyzed by n-Bu4NBr in dichloromethane. In contrast, a sharp
decrease in stereoselectivity was observed by using a hydroxyl-
protected substrate (2e′) under the same reaction conditions.
However, geometric selectivity (E/Z = 1:1) decreased sharply
with an increase in the alkyl chain length when 3-nitropropan-
1-ol (2f) was employed as the nucleophile (Scheme 2c). These
results indicated that hydrogen bonds are a crucial factor in
controlling reaction selectivity.
To further improve the reaction efficiency, a model reaction

of 2-nitroethanol (2e) to silyl glyoxylate (1a)11 was chosen to
optimize the conditions (Table 1). The control experiment
results showed that no desired product was obtained in the
absence of n-Bu4NBr or Cs2CO3 (Table 1, entries 2 and 3).
Inspired by these results, a series of catalysts was examined
(Table 1, entries 4−7), and n-Bu4NCl was found to improve
the reaction in 4 h, generating the corresponding product in
72% yield with excellent Z-selectivity (Table 1, entry 5).

Subsequently, screening of bases was carried out in CH2Cl2
and no further increased yield was observed (Table 1, entries
8−11). Next, other solvents, such as DCE, CHCl3, toluene,
EtOAc, THF, and DMF, were also tested, but none of them
improved the reaction efficiency (Table 1, entries 12−17).
Considering that a huge amount of hydrogen bonds in polar
protic solvents and E/Z ratio of products may be disturbed,
when the reaction was performed in polar protic solvent
(EtOH or MeOH), no desired product was obtained (Table 1,
entries 18 and 19). Notably, a further decrease in the amount
of Cs2CO3 led to a decrease in Z-selectivity (Table 1, entry
20). By increasing the amount of Cs2CO3 to 2 equiv, the yield
of product 3e was decreased to 58% with excellent Z-selectivity
(Table 1, entry 21). The decreased yield was observed when 5
mol % of a catalyst was applied in the reaction (Table 1, entry
22).
Under the optimal reaction conditions, a series of silyl

glyoxylates were applied to the reaction (Table 2). Generally,
silyl glyoxylates with halogen substituents were well tolerated,
producing the corresponding trisubstituted silyl enol ethers
(3g−l) with high stereoselectivity (E/Z ratio: 1:28 to <1:99).
Both electron-withdrawing and electron-donating groups on
the benzene ring of silyl glyoxylates proceeded well, generating
the products (3m−n) with high stereoselectivity. Notably, the
cyclohexyl-based ester group and ethyl group on the silyl

Scheme 2. Sequential Reaction of Silyl Glyoxylate 1a

Table 1. Optimization of the Reaction Conditionsa

entry catalyst solvent base
time
(h)

yieldb

(%) E/Zc

1 n-Bu4NBr CH2Cl2 Cs2CO3 11 52 <1:99
2 − CH2Cl2 Cs2CO3 11 − −
3 n-Bu4NBr CH2Cl2 − 11 − −
4 n-Pr4NBr CH2Cl2 Cs2CO3 8 25 <1:99
5 n-Bu4NCl CH2Cl2 Cs2CO3 4 72 <1:99
6 n-Bu4NI CH2Cl2 Cs2CO3 24 42 <1:99
7 n-

Bu4NBF4
CH2Cl2 Cs2CO3 11 36 <1:99

8 n-Bu4NCl CH2Cl2 K2CO3 22 44 <1:99
9 n-Bu4NCl CH2Cl2 Na2CO3 28 41 <1:99
10 n-Bu4NCl CH2Cl2 NaHCO3 42 20 <1:99
11 n-Bu4NCl CH2Cl2 KOH 5 40 <1:99
12 n-Bu4NCl DCE Cs2CO3 24 29 <1:99
13 n-Bu4NCl CHCl3 Cs2CO3 24 25 <1:99
14 n-Bu4NCl toluene Cs2CO3 3 35 <1:99
15 n-Bu4NCl EtOAc Cs2CO3 2 48 1:16.2
16 n-Bu4NCl THF Cs2CO3 0.2 25 <1:99
17 n-Bu4NCl DMF Cs2CO3 0.2 12 <1:99
18 n-Bu4NCl EtOH Cs2CO3 8 − −
19 n-Bu4NCl CH3OH Cs2CO3 8 − −
20 n-Bu4NCl CH2Cl2 Cs2CO3

d 8 38 1:50
21 n-Bu4NCl CH2Cl2 Cs2CO3

e 5 58 <1:99
22 n-Bu4NCl

f CH2Cl2 Cs2CO3 24 26 <1:99
aReactions were performed with 1e (0.12 mmol), 2a (0.10 mmol),
base (1.2 mmol), and catalyst (10 mol %) in 1.0 mL of solvent and
stirred for the indicated time at rt. bIsolated yield after purification by
column chromatography. cDetermined by 1H NMR analysis of the
crude mixture. d1.0 equiv of base was used. e2.0 equiv of base was
used. f5 mol % of the catalyst was used. TBS = tert-butyldimethylsilyl.
DCE = ClCH2CH2Cl.
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glyoxylate were well tolerated, affording the corresponding
products (3o−p) with high stereoselectivity. However, almost
no stereoselectivity (E/Z = 1:1.6 for 3q) was observed when a
tertiary butyl ester group on the silyl glyoxylate was examined.
Moreover, the reaction with a bulky TIPS group on the silyl
glyoxylate proceeded well to furnish 3r with high stereo-
selectivity. In contrast, messy products (3s) were observed
when silyl glyoxylate bearing a TES group was applied to the
reaction, possibly because the enol silyl ether bond in the
product is sensitive to Cs2CO3.
Subsequently, 2-nitro-3-phenylpropan-1-ol (2h) was em-

ployed as the nucleophile in the reaction (Scheme 3).
However, no tetrasubstituted silyl enol ether (3c′) was
obtained, and the unexpected product of trisubstituted silyl
enol ether (3c) was obtained with moderate E-selectivity.
Interestingly, the retro-Henry reaction process was observed in
this transformation (Scheme 3a). To further improve the
stereoselectivity, different substituents on the silyl glyoxylate,
such as 4-ClC6H4, 4-BrC6H4, 4-CH3OC6H4, 2-ClC6H4, and 2-
FC6H4, were examined, and the E-selectivity slightly increased
to 4:1 when 2-ClC6H4 on the silyl glyoxylate was used as the
substrate (Scheme 3b). Considering the steric hindrance effect,
the bulky tert-butyl ester group may be beneficial for the
selectivity. To our delight, the E isomer yield (3t) (E/Z =
7.3:1) was increased substantially when silyl glyoxylate (1l)
with a tert-butyl ester group was employed (Scheme 3c).
With the optimal conditions for E-selectivity, we next turned

our attention to the substrate scope of 2-nitroethanol
derivatives.12 Generally, different substituents on the benzene
ring of 2-nitro-3-phenylpropan-1-ol were well tolerated. As
shown in Table 3, halogen substituents, such as p-F, o-F, m-F,
p-Cl, and p-Br on the benzene rings, were used as the substrate

and the reaction proceeded smoothly, generating the
corresponding products (3u−y) with high E-selectivity.
Moreover, high E-selectivity (3z) was obtained when the
electron-donating group (OMe) on the benzene ring was
employed as the substrate. However, a slight decrease in E-
selectivity (3aa) was observed when the reaction of 1-(2-
nitroethyl)naphthalene was carried out under the optimal
conditions. Interestingly, the alkyl substituents on 2-nitro-
ethanol were also suitable for the reaction, providing the
product (3ab) with good E-selectivity. The reaction of silyl
glyoxylate (1l) with an increase in the alkyl chain length in 2-
nitroethanol derivatives does not affect the E-selectivity,
yielding the products (3ac−af) with high selectivity. Vinyl
and phenyl groups were also introduced to the 2-nitroethanol

Table 2. Reaction Scope of Silyl Glyoxylatesa

aReactions were performed with 1 (0.10 mmol), 2e (0.12 mmol),
Cs2CO3 (1.2 mmol) and n-Bu4NCl (10 mol %) in 1.0 mL of CH2Cl2.
TIPS = triisopropylsilyl, TES = triethylsilyl. bDetermined by 1H NMR
analysis of the crude mixture. c1.33 mmol scale.

Scheme 3. Sequential Reactions of 2h with Silyl Glyoxylates

Table 3. Reaction Scope of 2-Nitroethanols

aReactions were performed with 1l (0.10 mmol), 2 (0.12 mmol),
Cs2CO3 (1.2 mmol), and n-Bu4NCl (10 mol %) in 1.0 mL of CH2Cl2.
bDetermined by 1H NMR analysis of the crude mixture. c2.05 mmol
scale.
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substrate, leading to products 3ag and 3ah with high E-
selectivity. Further investigation showed that the reaction was
sluggish with messy products (3ai) when 2-nitro-2-phenyl-
ethan-1-ol was used as the substrate. Furthermore, this
sequential reaction was scaled up to 1.3 to 2.0 mmol for
practical applications, generating 3e and 3ah in 68% and 55%
yield, respectively.
To further investigate the reaction pathway, we reinvesti-

gated the reaction of 1a and 2v under the optimal conditions
(Scheme 4a). Because of the base reactions, a certain amount

of the hydrolysis product benzyl alcohol was obtained with a
36% yield in this transformation. However, no tetrasubstituted
silyl enol ether (4av) was observed, and similar results for the
preparationof 3c′ are also shown in Scheme 3a.
Considering that steric effects, such as the large size of the

phenethyl substituent form 2v and benzyl substituent form 2h,
have an unfavorable effect on elimination, the reaction of 1a
and 2- nitro ethanol 2p with a small methyl group was
conducted under the optimal conditions. Satisfyingly, the
tetrasubstituted silyl enol ether product 4ap was obtained via
Henry reaction/Brook rearrangement/elimination processes.
Moreover, a certain amount of the hydrolysis product benzyl
alcohol was also obtained with a 31% yield. The experimental
data and these control experiments indicated that the
competitive relationship between the direct elimination
process and retro-Henry reaction/elimination process and
the product structure depend on the size of the substituent on
the 2-nitroethanol derivatives. Moreover, compared to the
hydrolysis processes of benzyl-based ester, the hydrolysis of
tertiary butyl ester was inhibited due to its large steric
hindrance and leaving group ability. Accordingly, the reaction
mechanism proceeding via a competitive pathway was
proposed. As shown in Scheme 4b, after the nucleophilic
addition of nitroethanol (2) to silyl glyoxylate (1) under PTC
conditions, intermediates I and III were obtained. To observe
the elimination processes more easily, the chair forms I and III
were proposed, and the nitro group (NO2) was fixed at the
axial bond. In these transformations, the alkoxide could be
stabilized by hydrogen bonds from the OH group. Sub-

sequently, intermediate II from path a was achieved after
Brook rearrangement. Due to the restricted rotation with steric
hindrance depicted in the Newman projection model II, anti-
periplanar elimination is unfavored, generating minor product
4. In contrast, the preferred conformation IV obtained from
path b with the NO2 group at the anti-periplanar position is
favored for elimination, giving the Z-selectivity product Z-3
when the R substituent is hydrogen. Interestingly, the retro-
Henry process from V to VI occurred when the R substituent
was not hydrogen, generating the E-selective product E-3 as
the major product.
In summary, we have developed a novel hydrogen-bond-

assisted controlled sequential reaction of silyl glyoxylates. This
method enables efficient geometric synthesis of trisubstituted
silyl enol ethers with high selectivity. With the assistance of
hydrogen bonds, the stereochemical outcome for both E- and
Z-isomers depended on the structure of 2-nitroethanol and its
derivatives. Further studies of new reactions of silyl glyoxylates
are currently underway.
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