
Vol.:(0123456789)1 3

Catalysis Letters 
https://doi.org/10.1007/s10562-020-03449-9

Transition Metal‑Substituted Potassium Silicotungstate Salts 
as Catalysts for Oxidation of Terpene Alcohols with Hydrogen Peroxide

Marcio Jose da Silva1   · Pedro Henrique da Silva Andrade1 · Vinicius Fernando Coelho Sampaio1

Received: 4 March 2020 / Accepted: 30 October 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract 
In this work, the catalytic activity of the transition metal-substituted potassium silicotungstate salts (i.e. K8-nSiMn+W11O39 
(Mn+ = Cu2+, Co2+, Ni2+, Zn2+ and Fe3+) was investigated on the oxidation reactions of the terpene alcohols with H2O2 aque-
ous solution. The metal-substituted silicotungstate salts were easily synthesized in one-pot reactions of the precursor metal 
solutions (i.e. Na2WO4, Na2SiO3 and MCln) with KCl added in stoichiometric amount; after this precipitation step, the solid 
heteropoly salts were filtered and dried in an oven. This procedure of synthesis avoids multi-step processes that starts from 
the pristine heteropolyacid. The substituted metal heteropoly salts were characterized by infrared spectroscopy, measure-
ments of the specific surface area (BET) and porosimetry by isotherms of adsorption/desorption of N2, X-rays diffraction, 
thermal analyses, dispersive X-rays spectroscopy, scanning electronic microscopy. The acidity strength was estimated by 
potentiometric titration with n-butylamine. All the salts were evaluated as catalysts in terpenic alcohols oxidation reactions 
with H2O2. The K5SiFeW11O39 was the most active and selective catalyst toward oxidation products. The impacts of the 
main reaction variables such as catalyst concentration, temperature, oxidant load, and nature of the terpene substrate were 
assessed. The highest activity of the K5SiFeW11O39 catalyst was assigned to the highest Lewis acidity.
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1  Introduction

Monoterpenes are renewable and abundant raw material 
whose oxygenate derivatives are attractive feedstock for a 
wide gamma of synthetical applications, which are of inter-
est for flavoring, food, pharmaceutical, and agrochemical 
industries [1, 2]. The oxidation products obtained from 
terpenic alcohols have still organoleptic properties that are 
highly valuable for the fragrance and perfume industries [3, 
4]. Among the various oxidation reactions, those involving 
primary and secondary terpene alcohols remains a relevant 
synthetic methodology to afford either epoxides, aldehydes, 
or ketones [5–8].

The pharmaceutical industry faces challenges in relation 
to the development of oxidative processes due to environ-
mental and sustainability reasons, such as the disposal of 
hazardous by-products and safety concerns associated with 
the use of flammable organic solvent [9, 10]. Green oxidant 
such as hydrogen peroxide is very desirable in such oxida-
tion processes, because it is a nonflammable liquid, easily 
handling, commercially affordable, inexpensive, atom-effi-
cient, and give water as the only by-product [11, 12]. This 
way, the oxidation processes may be according to principles 

of sustainable green chemistry. Nonetheless, oxidation with 
hydrogen peroxide requires the presence of a catalyst to be 
efficient [13]. Various metal compounds have been used as 
catalysts in oxidations with hydrogen peroxide; oxides, com-
plexes, and salts are only some examples [14–16].

Heterogeneous catalysts have as a great advantage to be 
easily separated from the reaction mixture by filtration or 
centrifugation steps, and then can be reused in consecutive 
reactions. For this reason, several supported-solid metal cat-
alysts have been used in oxidation processes [17]. However, 
the reusability of the solid catalysts depends on the stability 
of their acidic sites, which have not to be deactivated and 
leached during the reactions.

Keggin heteropolyacids (HPAs) are solid clusters of 
metal–oxygen with highly desirable properties that make 
them potential catalysts applicable in a plethora of chemical 
transformations [18, 19]. These polyoxometalates are com-
pounds that are at the forefront of fundamental and applied 
catalysis [20]. The type-Keggin HPAs have a strong Brøn-
sted acidity that makes them efficient catalysts in various 
acid-catalyzed reactions [21, 22].

Keggin HPAs have also interesting catalytic properties, 
such as the ability to promote oxidation reactions in the pres-
ence of hydrogen peroxide through the formation of active 
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catalytically species [23–25]. Conversely, the solid HPAs 
have a low specific surface area, a disadvantage that may 
be overcome by supporting the HPAs on the porous solids 
that should have a high surface area. Notwithstanding, this 
strategy has a serious drawback; the reactions performed 
in polar solvents or that produce water as a by-product can 
compromise the activity and stability of solid-supported 
HPA catalysts.

A great advantage of HPA catalysts is that their chemical 
and physical properties can be improved through different 
structural modifications, an approach that will be explored 
in this work [26]. For instance, they can be converted to 
salts after the protons exchange by cations with charge, size, 
shape, and high hydrophobicity, a modification that reduces 
the solubility of these compounds in polar solvents [27–29]. 
In this regard, cesium heteropoly salt catalysts have been 
widely explored in the literature [30, 31]. Potassium heter-
opoly salts are also viable catalysts because their precursor 
is cheaper than cesium [32–34].

Another modification easily performed in Keggin HPAs is 
the removal of one MO unit, which creates a vacancy on the 
anion structure, and facilitate the coordination of an oxidant 
such as hydrogen peroxide, promoting then the oxygen atom 
transfer to organic substrates [35, 36]. These lacunar heter-
opoly salts have demonstrated to be efficient catalysts in oxi-
dation reactions of olefin and alcohols [36–38]. For instance, 
lacunar sodium phosphotungstate salts were highly active 
catalysts in oxidation reactions of the terpenic alcohols [39]. 
Likewise, the lacunar silicotungstate salts of potassium and 
cesium were catalysts successfully used in the same oxida-
tion reactions [40, 41].

Lacunar Keggin HPA salts are a class of molecular metal 
oxides with adjustable structural properties at the atomic 
level [42]. Their catalytic activity can be significantly 
enhanced by filling their vacancies with transition metal cati-
ons, a modification that improves their reversible multi-elec-
tron redox properties [43]. In general, these substituted metal 
heteropoly salts have been synthesized through a multi-step 
route, where firstly a vacancy is created in the anion of the 
pristine HPA by an adjust of pH, and afterward, the lacunar 
salt solution is reacted with a solution containing the transi-
tion metal cation, a strategy that has gained attention in the 
field of catalysis [44–46]. These catalysts have been widely 
used in oxidation reactions of various substrates, including 
olefins, methacrolein, and aromatic compounds [47–52].

Herein, we describe that transition metal-substituted 
potassium silicotungstate salts (i.e. K8-nSiMn+W11O39 
(Mn+ = Cu2+, Co2+, Ni2+, Zn2+, and Fe3+) were successfully 
synthesized through a one-pot synthesis route, being then 
spectroscopically characterized, and evaluated as catalysts 
in terpenic alcohol oxidation reactions with hydrogen per-
oxide. A positive aspect of this work is to avoid the use 
of solid-supported HPA catalysts, which commonly are 

obtained from a laborious synthesis work up and are more 
susceptible to leaching problems and deactivation. Herein, 
alternatively, the solid catalysts were easily synthesized 
through stoichiometric precipitation reactions. The influ-
ences of the main reaction variables were investigated. The 
activity of the most active catalyst (i.e. K5SiFeW11O39) was 
compared to their synthesis precursor. The highest activity 
of the K5SiFeW11O39 catalyst was discussed in terms of the 
structural properties.

2 � Materials and Methods

2.1 � Chemicals

All the chemicals and solvents were purchased from 
commercial sources and utilized without prior han-
dling as received. For the synthesis of K8-nSiMn+W11O39 
(Mn+ = Cu2+, Co2+, Ni2+, Zn2+ and Fe3+), the precursors 
were CoCl2 (Vetec, 98 wt. %), CuCl2 (Vetec, 97 wt. %), 
FeCl3 (Vetec, 97 wt. %), NiCl2 (Vetec, 99 wt. %), ZnCl2 
(Vetec, 99 wt. %) and DMA grade Sigma-Aldrich.

2.2 � Catalysts Synthesis

All the catalysts were synthesized adapting a procedure 
described in the literature [41, 53]. Stoichiometric amounts 
of Na2SiO3 and Na2WO4 were separately dissolved in 
water (ca. 100 mL), and gently mixed. The addition of 
HCl acidified the medium, giving the soluble H4SiW12O40 
acid. The dropwise addition of NaHCO3 solution until pH 
5.5 converted the H4SiW12O40 to soluble lacunar salt (i.e. 
Na8SiW11O39), being constantly stirring by 1 h. After the 
slow addition of the metal chloride solution, the mixture 
was stirred by 3 h at 333 K; the substituted metal potassium 
silicotungstate salt was precipitated with an addition of solid 
KCl. Afterward, the precipitate was filtered through a sin-
tered glass filter. After recrystallization in hot holder, the salt 
was once more precipitated, filtered, and washed two times 
(ca. 50 mL portions) with KCl aqueous solution, and air 
dried. The K8-nSiMn+W11O39 catalyst was heated at 473 K 
for 3 h in an oven before the use to remove the remaining 
HCl.

All the catalytic runs were carried out in a 50 mL three-
necked glass flask, equipped with sampling system, a reflux 
condenser, in a thermostatic bath with magnetic stirrer. Typi-
cally, terpene alcohol and the catalyst were stirred and heated 
(ca. 333 K) by 5 min; then, an addition of H2O2 started the 
reaction. Blank reactions were similarly performed.
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2.3 � Reaction Monitoring and Products 
Identification

The progress reaction was followed taking aliquots at regular 
intervals and analyzing them via gas chromatography (GC 
Varian 450, FID, fitted with Carbowax capillary column 
(0.25 μm × 0.25 mm × 30 m)). The temperature program was 
as follows: 80 °C/ 1 min, 10 °C/min up to 220 °C, hold time 
of 5 min. Temperatures of the injector and detector were 250 
and 280 °C, respectively. The conversion of substrates was 
calculated by matching the area of substrate GC peak into 
the corresponding calibration curves.

The man reaction products were identified by analyses 
carried out on a Shimadzu GC-2010 gas chromatograph cou-
pled with a MS-QP 2010 mass spectrometer (Tokyo, Japan) 
with a DB5 capillary column (0.25 μm × 0.25 mm × 30 m) 

and He as the carrier gas at 2 mL/min. The GC injector and 
MS ion source temperatures were 250 and 260 °C, respec-
tively. The MS detector operated in the EI mode at 70 eV, 
with a scanning range of m/z 50–400.

2.4 � Catalysts Characterization

The elemental composition was determined during scan-
ning electron microscopy (SEM) analyses, using a JEOL 
JSM-6010/LA microscope fitted with energy dispersive 
spectrometry equipment (EDS). All images and EDS spectra 
were recorded using 20KV acceleration potential and 10 mm 
working distance.

The hydration water content and thermal stability of het-
eropoly salts was estimated by thermogravimetric analysis 
on a TGA/DSC-6000 Perkin-Elmer thermobalance up to 
973 K. FTIR/ ATR spectra of the HPAs and their potassium 
salts were obtained by using the KBr pellet and recorded on 
an FTIR Varian 660 spectrometer with reflectance accessory.

The powder X-rays diffraction patterns of the solid cata-
lysts were obtained by using an X-ray Diffraction System 
model D8-Discover Bruker. The conditions were Ni filtered 
Cu-kα radiation (λ = 1.5418 Å), operating at 40 kV and 
40 mA. Analyses were done in 0.05° steps, 1.0 s counting 
time, scanning 2θ angle 5 to 80°.

The acidity strength of heteropoly catalysts was measured 
by potentiometric titration in a potentiometer Bel, model 
W3B, as reported by Pizzio et al. [32]. Typically, 50 mg of 
sample were suspended in CH3CN solutions, which were 
stirred 3 h and titrated with n-butylamine solution in toluene 
(ca. 0.025 molL−1).

Porosity analyses of heteropoly salts were performed 
in NOVA 1200e High Speed, Automated Surface Area 
equipment and Pore Size Analyzer Quantachrome Instru-
ment. Before the analysis, the samples were previously 
degassed by 1 h. The specific surface area was estimated by 
Brunauer–Emmett–Teller equation applied to the nitrogen 
desorption/ adsorption isotherms.

3 � Results and Discussion

3.1 � Catalysts Characterization

In general, heteropoly salts have been synthesized in multi-
steps routes using pristine heteropolyacid as the starting 
material [35, 54]. Herein, in a one-pot procedure, we effi-
ciently synthesized the metal substituted heteropoly salts, 
starting from the precursor metal solutions and precipitating 
them with solid KCl. Table 1 shows the yields achieved.

The information obtained via EDS analysis confirmed 
the elemental composition of all the synthesized catalysts. 
Table 3SM shows a comparison of theoretical and experi-
mental tungsten contents. We found only a slight difference 
between theoretical and experimental values, regardless of 
the transition metal doped on the heteropolyanion of the 
potassium silicotungstate salt.

Table 1   Transition metal substituted heteropoly salts

a Experimental yield considering the stoichiometric amount obtained

Catalyst Color Yielda/ wt. %

K6SiCoW11O39 dark red 87
K6SiCuW11O39 bluish green 88
K5SiFeW11O39 Brown 88
K6SiNiW11O39 light green 91
K6SiZnW11O39 White 96
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Fig. 1   FTIR /ATR spectra of lacunar and metal substituted silicotung-
state salts
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Infrared spectroscopy is an essential tool to verify the 
integrity of Keggin anion, which is the primary structure 
of heteropoly salts. The typical absorption bands are placed 
at the wavenumbers of 550 to 1700 cm−1, the fingerprint 
region of these compounds. Table 1SM summarizes the 
main absorption bands present in the infrared spectra of 
the lacunar salt before and after the doping of the transition 
metal (Fig. 1).

The FTIR spectrum of K8SiW11O39 showed bands at 943, 
991, 852, and 787 cm−1, corresponding to the symmetric 
stretching of Si–O, W–O1, W–O2–W, and W–O3–W bonds, 
respectively. The superscript “1” in an oxygen atom indi-
cates that it is in a terminal position, as well as the super-
scripts “2” and “3” refer to the oxygen atoms sharing edge 
or corner, respectively [55].

The main change observed in the infrared spectra of 
lacunar salts after the doping of transition metal was a shift 
toward the higher wavenumber of absorption band assigned 
to the W–O3–W bond (i.e. 852  cm−1 in the precursor, 
870–890 cm−1 in the metal substituted salts; Table 1SM). 
This effect was attributed to the complexation of transition 
metal to the oxygen atom of heteropolyanion and was previ-
ously reported [37]. This displacement was less pronounced 
in the infrared spectrum of K6SiZnW11O39; Zn2+ ions have 
all their “d” orbitals filled and probably are less effective 
to coordinate with oxygen atoms. It was possible also to 
observe another band at lower wavenumber (ca. 440 cm−1), 
which was assigned to the transition metal–oxygen bond 
[54–56]. Therefore, FTIR spectra clearly show that no dras-
tic change happened when a transition metal was included 
in the framework of Keggin anion [57–59].

The powder XRD patterns of silicotungstate salts provide 
information about the secondary structure of Keggin salts 
and are shown in Fig. 2. The diffractograms of lacunar salt 
and metal-doped salts presented the typical diffraction lines 
of Keggin anion at 2θ < 10°, 2θ ≈ 15°, and 2θ ≈ 28° [56]. 
The silicotungstate salts that were dopped with iron or zinc 
had a slight loss of crystallinity; conversely, nickel, cobalt, 
and copper salts presented diffraction peaks in a higher 
amount and with greater intensity if compared to unsubsti-
tuted lacunar salt (Fig. 2). The doping of transition metal on 
the Keggin anion resulted in new diffraction lines, mainly at 
values of 2θ greater than 25°. The same effect was described 
in previous works [51, 57–60]. A comparison with literature 
revealed that the characteristic peaks of metal oxides were 
absent in the diffractograms shown in Fig. 2 [61–65].

The TG/DTG analyses allowed to determine the hydration 
level of silicotungstate salts and investigate their thermal 
stability (Fig. 1SM). In addition, mass losses of all samples 
on TG curves gave an order of magnitude difference on the 
DTG profiles, as indicated by the DTG scale. The losses 
of crystallization water molecules of salts generated strong 
peaks noticed in the DTG curves between 328 and 410 K. 
Only for the salts K5SiFeW11O39 and K6SiNiW11O39 were 
noticed two well-defined peaks within this interval tempera-
ture; for the other salts, a broad peak was observed at this 
temperature range. Table 2SM shows that the hydration level 
varied from 7 to 10 mol H2O/ mol catalyst. The salt samples 
were stable up to 673 K; at higher temperatures, they were 
decomposed to metal oxides due to the decomposition of 
the Keggin anion.

The N2 adsorption–desorption isotherms and the pores 
size distribution of potassium silicotungstate salts are dis-
played in Figs. 2SM and 3SM. The profile of distribution 
curves of the pore’s diameter of the potassium silicotung-
state salts varied from 1.1–1.2 nm, a typical characteristic of 
microporous solids (Fig. 3SM). The size of pores diameter 
was 1.0–1.2 nm. According to the IUPAC recommendations, 
the BET isotherms of the salts were classified as type I, 
which are characteristic of microporous materials. No hys-
teresis loop was noticed on the isotherms of potassium salts. 
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Fig. 2   XRD patterns of lacunar silicotungstate salts before and after 
the doping of transition metal

Table 2   Surface area, volume, and pores size of potassium silicotung-
state salts

Catalyst Surface area 
(m2g−1)

Pores volume 
(cm3g−1 × 10–2)

Pores 
size 
(nm)

K8SiW11O39 10.9 1.4 1.1
K6SiCoW11O39 9.6 1.0 1.1
K6SiCuW11O39 11.0 1.3 1.2
K5SiFeW11O39 10.6 1.1 1.2
K6SiNiW11O39 10.7 1.0 1.2
K6SiZnW11O39 12.8 1.3 1.1
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The corresponding average values of the size and volume of 
pores, besides the surface area shown in Table 2.

The potentiometric curves of the metal substituted potas-
sium silicotungstate salts are shown in Fig. 3. The initial 
electrode potential (Ei) indicates the maximum strength 
of the acidic sites present on the salt surface. The titration 
curves of the metal-substituted potassium silicotungstate 
salts had a similar profile and revealed that they presented 
strong acidic sites (0 < Ei < 100 mV). However, among the 
synthesized salts, iron-doped potassium silicotungstate (i.e., 
K5SiFeW11O39) was the only that had very strong acidic sites 
(Ei > 100 mV) [32].

The strength of acidity determined by potentiomet-
ric titration is a consequence of Lewis and Brønsted acid 
sites. Although the protons of silicotungstic acid have 
been exchanged by potassium cations, once that the tran-
sition metal cations are also Lewis acids, remains still a 
certain acidity. Moreover, it is possible these metal cations 
react with hydration water molecules giving then H3O+ 
ions. For this reason, the transition metal-substituted salts 
were stronger acids than precursor lacunar potassium salt. 
Remarkably, the iron-doped silicotungstate salt presented 
the strongest acid sites.

3.2 � Influences of Reaction Parameters 
on the Terpenic Alcohol Oxidation by H2O2

3.2.1 � Effect of Catalyst

Initial screening to select the most active catalyst was per-
formed, and the main results are displayed in Fig. 4. In 
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alyzed borneol oxidation reactions with hydrogen peroxide
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general, secondary alcohol oxidation reactions are harder 
than primary ones, for this reason, borneol selected as the 
model substrate. Camphor was the main product selectively 
formed in all the reactions (Scheme 1).

Previously, we have verified that the lacunar potassium 
salt was an efficient catalyst in oxidation reactions of ter-
penic alcohols with H2O2 [40]. Inspired by this founding, 
we decided to try improving the activity of this catalyst, 
including a transition metal cation into their Keggin heter-
opolyanion. After doing it, we realize that three catalysts 
achieved a total conversion of borneol: the lacunar salt 
(i.e. K8SiW11O39), and the metal-substituted salts (i.e., 
K6SiNiW11O39 and K5SiFeW11O39) (Fig. 4).

The K6SiCuW11O39-catalyzed reaction reached the 
lowest conversion, while the reactions in the presence of 
K6SiCoW11O39 or K6SiZnW11O39 accomplished conver-
sions of 73 and 92%, respectively. Nonetheless, among 
three catalysts that reached a complete conversion, only 
the iron-substituted salt (i.e., K5SiFeW11O39) made it 
within the first-hour reaction.

In an early work, another nickel salt (i.e. K5PNiW11O39) 
was the most active catalyst among several metal-substi-
tuted potassium HPA salts, however, in that case, benza-
ldehyde was the substrate oxidized by H2O2 in CH3CN 
solutions [51]. Conversely, in benzyl alcohol oxidation 
reactions with H2O2 in toluene, the K6SiCoW11O39 salt 
was the most efficient catalyst [52]. These different results 
are evidence that the activity of the catalyst depends on 
the various aspects; the sort of heteroatom present in the 
Keggin heteropolyanion (i.e. SiW11O39

8− or PW11O39
7−), 

the kind of substrate (i.e., alcohol, aldehyde), the solvent 
(i.e. toluene, CH3CN), and finally, the type of transition 
metal cation introduced in the heteropolyanion.

Choi et al. investigating the oxidation of 2-propyl alco-
hol and demonstrated that the measurements of reduction 
potential and absorption edge energy of HPA catalysts could 
be utilized as a correlating parameter to track the oxida-
tion catalysis of these salts [55]. In that work, those authors 
verified that the acetone yield increased with an increase of 
reduction potential and with a decrease of absorption edge 
energy. The activity obeyed the order: ​K5​PM​nW​11​O39 > 
K5PCoW11O39 > K5PNiW11O39 > K5PZnW11O39, a distinct 
sequence than the one verified herein. Although the cata-
lysts used in that work have been like those evaluated herein, 
there are significant differences in relation to the present 
work; firstly, in that case, molecular oxygen was the oxidant 
used. Moreover, those reactions were carried out without 
solvent, only in 2-propyl alcohol, and at a higher temperature 
(ca. 353 K).

When hydrogen peroxide is the oxidant in metal-cata-
lyzed reactions, there are two mechanisms that are com-
monly accepted to explain the alcohol oxidations: perox-
ometal pathway and oxometal pathway [66, 67]. The first 

one involves oxo-intermediates (i.e. M = O), which are very 
common when the metal cation has a d0 electronic configu-
ration; probably, it may be occurring when the catalyst is 
the K8SiW11O39 lacunar salt, which contains a d0 cation (i.e. 
W+6) [68]. In this case, the oxidation state of metal varied in 
2 units along the catalytic cycle (i.e. W4+/W6+).

According to the second mechanism, the metal cation 
is peroxidized giving a peroxide metal intermediate (i.e. 
MOOH). Metal cations of the first transition series may react 
through this pathway. No change in the oxidation state of 
the metal occurs during the catalytic cycle. We think that 
transition metal-substituted HPA salts-catalyzed reactions 
may proceed via this second way. It may explain the higher 
activity of substituted metal heteropoly salt if compared to 
the lacunar precursor salt (Fig. 4a and b).

Therefore, we suppose that the highest activity of iron-
doped potassium silicotungstate salt can be assigned to the 
higher oxophilic character of Fe3+ cation if compared to the 
other transition metal. This greater affinity by the oxygen 
atom present in the hydrogen peroxide facilitates the forma-
tion of an iron silicotungstate-peroxide intermediate. It is a 
consequence of high Lewis acidity of Fe3+ cations, higher 
than the acidity of the M2+ cations (see Fig. 3). On the other 
hand, that HASB theory may be also to explain the results. 
The Fe3+ is a hard acid while the all the other metal cations 
are soft acids if compared to the iron. Therefore, the higher 
oxophillic character is justified because the oxygen is also 
hard base and the interaction between oxidant-catalyst will 
be more favorable when the salt is the iron-doped potassium 
silicotungstate.
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Fig. 5   Comparison of conversion of borneol and selectivity to cam-
phor in borneol oxidation with hydrogen peroxide. Reaction condi-
tions: borneol (1.34 mmol), catalyst (0.25 mol %), H2O2 (2.68 mmol), 
temperature (363 K), DMA (10.0 mL). 2 h reaction
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The superior performance of iron-doped potassium sili-
cotungstate salt in borneol oxidations is shown in Fig. 5. 
Although the reaction in the presence of sodium tungstate 
catalyst has achieved high conversion and selectivity, it is 
important to highlight that was totally soluble and used at a 
load ten times higher [69].

3.2.2 � Effect of Catalyst Load

Once the K5SiFeW11O39 was the most active catalyst it was 
selected to assess the effects of other reaction variables. The 
kinetic curves are displayed in Fig. 6. Due to the various 
levels assessed, a split in two figures was done. Initially, we 
can observe that the reaction rate is affected by the catalyst 

load. A greater load of catalyst allows that the maximum 
conversion could be achieved in a shorter time interval. It 
suggests that the formation of probable reaction intermedi-
ates (i.e., peroxidized heteropolyanion), as described in the 
literature, is enhanced when the proportion catalyst: per-
oxide is increased [40] (Fig. 6a). On the other hand, when 
a lower catalyst load is used, the reaction becomes slower, 
and higher reaction time is required to achieve the maximum 
conversion (Fig. 6b).

In Fig. 6a, only the reactions carried out with load equal 
or lower than 0.63 mol % did not present a high initial 
rate, however, within 3 h of runs they achieved a complete 
conversion. In Fig. 6b, clearly, this effect can be noticed. 
Although not showed, in all the runs the camphor selec-
tivity was higher than 90%. Figure 7 shows the TON (i.e. 
turnover number) obtained in all the reactions.

The molar ratio between mol of converted borneol/mol 
of K5SiFeW11O39 catalyst provides the TON achieved by 
the catalyst in each reaction. The elevate TON reached is 
evidence of the high activity of this catalyst. The high-
est TON achieved herein (ca. 4050) was higher than that 
obtained in K8SiW11O39-catalyzed borneol oxidation 
reactions (ca. 2720) [40]. It means that the inclusion of 
Fe3+ cation into the Keggin anion structure significantly 
improved their catalytic activity.

3.2.3 � The Impacts of Solvent

The effect of the solvent was addressed in the 
K5SiFeW11O39-catalyzed reactions (Fig. 8). The catalyst 
was not totally soluble, however, in stronger donor solvents 
such as N,N-dimethyl acetamide (DMA) and N,N-dimeth-
ylformamide (DMF), the oxidation of borneol achieved high 
conversions. The reactions in protic solvent (i.e. CH3OH) 
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or CH3CN were not efficient. Hida and Nogusa assigned to 
the beneficial effects of DMF and DMA solvents to their 
ability to stabilize metal-peroxide intermediates in alcohol 
oxidations [69].

Conversely, while the reaction conversions were sensible 
to the solvent, the selectivity was less affected. Camphor was 
always the main product, although its formation has been 
lowered in methyl alcohol if compared to other solvents. 
Although the pH of the solvent is also an important aspect 
of this sort of reaction, the insolubility of borneol in aque-
ous solution prevented that it could be investigated herein.

3.2.4 � Effects of Temperature on the Reaction Rate of Bor‑
neol Oxidation

An increase in temperature reaction may improve either the 
initial rate of reactions as well as the selectivity. To assess 
this effect, we carried out catalytic runs with temperatures 
varying from 303 to 363 K (Fig. 9).

Regardless of the reaction temperature, the camphor 
selectivity was always greater than 85%. No significant 
changes in the distribution of products was observed. How-
ever, the conversions were strongly impacted: at tempera-
tures below 353 K, the maximum conversion observed on 
the reactions were less than 40%. Nonetheless, if compared 
to the precursor K8SiW11O39, the K5SiFeW11O39 catalyst 
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was much more active. In this work, the temperature effect 
was studied using 0.31 mol % of catalyst, whereas to the 
described for the K8SiW11O39, where a load of 1.25 mol % 
was necessary [40].

3.2.5 � Effect of Reactant Stoichiometry

As previously demonstrated (Sect. 3.2.2.), the reactions car-
ried out with a low load (ca. 0.05 mol % of K5SiFeW11O39 
catalyst and a molar ratio of 1:2 (borneol:H2O2) achieved 
high conversion. For this reason, aiming to do cleaner the 
effect of oxidant, the catalyst was used at lower load (ca. 
0.025 mol %). The main results of conversion and selectivity 
are displayed in Fig. 10.

An increase of oxidant load gave a consequent increase 
in the conversion, nonetheless, the camphor selectivity was 
almost unchanged. It demonstrates that oxidant load has a 
positive impact on the reaction conversion. Probably, even 
though a low catalyst load was present, an excess of peroxide 
promotes the formation of the catalytically active species.

3.2.6 � Oxidation of the Unsaturated Terpene Alcohols

To assess the efficiency of K5SiFeW11O39 catalyst, other ter-
penic alcohols were selected to be oxidized. The reason for 
this study was evaluating the conversion and selectivity of 
the substrates with other susceptible sites to oxidation, such 
as the double bonds, which can be also epoxidized. In these 
reactions, primary (i.e. β-citronellol), tertiary (i.e. linalool), 
and primary allylic (i.e. geraniol and nerol) alcohols were 
used. The main results of the conversion are presented in 

Fig. 11. Besides the carbonylic products, epoxides were also 
obtained in all the reactions.

In addition to the borneol, nerol, and geraniol were also 
highly reactive alcohols. These alcohols were completely 
converted to aldehydes and epoxy-alcohols (Schemes 2 and 
3).

The epoxidation of the trisubstituted double bond of 
geraniol and nerol is a hydroxy group assisted reaction. This 
effect was previously demonstrated in epoxidation reactions 
catalyzed by titanium, niobium and tungsten oxides catalysts 
[70–72].

Linalool and β-citronellol (Fig. 12) were also tested as 
substrates in oxidation reactions. The poor reactivity of 
trisubstituted double bond trisubstituted in relation to the 
epoxidation reaction was confirmed when β-citronellol was 
oxidized. This primary alcohol gave β-citronellal as the only 
product; no epoxide was detected.

Previously we verified that epoxidation of double bonds 
of nerol and geraniol is a hydroxy group assisted reaction. 
Therefore, even though nerol, geraniol, and β-citronellol 
had another trisubstituted double bond, it is hardly epoxi-
dized. Conversely, the terminal double bond of linalool was 
epoxidized, however, only a low conversion (ca. 40%) was 
achieved on this reaction.

Herein, the oxidation reaction of linalool by H2O2 cata-
lyzed by K5SiFeW11O39 achieved only 40% conversion, 
with the formation of epoxide alcohol. On the other hand, 
in a previous work, when linalool was reacted with perox-
ide in the presence of a lacunar sodium phosphotungstate 
salt (i.e. Na7PW11O39), it was converted to cyclic deriva-
tives (i.e. tetrahydrofuran and pyran) [73]. Notwithstand-
ing, in addition to the different catalyst (i.e. soluble lacunar 
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phosphotungstate sodium salt versus insoluble iron substi-
tuted potassium silicotungstate salt), the temperature and 
the solvent used in that work were different; while in that 
work, reactions were carried out at 298 K temperature and in 
acetonitrile, herein we have used 393 K and DMA solvent).

The superior performance of iron substituted potassium 
silicotungstate salt in oxidations of terpene alcohols (i.e., 
geraniol and nerol) is shown in the supplemental material 
(Figs. 4SM and 5SM).

4 � Conclusion

In this research, transition metal substituted potassium 
silicotungstate salts (i.e. K8-nSiMn+W11O39 (Mn+ = Cu2+, 
Co2+, Ni2+, Zn2+, and Fe3+) were synthesized, character-
ized, and used to catalyze the oxidation of terpenic alco-
hols with hydrogen peroxide. Among the salts assessed, the 
K5SiFeW11O39 was the most active and selective catalyst 
toward the oxidation products. The catalytic activity was 
discussed in terms of higher Lewis acidity of Fe3+ cation, 
a characteristic that distinguished it from the other salts. A 
high TON (4260) was achieved in K5SiFeW11O39-catalyzed 
reactions of borneol oxidation, which was higher than that 
previously reported for their precursor (i.e. K8SiW11O39; ca. 
2720). Nerol and geraniol were also efficiently oxidized, giv-
ing their respective aldehydes and epoxides as the main reac-
tion products. Experiments with β-citronellol and linalool 
showed that the epoxidation reaction of the trisubstituted 
double bond is a hydroxy group assisted reaction. The easy 
synthesis procedure, the high efficiency of the catalyst, and 
the use of an environmentally benign oxidant are positive 
aspects of this catalytic system.
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