Syn thesis

Paper

yields up to 81%

Insertion Reaction of 2-Halo-*N*-allylanilines with K₂S Involving Trisulfur Radical Anion: Synthesis of Benzothiazole Derivatives under Transition-Metal-Free Conditions

Xin-Yu Liu^a Yan-Wei Zhao^{*a} Tian Jiang^a Weidong Rao^b Shun-Yi Wang^{*a} [©]

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. of China ywzhao@suda.edu.cn

X.-Y. Liu et al.

^b Nanjing Forest University, Nanjing 210037, P. R. of China

Received: 04.11.2020 Accepted after revision: 19.11.2020 Published online: 14.12.2020 DOI: 10.1055/s-0040-1706104; Art ID: ss-2020-g0567-op

Abstract A synthesis of benzothiazole derivatives through the reaction of 2-halo-*N*-allylanilines with K₂S in DMF is developed. The trisulfur radical anion S₃.⁻, which is generated in situ from K₂S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.

Keywords transition metal-free, trisulfur radical anion, benzothiazole derivatives, radicals, cyclization

Benzothiazole is a very important skeleton of organic compounds and it exists in many natural products.¹ The versatile biological activities of benzothiazole compounds lead to their use as medical and biological molecules,² and the importance of benzothiazoles has prompted organic chemists to focus on their synthesis. Benzothiazoles are generally obtained by using 2-halobenzothiazole³ and benzo[d]thiazol-2-amine.⁴ They can also be synthesized by using aminothiophenol and DMF,⁵ CO₂,⁶ or CO.⁷ Although these methods afford various benzothiazoles, they require unfriendly reaction conditions, such as precious metal catalysts, complex reaction conditions and multiple steps. These drawbacks limit the application of these methods in practice. It is thus desirable to find an environmentally friendly method for the synthesis of benzothiazoles and their derivatives.

 S_3 .⁻ has attracted significant attention for the synthesis of sulfur-containing compounds in recent years.⁸ S_3 .⁻ is easily generated in situ from K_2S or S_8 and initiates reactions

without transition-metal catalysts. Our groups have developed serial reactions for the construction of different sulfur-containing compounds such as benzothiazine (Scheme 1a),⁹ substituted thiophenes (Scheme 1b),¹⁰ as well as 1,2,3thiadiazole and isothiazole (Scheme 1c).¹¹

K₂<mark>S</mark>, DMF, Ar, 130 °C

X = I, B

As part of our continuing interests in C–S bond-formation reactions involving S_3 .⁻, we considered whether the reaction of 2-halo-*N*-allylanilines with K₂S in DMF could be

© 2020. Thieme. All rights reserved. Synthesis 2021, 53, 971–977 Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany X.-Y. Liu et al.

used to construct 4*H*-benzo[*b*][1,4]thiazine derivatives. To our surprise, unexpected benzothiazole derivatives were observed instead of 4*H*-benzo[*b*][1,4]thiazine derivatives. Herein, we offer a new solution for the construction of benzothiazole derivatives via an in situ generated S_3 .⁻ initiated reaction of 2-halo-*N*-allylanilines with K₂S in DMF without transition-metal catalyst or other additives.

The study is initiated by the reaction of **1a** (0.5 mmol) with K_2S (2.2 equiv) in DMA (2 mL) at 130 °C under Ar atmosphere. To our surprise, 2-ethylbenzo[*d*]thiazole (**3a**) instead of 2-methyl-4*H*-benzo[*b*][1,4]thiazine was observed in 24% yield (Table 1, entry 1). To optimize the reaction conditions, we screened the reaction of **1a** with K_2S in different solvents such as DMF, DMSO, DCE, CH₃CN, and 1,4-dioxane (entries 2–6). DMF gave the best result and **3a** was obtained in 53% yield. The reaction of **1a** with K_2S did not afford **3a** in DCE, CH₃CN, or 1,4-dioxane. Next, we tried to apply other sulfur sources to replace K_2S (entries 7 and 8); however, it was found that the reaction of **1a** with S_8 , Na₂S₂O₃ or Cu₂S all failed to give **3a** (entries 7, 8, and 16). When Na₂S·9H₂O and (NH₄)₂S instead of K₂S were applied to the reaction, **3a** was observed in lower yields (entries 14 and 15). It should

Table 1 Optimization of the Reaction Conditions^a

		S source, solvent, temp			
	1a	3а			
Entry	Solvent (2 mL)	S source (equiv)	Temp (°C)	Yield (%) ^b	
1	DMA	K ₂ S (2.2)	130	24	
2	DMF	K ₂ S (2.2)	130	53	
3	DMSO	K ₂ S (2.2)	130	11	
4	DCE	K ₂ S (2.2)	130	NR	
5	MeCN	K ₂ S (2.2)	130	NR	
6	1,4-dioxane	K ₂ S (2.2)	130	NR	
7	DMF	S ₈ (2.2)	130	NR	
8	DMF	$Na_2S_2O_3(1.1)$	130	NR	
9	DMF	K ₂ S (2.5)	130	41	
10	DMF	K ₂ S (1.5)	130	trace	
11 ^c	DMF	K ₂ S (2.2)	130	NR	
12	DMF	K ₂ S (2.2)	80	NR	
13	DMF	K ₂ S (2.2)	100	trace	
14	DMF	$Na_2S\cdot 9H_2O$	130	32	
15	DMF	(NH ₄) ₂ S	130	<10	
16	DMF	Cu ₂ S	130	NR	

^a Reaction conditions: **1a** (0.5 mmol), solvent (2 mL), 130 °C, 12 h, under Ar atmosphere.

^c Air atmosphere.

Paper

be noted that either increasing or decreasing the amount of K_2S resulted in lower yields of **3a** (entries 9 and 10). When the reaction was carried out under the air atmosphere, no desired product **3a** was observed (entry 11). We also investigated the effect of temperature (entries 12 and 13) but no better results were observed.

With the optimized conditions in hand, we explored the versatility of the reaction; the results are summarized in Scheme 2. The reaction of N-allyl-4-chloro-2-iodoaniline (**1b**) and N-allyl-4-fluoro-2-iodoaniline (**1c**) with K_2S worked well to afford 3b and 3c in 45% and 42% yield, respectively. Similarly, when N-allyl-2-iodo-4-(trifluoromethyl)aniline (1d) and N-allyl-2-iodo-4-methylaniline (1e) were subjected to the reaction under identical conditions, 3d and 3e was also observed in 46% and 38% yield, respectively. These results indicate that electronic effects at the 4-position of the aromatic ring has little impact on the reaction. It should be noted that the reaction of N-allyl-5chloro-2-iodoaniline (1f) and N-allyl-5-fluoro-2-iodoaniline (**1g**) with K₂S also proceeded smoothly to give **3f** and 3g in 61% and 66% yields, respectively. The reaction of N-allyl-2-iodo-5-methylaniline (1h) with K₂S led to 3h in 51% yield. Unfortunately, the reactions of 2-iodo-N-(2-methylallyl)aniline (1i), N-(2-bromoallyl)-2-iodoaniline (1j), or 2iodo-N-(3-methylbut-2-en-1-yl)aniline (11) with K₂S failed to furnish the desired products. To our delight, N-cinnamyl-

Scheme 2 Substrate scope of 2-iodo-*N*-allylanilines. *Reagents and conditions*: **1** (0.5 mmol), solvent (2 mL), 130 °C, 12 h, under Ar atmosphere. Isolated yields are given.

^b Isolated yield.

Syn<mark>thesis</mark>

X.-Y. Liu et al.

973

Scheme 3 Substrate scope of 2-bromo-*N*-allylanilines. *Reagents and conditions*: **1** (0.5 mmol), solvent (2 mL), 130 °C, 12 h, under Ar atmosphere. Isolated yields are given.

2-iodoaniline (**1k**) and (*E*)-*N*-(but-2-en-1-yl)-2-iodoaniline (**1m**) also reacted with K_2S to give **3k** and **3m** in 25% and 44% yield, respectively.

We then investigated the scope of the reaction with respect to 2-bromo-*N*-allylanilines under identical reaction conditions (Scheme 3). It should be noted that the reaction of 2-bromo-*N*-allylanilines **2** with K_2S could also afford benzothiazoles but exhibited different reactivities. The

yield of **3b** could be increased from 45% to 72% yield when *N*-allyl-2-bromo-4-chloroaniline (**2b**) instead of **1b** was applied to the reaction with K_2S . The reaction of *N*-allyl-2-bromo-4-fluoroaniline **2c** with K_2S gave **3c** in 76% yield. It is worth noting that the reaction conditions were also efficient with *N*-allyl-2,5-dibromoaniline **2n**, which chemose-lectively afforded **3n** in 81% yield. After that, we also tried the corresponding chlorinated compounds. Although the corresponding products could be obtained, the reaction system was rather messy.

To further understand the reaction mechanism, we tried the reaction of **1a** with K_2S in the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (Scheme 4). It was found that the reaction was complex and no desired product **3a** was observed. Although it is difficult to confirm whether formation of S_3 - occurred in the TEMPO inhibition experiment, this result indicated that the in situ generated S_3 - from K_2S may be involved and may trigger the reaction.

Based on the above experimental results, and in conjunction with relevant literature,⁹ we have proposed a possible reaction mechanism in Scheme 5. First, S_3 .⁻ is generat-

© 2020. Thieme. All rights reserved. Synthesis 2021, 53, 971–977

Synthesis

X.-Y. Liu et al.

ed in situ by the mixture of K₂S in DMF with release of electrons. The electron reacts with **1a** to give the radical anion intermediate **I**, which releases iodine ion to afford radical **II**. The coupling of radical **II** with S₃.⁻ furnishes **III**, the homolysis of which gives radical **IV** and S₂.⁻. The latter reacts with K₂S to regenerate S₃.⁻. Following a subsequent 1,5-H shift, 1,3-H shift and 1,7-H shift, radical **IV** converts into radical **VII**. The intramolecular cyclization of **VII** leads to radical **VIII**. After 1,3-H shift and heteroaromatization, **3a** is formed.

In summary, a new protocol for the synthesis of benzothiazole derivatives via an in situ generated S_3 . initiated reaction of 2-halo-*N*-allylanilines with K_2S in DMF has been developed that proceeds under simple reaction conditions without transition-metal catalyst or other additives. It is interesting that two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift. This study also extends the scope of applications of S_3 . in organic synthesis.

Unless otherwise noted, all commercially available compounds were used as provided without further purification. All the solvents for routine isolation of products and chromatography were reagent grade. Analytical thin-layer chromatography (TLC) was performed on silica gel, with detection by irradiation with UV light. For column chromatography, 300-400 mesh silica gel was used. ¹H and ¹³C NMR spectra were recorded with a Bruker 400 MHz and Bruker 300 MHz spectrometers in CDCl₃. Chemical shifts (δ) are reported referenced to an internal tetramethylsilane standard or to the CDCl₃ residual peak $(\delta = 7.26 \text{ ppm})$ for ¹H NMR spectra. Chemical shifts of ¹³C NMR signals are reported relative to $CDCl_3$ (δ = 77.16 ppm). Data are reported as chemical shift (δ in ppm), multiplicity [indicated as s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet)], coupling constant (J in Hz). Melting points were measured with an Electrothermal digital melting point apparatus and are uncorrected. IR spectra were recorded with a Bruker Vertex 70 spectrophotometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS spectra were obtained with a GCT Premier TOF-MS with CI source or with a Bruker microTOF-Q III instrument with ESI source.

Synthesis of 1 and 2 (1a, 2a, 2e, 12a 1b, 1d, 1e, 12b 1c, 12c 1i, 12d 1k, 12e 1l, 12f 1m, 12g 2d, 12h 2f¹²ⁱ); Typical Procedure for 1a

To a solution of 2-iodoaniline (2.4 mmol) and potassium carbonate (4.0 mmol) in DMF (3 mL) was slowly added allyl bromide (2.0 mmol). The mixture was stirred at r.t. for 16 h, then the reaction was quenched with H_2O (15 mL) and the mixture was extracted with EtOAc (3 × 15 mL). The combined organic layer was dried (MgSO₄), filtered and evaporated, followed by a silica gel column chromatography (PE) to afford *N*-allyl-2-iodoaniline.

N-Allyl-2-bromo-4-chloroaniline (2b)

Yield: 447 mg (76%); Colorless oil.

 ^1H NMR (300 MHz, CDCl_3): δ = 7.47–7.40 (m, 1 H), 7.18–7.09 (m, 1 H), 6.59–6.50 (m, 1 H), 6.01–5.85 (m, 1 H), 5.34–5.17 (m, 2 H), 4.47 (s, 1 H), 3.81 (d, J = 5.1 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 143.6, 134.3, 131.8, 128.4, 121.6, 116.8, 112.1, 109.6, 46.4.

N-Allyl-2-bromo-4-fluoroaniline (2c)

Yield: 448 mg (82%); Colorless oil.

¹H NMR (300 MHz, CDCl₃): δ = 7.25–7.18 (m, 1 H), 6.99–6.89 (m, 1 H), 6.59–6.52 (m, 1 H), 5.96 (m, *J* = 17.2, 10.3, 5.2 Hz, 1 H), 5.34–5.20 (m, 2 H), 4.31 (s, 1 H), 3.80 (m, *J* = 5.3, 1.7 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 154.6 (d, J = 237.0 Hz), 141.6 (d, J = 2.3 Hz), 134.7, 119.4 (d, J = 24.7 Hz), 116.6, 115.0 (d, J = 21.7 Hz), 111.6 (d, J = 7.5 Hz), 108.9 (d, J = 9.7 Hz), 46.7.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -117.1$.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₉BrFN: 229.9975; found: 229.9981.

N-Allyl-2-bromo-5-fluoroaniline (2g)

Yield: 400 mg (73%); Colorless oil.

 ^1H NMR (300 MHz, CDCl₃): δ = 7.38–7.30 (m, 1 H), 6.39–6.28 (m, 2 H), 5.94 (m, J = 17.2, 10.3, 5.1 Hz, 1 H), 5.35–5.20 (m, 2 H), 4.59 (s, 1 H), 3.81 (m, J = 7.1, 3.4, 2.5 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 163.4 (d, J = 242.2 Hz), 146.1 (d, J = 11.3 Hz), 134.1, 132.9 (d, J = 9.7 Hz), 116.8, 104.4 (d, J = 22.5 Hz), 103.7 (d, J = 2.2 Hz), 99.1 (d, J = 27.7 Hz), 46.2.

¹⁹F NMR (376 MHz, $CDCl_3$): $\delta = -116.4$.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₉BrFN: 229.9975; found: 229.9981.

N-Allyl-2-bromo-4-(tert-butyl)aniline (20)

Yield: 557 mg (87%); Colorless oil.

¹H NMR (300 MHz, CDCl₃): δ = 7.56 (d, J = 2.3 Hz, 1 H), 7.30–7.26 (m, 1 H), 6.70–6.66 (m, 1 H), 6.04 (m, J = 17.2, 10.3, 5.2 Hz, 1 H), 5.42–5.26 (m, 2 H), 4.44 (s, 1 H), 3.89 (m, J = 5.3, 1.7 Hz, 2 H), 1.37 (s, 9 H).

¹³C NMR (75 MHz, CDCl₃): δ = 142.5, 141.1, 135.1, 129.4, 125.3, 116.3, 111.4, 109.8, 46.5, 33.9, 31.5.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₃H₁₈BrN: 268.0695; found: 268.0701.

N-Allyl-5-chloro-2-iodoaniline (1b)

Yield: 539 mg (77%); Colorless oil.

¹H NMR (300 MHz, CDCl₃): δ = 7.57–7.52 (m, 1 H), 6.53–6.43 (m, 2 H), 6.01–5.88 (m, 1 H), 5.35–5.21 (m, 2 H), 4.4 (s, 1 H), 3.81 (m, *J* = 5.5, 1.7 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 147.9, 139.5, 135.6, 133.9, 118.6, 116.9, 110.8, 82.3, 46.5.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₉ClIN: 293.9541; found: 293.9547.

N-Allyl-2-iodo-5-methylaniline (1h)

Yield: 484 mg (74%); Colorless oil.

¹H NMR (300 MHz, CDCl₃): δ = 7.60 (d, *J* = 7.9 Hz, 1 H), 6.47 (d, *J* = 2.0 Hz, 1 H), 6.40–6.36 (m, 1 H), 6.04 (m, *J* = 17.2, 10.3, 5.1 Hz, 1 H), 5.41–5.26 (m, 2 H), 4.34 (s, 1 H), 3.88 (d, *J* = 5.2 Hz, 2 H), 2.35 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 146.8, 139.4, 138.6, 134.7, 119.9, 116.4, 111.8, 81.7, 46.6, 21.6.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₀H₁₂IN: 274.0087; found: 274.0093.

N-(2-Bromoallyl)-2-iodoaniline (1j)

Yield: 419 mg (52%); Colorless oil.

¹H NMR (300 MHz, CDCl₃): δ = 7.75–7.65 (m, 1 H), 7.26–7.17 (m, 1 H), 6.59–6.49 (m, 2 H), 5.84 (q, *J* = 1.8 Hz, 1 H), 5.60 (q, *J* = 1.9 Hz, 1 H), 4.77 (s, 1 H), 4.08 (d, *J* = 4.3 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 145.8, 139.2, 130.1, 129.5, 119.7, 116.8, 111.1, 85.4, 52.2.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₉lBrN: 337.9036; found: 337.9041.

N-Allyl-5-fluoro-2-iodoaniline (1g)

Yield: 423 mg (64%); Colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.60–7.54 (m, 1 H), 6.32–6.20 (m, 2 H), 6.00–5.89 (m, 1 H), 5.35–5.21 (m, 2 H), 4.45 (s, 1 H), 3.81 (m, J = 5.5, 1.7 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 164.5 (d, *J* = 181.5 Hz), 148.6 (d, *J* = 9.0 Hz), 139.4 (d, *J* = 7.5 Hz), 134.0, 116.9, 105.6 (d, *J* = 17.3 Hz), 98.5 (d, *J* = 20.2 Hz), 77.9 (d, *J* = 2.2 Hz), 46.5.

¹⁹F NMR (376 MHz, CDCl₃): δ = -112.2.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₉IFN: 277.9836; found: 277.9842.

Benzothiazole Derivatives 3; General Procedure

In a Schlenk tube, **1** or **2** (0.5 mmol), and K₂S (2.2 equiv) and were added and the tube was charged with argon three times. DMF (2.0 mL) was then added and the mixture was stirred at 130 °C for 12 hours. After the mixture was cooled to r.t., the reaction was quenched with H₂O (15 mL) and the mixture was extracted with EtOAc (3 × 15 mL). The combined organic layer was dried (MgSO₄), filtered and evaporated followed by a silica gel column chromatography (EtOAc/PE = 1:100) to afford product **3**.

Ethylbenzo[d]thiazole (3a)

Yield: 44 mg (54%); 36 mg (43%); brown oil.

IR (neat): 1519, 1455, 1434, 1309, 1277, 1238, 1124, 946, 755, 727, 706 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 8.01–7.92 (m, 1 H), 7.87–7.79 (m, 1 H), 7.48–7.39 (m, 1 H), 7.39–7.30 (m, 1 H), 3.15 (q, *J* = 7.6 Hz, 2 H), 1.47 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 173.7, 153.4, 135.2, 126.0, 124.7, 122.6, 121.6, 27.9, 13.9.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₉NS: 164.0528; found: 164.0531.

6-Chloro-2-ethylbenzo[d]thiazole (3b)

Yield: 44 mg (45%); 71 mg (72%); brown solid; mp 45-46 °C.

IR (neat): 1616, 1592, 1519, 1480, 1436, 1397, 1299, 1268, 1168, 1049, 857, 813, 700 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.87–7.83 (m, 1 H), 7.80–7.77 (m, 1 H), 7.42–7.36 (m, 1 H), 3.16–3.09 (m, 2 H), 1.45 (t, *J* = 7.6 Hz, 3 H).

¹³C NMR (100 MHz,CDCl₃): δ = 174.2, 151.9, 136.4, 130.6, 126.8, 123.3, 121.2, 27.9, 13.7.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₈NSCI: 198.0139; found: 198.0137.

2-Ethyl-6-fluorobenzo[d]thiazole (3c)

Yield: 38 mg (42%); 68 mg (76%); brown oil.

IR (neat): 1606, 1567, 1527, 1455, 1248, 1196, 1046, 911, 846, 812, 593 $\rm cm^{-1}$

¹H NMR (400 MHz, CDCl₃): δ = 7.95–7.83 (m, 1 H), 7.57–7.48 (m, 1 H), 7.22–7.13 (m, 1 H), 3.12 (q, *J* = 7.6 Hz, 2 H), 1.46 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 173.3 (d, J = 4.3 Hz), 160.3 (d, J = 243.5 Hz), 150.0, 136.1 (d, J = 12.6 Hz), 123.4 (d, J = 9.4 Hz), 114.5 (d, J = 24.4 Hz), 107.9 (d, J = 27.5 Hz), 27.9, 13.8.

¹⁹F NMR (376 MHz, CDCl₃): δ = -117.1.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₈NSF: 182.0434; found: 182.0436.

Ethyl-6-(trifluoromethyl)benzo[d]thiazole (3d)

Yield: 53 mg (46%); 52 mg (45%); yellow oil.

IR (neat): 1581, 1415, 1315, 1275, 1161, 1115, 1081, 1048, 881, 826, 720, 646 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 8.16–8.10 (m, 1 H), 8.07–8.00 (m, 1 H), 7.73–7.65 (m, 1 H), 3.18 (q, *J* = 7.6 Hz, 2 H), 1.48 (t, *J* = 7.6 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 177.1, 155.4, 135.3, 127.1 (q, *J* = 32.3 Hz), 124.4 (q, *J* = 270.8 Hz), 123.1 (d, *J* = 38.0 Hz), 123.0, 119.3 (d, *J* = 23.0 Hz), 28.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃): δ = -61.35.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₀H₈NSF₃: 232.0402; found: 232.0405.

Ethyl-6-methylbenzo[d]thiazole (3e)

Yield: 34 mg (38%); 36 mg (41%); yellow oil.

IR (neat): 1605, 1523, 1457, 1377, 1304, 1277, 1165, 1054, 948, 811, 586 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.87–7.81 (m, 1 H), 7.65–7.61 (m, 1 H), 7.28–7.23 (m, 1 H), 3.12 (q, *J* = 7.6 Hz, 2 H), 2.47 (s, 3 H), 1.46 (td, *J* = 7.6, 0.7 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 172.6, 151.5, 135.3, 134.7, 127.5, 122.1, 121.4, 27.8, 21.5, 13.9.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₀H₁₁NS: 178.0685; found: 178.0681.

5-Chloro-2-ethylbenzo[d]thiazole (3f)

Yield: 60 mg (61%); brown solid; mp 46-47 °C.

IR (neat): 1724, 1658, 1579, 1503, 1453, 1435, 1284, 1174, 1070, 948, 902, 797, 769, 731, 631 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCI_3$): δ = 7.94 (d, *J* = 2.0 Hz, 1 H), 7.74 (d, *J* = 8.5 Hz, 1 H), 7.32 (dd, *J* = 8.5, 2.0 Hz, 1 H), 3.14 (q, *J* = 7.6 Hz, 2 H), 1.46 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 175.7, 154.3, 133.5, 132.0, 125.2, 122.6, 122.3, 28.0, 13.8.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₈NSCI: 198.0139; found: 198.0145.

2-Ethyl-5-fluorobenzo[d]thiazole (3g)

Yield: 60 mg (66%); 39 mg (43%); yellow oil.

IR (neat): 1606, 1567, 1515, 1454, 1308, 1266, 1147, 1123, 1049, 957, 856, 797, 693, 624 $\rm cm^{-1}.$

Paper

SI	m	t	10	cia	
J	44		IC.	212	

X.-Y. Liu et al.

¹H NMR (400 MHz, CDCl₃): δ = 7.79–7.71 (m, 1 H), 7.67–7.60 (m, 1 H), 7.16–7.08 (m, 1 H), 3.14 (q, *J* = 7.6 Hz, 2 H), 1.46 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 176.4, 161.8 (d, J = 59.4 Hz), 154.3 (d, J = 11.3 Hz), 129.3 (d, J = 10.3 Hz), 122.2 (d, J = 10.2 Hz), 113.4 (d, J = 25.4 Hz), 108.9 (d, J = 2.5 Hz), 28.0, 13.8.

¹⁹F NMR (376 MHz, CDCl₃): δ = -116.4.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₈NSF: 182.0434; found: 182.0436.

2-Ethyl-5-methylbenzo[d]thiazole (3h)

Yield: 45 mg (51%); yellow oil.

IR (neat): 1728, 1607, 1518, 1455, 1305, 1155, 1063, 1002, 947, 827, 795, 611.

¹H NMR (400 MHz, CDCl₃): δ = 7.80–7.74 (m, 1 H), 7.72–7.66 (m, 1 H), 7.19–7.12 (m, 1 H), 3.12 (q, *J* = 7.6 Hz, 2 H), 2.48 (s, 3 H), 1.45 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 173.7, 153.8, 136.0, 132.05, 126.3, 122.6, 121.1, 27.9, 21.5, 13.9.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₀H₁₁NS: 178.0685; found: 178.0685.

2-Phenethylbenzo[d]thiazole (3k)

Yield: 30 mg (25%); yellow oil.

IR (neat):1602, 1519, 1454, 1435, 1312, 1243, 1189, 1062, 1014, 758, 729, 699 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCl_3$): δ = 8.11–7.97 (m, 1 H), 7.91–7.84 (m, 1 H), 7.52–7.46 (m, 1 H), 7.42–7.38 (m, 1 H), 7.38–7.27 (m, 5 H), 3.47 (dd, *J* = 9.2, 6.9 Hz, 2 H), 3.25 (dd, *J* = 9.4, 6.7 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 171.1, 153.3, 140.3, 135.3, 128.7, 128.6, 126.6, 126.1, 124.9, 122.7, 121.7, 36.1, 35.7.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₅H₁₃NS: 262.0661; found: 262.0664.

2-Propylbenzo[d]thiazole (3m)

Yield: 39 mg (44%); yellow oil.

IR (neat): 1518, 1455, 1434, 1310, 1278, 1243, 1153, 1059, 1011, 756, 727 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 8.00–7.94 (m, 1 H), 7.86–7.80 (m, 1 H), 7.48–7.42 (m, 1 H), 7.37–7.31 (m, 1 H), 3.12–3.05 (m, 2 H), 1.95–1.87 (m, 2 H), 1.05 (t, *J* = 7.4 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 172.3, 153.4, 135.3, 126.0, 124.7, 122.6, 121.6, 36.4, 23.2, 13.8.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₀H₁₁NS: 178.0685; found: 178.0684.

5-Bromo-2-ethylbenzo[*d*]thiazole (3n)

Yield: 99 mg (81%); brown solid; mp 45-46 °C.

IR (neat): 1575, 1593, 1501, 1451, 1432, 1405, 1298, 1255, 1173, 1052, 950, 890, 795, 628, 603 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 8.13–8.08 (m, 1 H), 7.70–7.64 (m, 1 H), 7.46–7.41 (m, 1 H), 3.17–3.10 (m, 2 H), 1.45 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 175.5, 154.6, 134.0, 127.8, 125.5, 122.6, 119.5, 27.9, 13.8.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₈NSBr: 241.9634; found: 241.9633.

(*tert*-Butyl)-2-ethylbenzo[*d*]thiazole (30)

Yield: 46 mg (42%); brown oil.

IR (neat): 1727, 1574, 1517, 1455, 1396, 1377, 1313, 1275, 1170, 1072, 1045, 963, 780, 726 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 7.91–7.86 (m, 1 H), 7.84–7.81 (m, 1 H), 7.53–7.48 (m, 1 H), 3.12 (q, *J* = 7.6 Hz, 2 H), 1.45 (t, *J* = 7.6 Hz, 3 H), 1.38 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ = 173.0, 151.3, 148.1, 135.2, 124.1, 121.9, 117.7, 35.0, 31.7, 27.8, 14.0.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₃H₁₇NS: 220.1154; found: 220.1142.

Funding Information

We gratefully acknowledge the National Natural Science Foundation of China (21971174 and 21772137), PAPD, the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708), Soochow University, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials for financial support.

Acknowledgment

Dedicated to the 120th anniversary of Soochow University.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706104.

References

- (a) Ueki, M.; Ueno, K.; Miyadoh, S.; Abe, K.; Shibata, K.; Taniguchi, M.; Oi, S. J. Antibiot. **1993**, 46, 1089. (b) Don, M.-J.; Shen, C.-C.; Lin, Y.-L.; Syu, W.; Ding, Y.-H.; Sun, C.-M. J. Nat. Prod. **2005**, 68, 1066. (c) Sato, S.; Kajiura, T.; Noguchi, M.; Takehana, K.; Kobayashi, T.; Tsuji, T. J. Antibiot. **2001**, 54, 102. (d) Davidson, J.; Corey, P. E. J. J. Am. Chem. Soc. **2003**, 125, 13486. (e) Wang, N.-Z.; Saidhareddy, P.-l.; Jiang, X.-F. Nat. Prod. Rep. **2020**, 37, 246.
- (2) (a) Jiang, L.-L.; Tan, Y.; Zhu, X.-L.; Wang, Z.-F.; Zuo, Y.; Chen, Q.; Xi, Z.; Yang, G.-F. J. Agric. Food Chem. 2010, 58, 2643. (b) Naya, A.; Kobayashi, K.; Ishikawa, M.; Ohwaki, K.; Saeki, T.; Noguchi, K.; Ohtake, N. Bioorg. Med. Chem. Lett. 2001, 11, 1219. (c) Candeias, N. R.; Branco, L. C.; Gois, P. M. P.; Afonso, C. A. M.; Trindade, A. F. Chem. Rev. 2009, 109, 2703. (d) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1. (e) Yuan, J.; Liu, C.; Lei, A.-W. Chem. Commun. 2015, 51, 1394. (f) Feng, M.-H.; Tang, B.-Q.; Liang, S.-H.; Jiang, X.-f. Curr. Top. Med. Chem. 2016, 16, 1200.
- (3) (a) Cao, D.-W.; Yan, C.-X.; Zhou, P.-P.; Zeng, H.-Y.; Li, C.-J. *Chem. Commun.* **2019**, *55*, 767. (b) Discekici, E. H.; Treat, N. J.; Poelma, S. O.; Mattson, K. M.; Hudson, Z. M.; Luo, Y.-D.; Hawker, C. J.; Alaniz, J. *Chem. Commun.* **2015**, *51*, 11705.
- (4) (a) Röder, L.; Nicholls, A. J.; Baxendale, I. R. *Molecules* 2019, 24, 1996. (b) Fang, L.; Qi, L.; Ye, L.-F.; Pan, Z.-T.; Luo, W.-J.; Ling, F.; Zhong, W.-H. *J. Chem. Res.* 2018, 42, 579. (c) Hou, C.-D.; Ren, Y.-L.;

Paper

X.-Y. Liu et al.

Lang, R.; Hu, X.-X.; Xia, C.-G.; Li, F.-W. *Chem. Commun.* **2012**, *48*, 5181. (d) Felipe-Blanco, D.; Alonso, F.; Gonzalez-Gomez, J. C. Adv. Synth. Catal. **2017**, 359, 2857.

- (5) (a) Chun, S.; Yang, S.; Chung, Y.-K. *Tetrahedron* 2017, 73, 3438.
 (b) Gao, X.; Yu, B.; Mei, Q.-Q.; Yang, Z.-Z.; Zhao, Y.-F.; Zhang, H.-Y.; Hao, L.-D.; Liu, Z.-M. *New J. Chem.* 2016, 40, 8282.
 (c) Mostafavi, H.; Islami, M. R.; Ghonchepour, E.; Tikdari, A. M. *Chem. Papers* 2018, 72, 2973. (d) Rasal, K. B.; Yadav, G. D. *Org. Process Res. Dev.* 2016, 20, 2067.
- (6) (a) Ke, Z.-G.; Yu, B.; Wang, H.; Xiang, J.-F.; Han, J.-J.; Wu, Y.-Y.; Liu, Z.-H.; Yang, P.; Liu, Z.-M. Green Chem. 2019, 21, 1695.
 (b) Gao, X.; Yu, B.; Yang, Z.-Z.; Zhao, Y.-F.; Zhang, H.-Y.; Hao, L.-D.; Han, B.-X.; Liu, Z.-M. ACS Catal. 2015, 5, 6648. (c) Song, J.-L.; Zhou, B.-W.; Liu, H.-Z.; Xie, C.; Meng, Q.-L.; Zhang, Z.-R.; Han, B.-X. Green Chem. 2016, 18, 3956. (d) Zhang, B.; Du, G.-X.; Hang, W.; Wang, S.; Xi, C.-J. Eur. J. Org. Chem. 2018, 1739.
- (7) (a) Wade, A. R.; Pawar, H. R.; Biware, M. V.; Chikate, R. C. Green Chem. 2015, 17, 3879. (b) Sharma, H.; Singh, N.; Jang, D. O. Green Chem. 2014, 16, 4922. (c) Samanta, S.; Das, S.; Biswas, P. J. Org. Chem. 2013, 78, 11184. (d) Sharma, P.; Gupta, M.; Kant, R.; Gupta, V. K. New J. Chem. 2015, 39, 5116.

- (8) (a) Zhang, G.-t.; Yi, H.; Chen, H.; Bian, C.-L.; Liu, C.; Lei, A.-W. Org. Lett. 2014, 16, 6156. (b) Tan, W.; Wang, C.-H.; Jiang, X.-F. Chin. J. Chem. 2019, 37, 1234. (c) Jin, S.-N.; Kuang, Z.-J.; Song, Q.-L. Org. Lett. 2020, 22, 615. (d) Ming, W.; Dai, Z.-H.; Jiang, X.-F. Nat. Commun. 2019, 10, 2661. (e) Wang, M.; Fan, Q.-L.; Jiang, X.-F. Org. Lett. 2016, 18, 5756.
- (9) Gu, Z.-Y.; Cao, J.-J.; Wang, S.-Y.; Ji, S.-J. Chem. Sci. 2016, 7, 4067.
- (10) Li, J.-H.; Huang, Q.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2018, 20, 4704.
- (11) Liu, B.-B.; Bai, H.-W.; Liu, H.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. **2018**, 83, 10281.
- (12) (a) Yoo, E.-J.; Chang, S. Org. Lett. 2008, 10, 1163. (b) Liu, M.-Y.; Wang, X.; Sun, X.-L.; He, W. Tetrahedron Lett. 2014, 55, 2711.
 (c) Reddy, S. M. K.; Kothandapani, J.; Sengan, K.; Veerappan, A.; Selva, G. S. Mol. Catal. 2019, 465, 80. (d) Ramesh, K.; Satyanarayana, G. Eur. J. Org. Chem. 2019, 3856. (e) Rong, M.-G.; Qin, T.-Z.; Zi, W.-W. Org. Lett. 2019, 21, 5421. (f) Xie, C.-X.; Han, X.-S.; Gong, J.; Li, D.-Y.; Ma, C. Org. Biomol. Chem. 2017, 15, 5811.
 (g) Caddick, S.; Kofie, W. Tetrahedron Lett. 2002, 43, 9347.
 (h) Weinrich, M. L.; Beck, H. P. Tetrahedron Lett. 2009, 50, 6968.
 (i) Lu, C.; Zhang, Q.; Chen, X. Synth. Commun. 2016, 46, 1215.