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ONE-POT PREPARATION OF 2,5-DICHLORO-4’-
PHENYLOXYBENZOPHENONE

Matthew C. Davis and Thomas J. Groshens
Chemistry and Materials Division, Michelson Laboratory, Naval Air
Warfare Center, China Lake, California, USA

Friedel–Crafts-type acylation of phenyl ether with 2,5-dichlorobenzoic acid could be

accomplished in a single step using trifluoroacetic anhydride and phosphoric acid. The

method gave a greater yield (78%) than the conventional two-step process (71%) of acid

chloride generation followed by aluminum trichloride–mediated acylation.
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To make products that can benefit from the excellent thermochemical and mechan-
ical properties of poly(p-phenylene), the latter must be made with suitable substi-
tution along the main chain to increase solubility and processability.[1–5] A recent
commercial product that has achieved a solution to this problem is Parmax
(poly(2,5-benzophenone), Fig. 1.[6,7] Polymers such as this are also interesting
because of their low moisture absorption.[8–10] A new, one-pot method was used
to synthesize the monomer 3[11–13] for polymerization studies.

The typical synthesis of 3 is shown in Scheme 1. 2,5-Dichlorobenzoic acid (1) is
first converted into its acid chloride 2[14] with thionyl chloride. In the second step,
aluminum trichloride–catalyzed Friedel–Crafts acylation of an equimolar quantity
of phenyl ether with 2 furnished 3 in 71% overall yield. Although there are two
potential sites for acylation of phenyl ether, no diacylated by-product was observed.

Mixed anhydrides of trifluoromethanesulfonate[15] or trifluoroacetate[16–26]

have been shown to react in a Friedel–Crafts manner with activated aromatic sub-
strates. In the new method, 1 is converted into its mixed anhydride of trifluoroacetic
acid (TFA) in an endothermic reaction with excess trifluoroacetic anhydride
(TFAA), Scheme 1. The reaction of 1 with TFAA is fast, yielding upon dissolution
the corresponding mixed anhydride 4 in TFAA=TFA. The 1H, 19F, and 13C nuclear
magnetic resonance (NMR) spectra for 4 were collected (Table 1). It was postulated
that some of the anhydride of 1 might be generated under these conditions.[27]

However, no unidentified peaks were found in the NMR analyses. Addition of
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phenyl ether created a biphasic mixture, and no reaction would take place at reflux
temperature without the addition of 85% phosphoric acid. The 0.18 equivalents of
phosphoric acid that were added slowing formed a semisolid precipitate of unknown
identity, presumed to be pyrophosphate.[23,28,29] Refluxing the reaction mixture for a
few hours brought the acylation to completion, conveniently determined by periodic
1H NMR analysis. The TFA=TFAA solvent mixture was collected by distillation,
and 3 was isolated by a typical workup procedure. The recrystallized yield for this
one-pot method was 78%, slightly better than the acid chloride method.

For safety concerns, many iterations of the TFA mixed anhydride acylation
reaction were run, culminating in 3.2mol of 1. In all cases, an uncontrolled or spon-
taneous exotherm never appeared. This is in keeping with a report from Smyth and
Corby[22] that only 20% of the total heat of reaction in a similar system was attrib-
uted to the actual acylation step.

Figure 1. Polymer structure.

Scheme 1. Alternate routes to monomer 3. Reagents & conditions: a) SOCl2; b) PhOPh, AlCl3, heat; c)

TFAA; d) 85% H3PO4, PhOPh, TFA, TFAA, 45 �C.
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A crystal structure for 3 was obtained by room-temperature x-ray diffraction
(Fig. 2). Even with two crystals run, there appears to be a small amount of disorder
of the distal phenyloxy ring.

Although TFAA and TFA are expensive reagents, the ability to recover and
dehydrate the spent TFAA=TFA may make this process cost-effective over the long
term. This alternate acylation process is environmentally benign by eliminating
hydrogen chloride and sulfur dioxide by-products.

EXPERIMENTAL

The melting points were collected on a Mel-Temp II apparatus from Labora-
tory Devices (Holliston, MA) and are not corrected. All NMR data were collected
on a Bruker Avance II 300MHz spectrometer (1H at 300MHz, 13C at 75MHz,
19F at 282MHz). Nuclear magnetic resonance data (free-induction decays) were pro-
cessed using NUTS software from Acorn NMR (Livermore, CA). All spectra are
referenced to solvent, tetramethylsilane or fluorotrichloromethane. Phenyl ether
(99%) was purchased from Sigma-Aldrich (Milwaukee). Trifluoroacetic anhydride
(TFAA, 99%) was purchased from Alfa Aesar (Ward Hill, MA). Phosphoric acid

Figure 2. Crystal structure of 3.

Table 1. Key nuclear magnetic resonance chemical shifts (ppm) in the synthesis of intermediate 4a

Compound dH dC dF

1 8.01 (dd, J¼ 2.1 and 0.7Hz, 1H),

7.49–7.41 (m, 2H)

169.97, 133.84, 133.46, 133.05, 132.93,

132.54, 129.75

CF3CO2H 162.59 (q, JCF¼ 44Hz), 114.55 (q,

JCF¼ 283.8Hz)

�76.35

(CF3CO)2O 150.05 (q, JCF¼ 48.2Hz), 113.54 (q,

JCF¼ 285.6Hz)

�75.69

4 7.93 (d, J¼ 2.5Hz, 1H), 7.58 (dd,

J¼ 8.7 and 2.5Hz, 1H), 7.52 (d,

J¼ 8.7Hz, 1H)

156.63, 152.49 (q, JCF¼ 46.4Hz), 135.78,

134.83, 133.93, 133.60, 132.88, 127.26,

114.18 (q, JCF¼ 286.1Hz)

�75.90

aSolvent CDCl3, room temperature, carboxylic acid proton resonances not shown.
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(85%) was purchased from J. T. Baker Chemical Co. (Phillipsburg, NJ). All other
reagents were obtained commercially and used as received. Elemental analyses were
performed by Atlantic Microlab, Inc. (Norcross, GA).

The 2,5-dichlorobenzoic acid (1, 97%), a product of Polarchem, was purchased
through Amico Scientific Corporation (Garden Grove, CA). However, the product
contained �15% of an insoluble substance. The material was purified by dissolving
in hot toluene and filtering through diatomaceous earth. The product precipitated as
colorless needles from the cooled filtrate. Elemental analysis calculated for
C7H4Cl2O2 (C, 44.02; H, 2.11) as received indicated C, 42.51; H, 1.91, and after puri-
fication showed C, 44.30; H, 2.09.

2,5-Dichlorobenzoyl Chloride (2)

A 1-L round-bottomed flask equipped with magnetic stirbar was charged with
100 g 1 (0.526mol) and 150mL SOCl2. The mixture was then stirred. An N2 bubbler
was set up, and the effluent gas was piped through two consecutive aqueous NaOH
scrubbing flasks. A heating mantle was equipped, and the mixture was gently
refluxed for 3 h. During this time, copious gas (HCl=SO2) was generated and the
solids completely dissolved. The excess SOCl2 was distilled under vacuum (20 torr)
at 55 �C. Further distillation (0.1 torr) gave the title compound as a colorless liquid
that crystallized in the receiver to a low-melting white solid (102.4 g, 93%). dH
(CDCl3): 8.04 (d, J¼ 2.5Hz, 1H), 7.50 (doublet of doublets, J¼ 8.7 and 2.4Hz,
1H), 7.44 (d, J¼ 8.6Hz, 1H); dC (CDCl3): 164.3, 134.5, 134.4, 133.3, 132.9, 132.8,
132.1. Elemental analysis calculated for C7H3Cl3O: C, 40.14; H, 1.44. Found: C,
40.19; H, 1.35.

2,5-Dichloro-4’-phenyloxybenzophenone (3)

From 2. A 100-mL round-bottomed flask equipped with magnetic stirbar was
charged with 102.4 g 2 (580mmol) and 100 g phenyl ether (590mmol, 1.01 equiv).
The mixture was allowed to stir briefly until all the solids dissolved. Portionwise,
76.4 g AlCl3 (580mmol, 1 equiv) was added over 25min. The color of the reaction
became blood red and copious HCl evolved as the reaction progressed. The mixture
reached 63 �C. After the addition, the mixture was heated to 100 �C for 2 h to com-
plete the reaction. The mixture was allowed to cool to �60 �C, a reflux condenser
was equipped, and 500mL CHCl3 were slowly added to dissolve the thick mixture.
Then 500mL H2O were added slowly by addition funnel to quench the reaction.
After stirring 1 h to allow all the solids to dissolve, the organic phase was separated.
It was washed with 500mL H2O, followed by 250mL 1M NaOH and then 500mL
brine. The mixture was dried over anhydrous MgSO4, followed by treatment with 3 g
Darco G-60. The solvent was then stripped at the rotovap, leaving an off-white solid
(194.5 g, theory 198.6 g). The crude product was recrystallized from 1L 50% MeOH=
EtOH to give 153 g of the title compound as colorless needles (77%). Mp 94–96 �C
(lit.[12] 97 �C). dH (CDCl3): 7.79 (d, J¼ 8.9Hz, 2H), 7.47–7.30 (m, 5H), 7.23 (triplet
of multiplets, J¼ 7.4Hz, 1H), 7.10 (doublet of multiplets, J¼ 7.6Hz, 2H), 7.01
(d, J¼ 9.0Hz, 2H); dH (DMSO): 7.76 (d, J¼ 9.1Hz, 2H), 7.63 (s, 3H), 7.47
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(t, J¼ 7.8Hz, 2H), 7.26 (t, J¼ 7.4Hz, 1H), 7.15 (d, J¼ 8.2Hz, 2H), 7.07 (d,
J¼ 8.2Hz, 2H); dC (CDCl3): 192.3, 163.2, 155.3, 140.4, 133.1, 132.7, 131.4, 131.2,
130.5, 130.3, 129.9, 128.9, 125.16, 120.6, 117.5. Elemental analysis calculated for
C19H12Cl2O2: C, 66.49; H, 3.52. Found: C, 66.42; H, 3.48.

From 1. A 3-L, three-necked, round-bottomed flask equipped with magnetic
stirbar, thermometer, reflux condenser, and addition funnel was charged with
609.5 g 1 (3.2mol), followed by 1820mL TFAA (2695 g, 12.83mol, 4 equiv). The
mixture was stirred, and after 20min all the solids had dissolved in an endotherm
reaction, dropping to 13 �C, to give a solution of 4. After it was stirred 20min
further, 598.4 g phenyl ether (3.52mol, 1.1 equiv) were added in one portion. The
addition funnel was charged with 68 g 85% H3PO4 (0.59mol, 0.18 equiv), which
was added dropwise over 20min. The internal temperature reached 26 �C. The
mixture was then heated to reflux (44 �C) for 3 h. After this time, the reaction was
complete by 1H NMR. A distillation head was equipped, and 2120 g of a colorless
mixture of TFA=TFAA were distilled at atmospheric pressure. The remaining
orange liquid was partitioned between 3L CHCl3 and 2L H2O. The organic layer
was separated and washed with 1L NaOH and then 1L brine. The mixture was dried
over anhydrous MgSO4 followed by treatment with 10 g Darco G-60, and then the
solvent was rotary evaporated, leaving the crude product. Recrystallization from
4L 50% MeOH=EtOH gave 850 g of the title compound as colorless needles
(78%). Spectroscopic and analytical data were identical with those of the previous
preparation.

Table 2. Crystal structure data and refinement details for compound 3

Parameter Value

Empirical formula C19H12Cl2O2

Formula weight 343.19

Temperature (K) 296 (2)

Crystallization solvent toluene

Crystal system Monoclinic

Space group P12(1)=c1

Unit cell dimensions (Å, �)
a 15.4487(11)

b 19.0861(13)

c 5.5265(4)

a 90

b 93.8380(10)

c 90

Volume (Å3) 1625.9(2)

Z 4

Density (Mg=cm3) 1.402

Crystal size (mm) 0.35� 0.54� 0.55mm3

Reflections collected 15031

Independent reflections 2871

Completeness (%) 100

Data=restraints=parameters 15031=0=245

Goodness-of-fit on F2 1.084

Final R [I> 2sigma(I)] R1¼ 0.0362, wR2¼ 0.0872
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X-Ray Structure Determination of 3

Some selected data and refinement details are collected in Table 2. CCDC
744718 (3) contains the supplementary crystallographic data for this article. These
data can be obtained free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif, by e-mailing data_request@ccdc.
cam.ac.uk, or by contacting CCDC, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: þ44 1223 336033.
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