Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

SEVIER

Effect of second metal component on the reduction property and catalytic performance of NiO-MO_x/Nb₂O₅-TiO₂ for direct synthesis of 2-propylhep-tanol from *n*-valeraldehyde

Lili Zhao^{a,b}, Hualiang An^{a,*}, Xinqiang Zhao^{a,*}, Yanji Wang^a

^a Hebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China

^b College of Science and Technology, Hebei Agricultural University, Huanghua, Hebei 061100, China

ARTICLE INFO	A B S T R A C T
Keywords: n-Valeraldehyde 2-Propylheptanol Direct synthesis NiO-Co ₃ O ₄ /Nb ₂ O ₅ -TiO ₂	In order to improve the catalytic performance of NiO/Nb ₂ O ₅ -TiO ₂ , several kinds of the second metal oxide component MO_x (M = Pd, Co, Ir or Rh) were separately introduced and their effects on the reduction property and catalytic performance were evaluated. The results showed that the reduction temperature of NiO decreased and NiO-Co ₃ O ₄ /Nb ₂ O ₅ -TiO ₂ exhibited the best catalytic performance. The reason for the enhancement of NiO reducibility may stem from the interaction of M with Ni and the hydrogen spillover as confirmed by various characterization techniques including XRD, H ₂ -TPR, H ₂ -TPD and XPS.

1. Introduction

2-Propylheptanol (2-PH) is an important plasticizer alcohol. By comparison with the traditional dioctyl phthalate (DOP) plasticizer produced by 2-ethylhexanol, 2-PH-derived plasticizers such as 2-propylheptyl phthalate (DPHP) are more environmentally friendly due to their temperature resistance, lower volatility, and being nontoxic and so on [1]. The industrial production of 2-PH mainly includes three reaction steps: hydroformylation of butene, self-condensation of *n*-valeraldehyde, and hydrogenation of 2-propyl-2-heptenal. If *n*-valeraldehyde self-condensation and 2-propyl-2-heptenal hydrogenation can be integrated, that is, direct synthesis of 2-PH from *n*-valeraldehyde, the process will be simplified and the energy consumption will be reduced, thus the cost of production being lowered. Therefore, the investigation on this reaction integration is of a crucial significance for both academic research and industrial production of 2-PH.

At present, a few studies about the direct synthesis of 2-PH from *n*-valeraldehyde have been reported. Sharma and Jasra [2] employed Ru-HT (ruthenium hydrotalcite) bifunctional catalyst for single pot synthesis of 2-PH from *n*-valeraldehyde and obtained a 2-PH selectivity of only 48%. In our previous work [3], the catalytic performances of Ni/TiO₂, Ni/Nb₂O₅-TiO₂, and NiO/Nb₂O₅-TiO₂ catalysts for the direct synthesis of 2-PH from *n*-valeraldehyde were separately evaluated. The results showed that the introduction of Nb₂O₅ could effectively tune the

acidity and basicity on the Ni/TiO₂ surface and NiO/Nb₂O₅-TiO₂ catalyst could delay the formation of metal sites so as to suppress the direct hydrogenation of *n*-valeraldehyde. However, the formation of a majority of incompletely hydrogenated products suggested that NiO was not completely reduced in reaction. To facilitate the complete reduction of NiO in reaction, a second-metal component was introduced into NiO/Nb₂O₅-TiO₂ catalyst to lower the reduction temperature of NiO.

The effect of a second-metal component on the reduction property and the catalytic performance of Ni-based catalysts has been reported. Lock et al. [4] investigated the effect of Pd addition on the catalytic performance of Ni/Al₂O₃ for methane decomposition and found that adding Pd into Ni/Al2O3 catalyst improved the catalytic activity and inhibited carbon deposition. The H2-TPR characterization result showed that the reduction temperature of NiO-PdO/Al2O3 catalyst shifted to a lower temperature, indicating that the addition of Pd promoted the reduction of NiO. Lin et al. [5] studied the effect of Ir addition on the catalytic performance of Ni/TiO2 for hydrogenation of cinnamaldehyde and found that adding Ir into Ni/TiO2 improved the catalytic performance and stability. The results of H2-TPR, H2-TPD and XPS analyses showed that the interaction between Ni and Ir could lower the reduction temperature of NiO. Andonova et al. [6] compared the catalytic performance of Ni-Co/Al₂O₃ with Ni/Al₂O₃ for hydrogen production from ethanol steam reforming and found that Ni-Co/Al2O3 exhibited better stability and hydrogen selectivity. Compared with the single metal

* Corresponding authors. *E-mail addresses:* anhl@hebut.edu.cn (H. An), zhaoxq@hebut.edu.cn (X. Zhao).

https://doi.org/10.1016/j.catcom.2020.106209

Received 11 August 2020; Received in revised form 29 September 2020; Accepted 21 October 2020 Available online 24 October 2020 1566-7367/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). system, the reduction temperature of NiO decreased and furthermore the reducibility of NiO increased with the increase of Co content. Hou et al. [7] found that Ni/Al₂O₃ catalyst had good catalytic activity in methane reforming but the catalyst suffered from the problem of deactivation. After introducing a small amount of Rh, the catalytic stability of Ni/Al₂O₃ catalyst was improved. The characterization result showed that Rh improved the dispersion of Ni and decreased the reduction temperature of NiO. In conclusion, adding a second-metal component into Ni-based catalysts can not only improve the catalytic activity and stability, but also reduce the reduction temperature of NiO.

Consequently, a second-metal oxide component MO_x (PdO, Co_3O_4 , IrO_2 or Rh_2O_3) was introduced into NiO/Nb_2O_5 - TiO_2 catalyst to assist NiO reduction in reaction in this work. We aimed to clarify the reason why adding second-metal component could promote the reduction of NiO in the reaction process. So the effect of the addition of a second metal component on the catalytic performance of NiO/Nb_2O_5 - TiO_2 was evaluated first and then the effect on the reduction property was analyzed by a series of characterization techniques.

2. Experimental

2.1. Catalyst preparation and characterization

NiO-MO_x/Nb₂O₅-TiO₂ catalysts were prepared by co-impregnation method. The as-prepared samples were characterized by several techniques, namely, XRD, H₂-TPR, H₂-TPD and XPS. More details about the synthesis procedure and characterization can be found in the Supplementary material.

2.2. Catalytic performance evaluation

The catalytic tests were carried out in a 100 mL stainless steel autoclave charged with 3.6 g catalyst and 30 mL (24 g) of *n*-valeraldehyde. Prior to experiments, the air inside was replaced with hydrogen. The mixture was heated and the reaction was carried out at 200 °C for 6 h under the H₂ pressure of 3.0 MPa with stirring. After the completion of reaction, the mixture was cooled to room temperature and was separated by centrifugation. The liquid was quantitatively analyzed by a SP-2100 gas chromatograph (Beijing Beifen-Ruili Analytical Instrument Co., Ltd) equipped with a flame ionization detector (FID) operated at 250 °C according to the literature [1].

3. Results and discussion

3.1. Effect of MO_x on catalytic performance of NiO/Nb₂O₅-TiO₂

The effect of second-metal component on the catalytic performance of NiO/Nb₂O₅-TiO₂ was evaluated and the results are shown in Table 1. It can be seen that *n*-valeraldehyde was incompletely converted and the target product 2-PH was not formed over NiO/Nb2O5-TiO2 catalyst. Some intermediates (2-propyl-2-heptenal and 2-propylheptanal) and a small amount of direct hydrogenation product n-pentanol were formed instead, indicating that NiO failed to be completely reduced in reaction. However, n-valeraldehyde was completely converted and 2-PH became the main product over NiO-MO_x/Nb₂O₅-TiO₂ catalysts, suggesting that NiO could be reduced in reaction. It can also be seen that the ratio of S2-PH to S_{PO} was 0 and the selectivity of *n*-pentanol was only 3.2% over NiO/Nb2O5-TiO2 catalyst, indicating that n-valeraldehyde selfcondensation reaction took place predominately while hydrogenation reaction hardly occurred. The ratio of S_{2-PH} to S_{PO} varied with different bimetallic catalysts and decreased as following order: NiO-Co₃O₄/ $Nb_2O_5\text{-}TiO_2 > NiO\text{-}PdO/Nb_2O_5\text{-}TiO_2 > NiO\text{-}IrO_2/Nb_2O_5\text{-}TiO_2 > NiO\text{-}$ Rh₂O₃/Nb₂O₅-TiO₂. If the ratio of S_{2-PH} to S_{PO} is 1, the competitiveness of n-valeraldehyde self-condensation reaction is comparable with respect to that of n-valeraldehyde direct hydrogenation reaction. If the ratio of S2-PH to SPO is greater than 1, n-valeraldehyde self-condensation

Table 1

Effect of MO_x on catalytic performance of NiO/Nb₂O₅-TiO₂.

Catalyst	X _V / %	S _{PO} / %	S₂. _{РНА} ∕ %	S ₂₋ phea/ %	S ₂₋ _{РН} / %	S ₂₋ _{РН} / S _{PO}	Period of instantaneous hydrogen flow time/min
NiO/ Nb ₂ O ₅ - TiO ₂ ^a	93.1	3.2	39.6	56.0	0	0	None
NiO- PdO/ Nb ₂ O ₅ - TiO ₂	100	23.0	2.3	0	61.3	2.7	0–45.4
NiO- Co ₃ O ₄ / Nb ₂ O ₅ - TiO ₂	100	21.8	0	0	77.1	3.5	52.5–118.8
NiO- IrO ₂ / Nb ₂ O ₅ - TiO ₂	100	28.9	0	0	64.8	2.2	9–106.3
NiO- Rh ₂ O ₃ / Nb ₂ O ₅ - TiO ₂	100	33.9	0	0	61.7	1.8	0–94
Co ₃ O ₄ / Nb ₂ O ₅ - TiO ₂ ^b	100	20.6	24.1	23.1	13.0	0.6	None

V: *n*-valeraldehyde; PO: *n*-pentanol; 2-PHA: 2-propylheptanal; 2-PHEA: 2-propyl-2-heptenal;

2-PH: 2-propylheptanol. X: conversion; S: selectivity.

Reaction conditions: a weight percentage of catalyst =15%, T = 200 °C, P = 3 MPa, t = 6 h.

 $\rm Nb_2O_5$ loading was 5 wt% of TiO_2, NiO loading was 13 wt% of $\rm Nb_2O_5\text{-}TiO_2$ and MO_x loading was 1 wt% of Nb_2O_5\text{-}TiO_2.

^a NiO loading was 14 wt% of Nb₂O₅-TiO₂.

^b Co₃O₄ loading was 14 wt% of Nb₂O₅-TiO₂.

reaction is more competitive than *n*-valeraldehyde direct hydrogenation reaction. In this work, the ratio of $S_{2.PH}$ to S_{PO} was greater than 1 over NiO-MO_x/Nb₂O₅-TiO₂ catalysts. Furthermore, the ratio of $S_{2.PH}$ to S_{PO} was the largest, up to 3.5 over NiO-Co₃O₄/Nb₂O₅-TiO₂ catalyst; the selectivity of 2-PH reached 77.1% while the selectivity of *n*-pentanol was only 21.8%. Therefore, NiO-Co₃O₄/Nb₂O₅-TiO₂ catalyst was chosen as the suitable bimetallic catalyst for further research.

In order to analyze the reason why the NiO-Co₃O₄/Nb₂O₅-TiO₂ catalyst has excellent catalytic performance, the catalytic performance of Co₃O₄/Nb₂O₅-TiO₂ was evaluated under the same conditions as NiO-Co₃O₄/Nb₂O₅-TiO₂ and the results were also listed in Table 1. The condensation product was not completely hydrogenated, indicating that a lower hydrogenation activity over Co₃O₄/Nb₂O₅-TiO₂ catalyst. It also showed that there was interaction between Ni and Co, which affected the catalytic performance of NiO-Co₃O₄/Nb₂O₅-TiO₂.

The above results showed that adding second-metal component could promote the reduction of NiO in the reaction process. To analyze the promotion effect of a second-metal component on NiO reduction and on the catalytic performance of NiO/Nb₂O₅-TiO₂, NiO-MO_x/Nb₂O₅-TiO₂ catalysts were characterized by means of XRD, H₂-TPR, H₂-TPD and XPS techniques.

3.2. Characterization of NiO-MO_x/Nb₂O₅-TiO₂ catalysts

3.2.1. Analysis of XRD

XRD patterns of the fresh and the recovered NiO/Nb₂O₅-TiO₂ and NiO-MO_x/Nb₂O₅-TiO₂ catalysts are shown in Fig. 1. NiO were detected besides anatase TiO₂ in the fresh NiO-MO_x/Nb₂O₅-TiO₂ catalysts. However, the characteristic peaks of Nb₂O₅, PdO, IrO₂, Rh₂O₃ and Co₃O₄ were not observed due to their low loading, smaller grain size and high dispersion on the supporter surface. For the recovered NiO/Nb₂O₅-TiO₂ catalyst, a weak diffraction peak of NiO was detected besides

Fig. 1. XRD patterns of different catalysts before and after reaction 1: NiO/Nb₂O₅-TiO₂; 2: NiO-PdO/Nb₂O₅-TiO₂; 3: NiO-Co₃O₄/Nb₂O₅-TiO₂; 4: NiO-IrO₂/Nb₂O₅-TiO₂; 5: NiO-Rh₂O₃/Nb₂O₅-TiO₂.

*: fresh; #: recovered. \bullet : NiO; \blacklozenge : Ni⁰.

metallic nickel, indicating that NiO was incompletely reduced in the reaction process. However, NiO was not detected while an obvious diffraction peak of Ni was detected in the recovered NiO-MO_x/Nb₂O₅-TiO₂ catalyst, indicating that adding MO_x could indeed promote the reduction of NiO in reaction process, which was consistent with the activity evaluation results.

3.2.2. Analysis of H₂-TPR

H₂-TPR analyses of NiO-MO_x/Nb₂O₅-TiO₂ (M = Pd, Ir, Rh or Co) were made and their profiles are shown in Fig. 2 while the measurement data is listed in Table S1 in the Supplementary material. As to NiO-PdO/Nb₂O₅-TiO₂ catalyst, there were four hydrogen consumption peaks separately at 72.2 °C, 235.0 °C, 306.7 °C and 419.1 °C. The weak peak at 72.2 °C was ascribed to the reduction of PdO. The peak at 235.0 °C was ascribed to the reduction of PdO. The peak at 306.7 °C was ascribed to the reduction of NiO strongly interacted with PdO and the Nb₂O₅-TiO₂ surface [8]. The peak at 419.1 °C was ascribed to the reduction peaks at 419.1 °C was ascribed to the reduction peak at 419.1 °C was ascribed to the reduction for NiO strongly interacted with PdO and the Nb₂O₅-TiO₂ surface [8]. The peak at 419.1 °C was ascribed to the reduction peak of NiO interacted with the Nb₂O₅-TiO₂ surface. NiO-Co₃O₄/Nb₂O₅-TiO₂ catalyst had four hydrogen consumption peaks separately at 262.2 °C, 302.1 °C, 364.7 °C and 399.2 °C. The peak at 262.2 °C and Ni²⁺ to Ni⁰ while the peak at 364.7 °C and 399.2 °C should

Fig. 2. H₂-TPR curves of NiO-MO_x/Nb₂O₅-TiO₂ catalysts.

be attributed to the reduction of both Co^{2+} to Co^{0} and the reduction of Ni²⁺ strongly interacted with the Nb₂O₅-TiO₂ surface [9]. NiO-IrO₂/Nb₂O₅-TiO₂ catalyst had four hydrogen consumption peaks separately at 163.5 °C, 220.6 °C, 299.2 °C and 409.1 °C, being ascribed to the reduction of IrO₂ with large grains, IrO₂-NiO, NiO strongly interacted with IrO₂ and the Nb₂O₅-TiO₂ surface, and NiO interacted with Nb₂O₅-TiO₂ [5]. NiO-Rh₂O₃/Nb₂O₅-TiO₂ catalyst had four hydrogen consumption peaks at 81.5 °C, 254.6 °C, 288.8 °C and 401.2 °C, being separately ascribed to the reduction peaks of Rh₂O₃ with large grains, Rh₂O₃-NiO, NiO strongly interacted with Rh₂O₃ and the Nb₂O₅-TiO₂ surface, and NiO interacted [10].

In the case of NiO-MO_x/Nb₂O₅-TiO₂ (M = Pd, Ir, Rh or Co) catalysts, the main reduction peaks appeared at lower temperatures compared with that of NiO/Nb₂O₅-TiO₂. More specifically, the reduction peak of NiO shifted to lower temperatures after the addition of PdO, IrO₂, Rh₂O₃ and Co₃O₄ into NiO/Nb₂O₅-TiO₂ catalyst, indicating that the reduction of NiO was promoted. This promoting effect is due to the hydrogen spillover and the dissociated hydrogen species which can move from the metals (M = Pd, Ir, Rh or Co) to the surface of NiO [9,11,12]. Moreover, according to the work of Xiang et al. [11], the simultaneous reduction of Ni and Co species would benefit the formation of Ni—Co alloy phase and that the formation of Ni—Co alloy phase could facilitate the reduction process. Therefore, we speculate the interaction between Ni and Co and the formation of Ni—Co alloy in the catalyst reduction process.

The above analyses showed that the interaction between Ni and M (M = Pd, Co, Ir or Rh) was the main reason for the shift in the reduction peak of NiO to lower temperatures in NiO-MO_x/Nb₂O₅-TiO₂ catalysts. In addition, it can also be seen from Fig. 2 that the reduction peak temperature and hydrogen uptake varied with the kind of the metals added. The order of hydrogen uptake at higher temperature decreased as the following order: NiO-Co₃O₄/Nb₂O₅-TiO₂ > NiO-IrO₂/Nb₂O₅-TiO₂ > NiO-PdO/Nb₂O₅-TiO₂ > NiO-Rh₂O₃/Nb₂O₅-TiO₂, in accordance with the order of total yield of products (2-PH and 2-propylheptanal) in Table 1. This indicates that the more the hydrogen uptake at higher temperature, the more difficult it is to be reduced in reaction, the more advantageous it is to improve the competitiveness of *n*-valeraldehyde self-condensation and then the selectivity of 2-PH.

3.2.3. Analysis of H₂-TPD

NiO-MO_x/Nb₂O₅-TiO₂ were reduced firstly and then characterized by H₂-TPD. The profiles are shown in Fig. S1 while the measurement data is summarized in Table 2. It can be seen that Ni-M/Nb₂O₅-TiO₂ catalysts had different desorption peak temperature and different hydrogen desorption amount with respect to different M. The top

Table 2

H₂-TPD analysis data of different bimetallic catalysts.

Catalyst	H_2 desorption peak at lo	ower temperature	H_2 desorption peak at h	Total H ₂ desorption amount/	
	Top temperature/°C	H_2 desorption amount/ $\mu mol \cdot g^{-1}$	Top temperature/°C	H_2 desorption amount/ $\mu mol \cdot g^{-1}$	µmol·g ⁻¹
Ni/Nb ₂ O ₅ -TiO ₂	_	_	426.7	18.4	18.4
Ni-Pd/Nb ₂ O ₅ -TiO ₂	226.6	61.7	_	_	61.7
Ni-Co/Nb2O5-TiO2	246.4	31.5	_	-	31.5
Ni-Ir/Nb ₂ O ₅ -TiO ₂	195.7	71.3	-	_	71.3
Ni-Rh/Nb ₂ O ₅ -TiO ₂	184.0	84.9	-	-	84.9

temperature of hydrogen desorption peak increased in the following order: Ni-Rh/Nb₂O₅-TiO₂ (184.0 °C) < Ni-Ir/Nb₂O₅-TiO₂ (195.7 °C) < Ni-Pd/Nb₂O₅-TiO₂ (226.6 °C) < Ni-Co/Nb₂O₅-TiO₂ (246.4 °C) < Ni/ Nb₂O₅-TiO₂ (426.7 °C). The hydrogen desorption peak area decreased in the following order: Ni-Rh/Nb₂O₅-TiO₂ > Ni-Ir/Nb₂O₅-TiO₂ > Ni-Pd/ Nb_2O_5 -Ti $O_2 > Ni$ -Co/Nb₂O₅-Ti $O_2 > Ni/Nb_2O_5$ -Ti O_2 . The top temperature of hydrogen desorption peak of Ni-M/Nb2O5-TiO2 catalysts was lower than that of Ni/Nb2O5-TiO2 catalyst while the hydrogen desorption peak area of Ni-M/Nb₂O₅-TiO₂ catalysts was larger than that of Ni/ Nb₂O₅-TiO₂ catalyst, indicating that the interaction between metal sites and hydrogen was weak and the number of metal sites was more over Ni-M/Nb₂O₅-TiO₂ catalysts. This suggested that adding the second metal component increased the number of metal sites and promoted hydrogen spillover. In addition, hydrogen spillover was beneficial to the migration of hydrogen species adsorbed on the catalyst surface and to the decrease of reduction temperature of NiO.

It can be seen from Table 1 that the hydrogenation activities of Ni-M/ Nb₂O₅-TiO₂ catalysts (except for NiO-Co₃O₄/Nb₂O₅-TiO₂) were significantly improved and the instantaneous hydrogen flow could be observed at the beginning of the reaction, resulting in higher yield of *n*-pentanol. This result was ascribed to lower top temperature of hydrogen desorption peak and larger hydrogen desorption amount over Ni-M/Nb₂O₅-TiO₂ catalysts in H₂-TPD measurement. However, as for Ni-Co/Nb₂O₅-TiO₂ catalyst, the hydrogen desorption amount was smaller and the top temperature of hydrogen desorption peak was higher than other Ni-M/ Nb₂O₅-TiO₂ catalysts, indicating that the metal active sites on Ni-Co/ Nb₂O₅-TiO₂ catalyst were less and the interaction between hydrogen and the metal active sites was stronger, so a higher temperature was required for hydrogen desorption. This may be the main reason for a relatively low initial hydrogenation activity of NiO-Co₃O₄/Nb₂O₅-TiO₂ catalyst compared with other NiO-MO_x/Nb₂O₅-TiO₂ catalysts. Fortunately, the low initial hydrogenation activity restrained *n*-valeraldehyde direct hydrogenation and favored the *n*-valeraldehyde selfcondensation.

3.2.4. Analysis of XPS

To further analyze the interaction between Ni and M (M = Pd, Ir, Co or Rh), the chemical environment and the chemical states of Ni and M were investigated by XPS analysis. Fig. 3 displays Ni 2p spectra of the NiO/Nb₂O₅-TiO₂ catalyst before and after reaction. It can be seen that the binding energies of Ni $2p_{3/2}$ and Ni $2p_{1/2}$ in the fresh NiO/Nb₂O₅-TiO₂ catalyst were respectively 855.3 eV and 873.0 eV, which were ascribed to NiO [12]. Besides the binding energy of NiO, the binding energy of Ni⁰ was 852.4 eV in the recovered NiO/Nb₂O₅-TiO₂ catalyst [13], and the peak intensity was rather weak due to both the incomplete reduction of NiO in the reaction process and the reoxidation of the surface metallic nickel by contacting air in the analysis process.

Subsequently, Fig. 4 respectively displays the spectra of Ni 2p, Pd 3d, Co 2p, Ir 4f and Rh 3d in the NiO- MO_x/Nb_2O_5 -TiO₂ catalysts before and after reaction. In the Ni 2p spectra of the fresh NiO- MO_x/Nb_2O_5 -TiO₂ catalysts, the characteristic peaks of NiO can be observed besides that of PdO, IrO₂, Rh₂O₃ or Co₃O₄. In the Ni 2p spectra of the recovered NiO- MO_x/Nb_2O_5 -TiO₂ catalysts, the characteristic peaks of Ni⁰ can be obviously observed. Moreover, the binding energy of Ni 2p_{3/2} of Ni⁰ is

Fig. 3. Ni 2p XPS spectra of NiO/Nb₂O₅-TiO₂ before and after reaction.

respectively 851.9 eV, 852.2 eV, 852.1 eV and 852.2 eV with respect to different M (M = Pd, Co, Ir and Rh), respectively shifting 0.5 eV, 0.2 eV, 0.3 eV and 0.2 eV to a low binding energy in comparison with the binding energy of Ni⁰ in the recovered NiO/Nb₂O₅-TiO₂ catalyst. This indicates a strong interaction between M (M = Pd, Co, Ir or Rh) and Ni via the electron transfer from M to Ni, resulting in an electron-deficient M and an electron-enriched Ni. This can be also verified by the shift of metal M binding energy. In the Pd 3d spectra of the recovered NiO-PdO/ Nb₂O₅-TiO₂ catalyst, the binding energies at 335.5 eV and 340.8 eV are respectively ascribed to the Pd $3d_{5/2}$ and Pd $3d_{3/2}$ peaks of Pd⁰ and the former increases 0.5 eV in comparison with the standard binding energy of 335.0 eV [14]. In the Co 2p spectra of the recovered NiO-Co₃O₄/ Nb₂O₅-TiO₂ catalyst, the binding energy at 778.1 eV is assigned to the Co $2p_{3/2}$ of Co⁰, which is shifted 0.2 eV towards a higher binding energy than the standard binding energy of 777.9 eV [9]. In the Ir 4f spectra of the recovered NiO-IrO₂/Nb₂O₅-TiO₂ catalyst, the Ir $4f_{7/2}$ peak of Ir⁰ is located at 61.2 eV, shifting 0.3 eV to a higher binding energy compared to the standard binding energy of 60.9 eV [5]. In the Rh 3d spectra of the recovered NiO-Rh₂O₃/Nb₂O₅-TiO₂ catalyst, the Rh 3d_{5/2} and Rh 3d_{3/2} peaks of Rh⁰ are located respectively at 307.8 eV and 312.5 eV and the former is shifted by 0.2 eV to a higher binding energy compared to the standard binding energy of 307.6 eV [15]. The above analyses confirm the existence of a strong interaction between Ni and M.

The above characterization results confirm the interaction between Ni and M. The interaction causes the decrease of NiO reduction temperature, being consistent with the results of the previous literatures [4–7]. What is more, NiO-MO_x/Nb₂O₅-TiO₂ (M = Pd, Co, Ir or Rh) catalysts show different reduction properties with respect to different M, thus to further affect the catalytic performance.

 $Pd^{2+} 3d_{3/2}$

recovered

348

fresh

recovered

fresh

recovered

72

fresh

810

2p_{1/2}

sat.

 $\mathrm{Pd}^0 \mathrm{3d}_{\mathrm{3/2}}$

344

Co

800

 $^{+}4f_{7/2}$

68

 $Rh^{3+}_{...3d_{3/2}}$

MAMAAAAA

recovered

320

Fig. 4. XPS spectra of $NiO-MO_x/Nb_2O_5$ -TiO₂ before and after reaction.

4. Conclusions

The catalytic performance of NiO-MO_x/Nb₂O₅-TiO₂ (M = Pd, Co, Ir or Rh) catalysts for direct synthesis of 2-PH from *n*-valeraldehyde were investigated and the results showed that adding MO_x could promote reduction of NiO in the reaction process. NiO-Co₃O₄/Nb₂O₅-TiO₂ catalyst showed the best catalytic performance; the selectivity of 2-PH reached 77.1% with a complete conversion of *n*-valeraldehyde. The characterization of NiO-MO_x/Nb₂O₅-TiO₂ catalysts were performed using H₂-TPR, H₂-TPD, XRD and XPS techniques and results indicated that an interaction between M and Ni and a hydrogen spillover from M site to Ni site played important roles in the reduction of NiO in reaction and in the promotion of catalytic performance of NiO-MO_x/Nb₂O₅-TiO₂.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 21476058, 21506046, 21978066) and Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project (18964308D), Natural Science Foundation of Hebei Province (B2018202220, B2020204023), and the Key Project for Natural Science Foundation of Hebei Province (B2020202048). The authors are gratefully appreciative of their contributions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.catcom.2020.106209.

References

 L. Zhao, H. An, X. Zhao, Y. Wang, TiO₂-catalyzed *n*-valeraldehyde selfcondensation to 2-propyl-2-heptenal: acid catalysis or base catalysis? Ind. Eng. Chem. Res. 55 (2016) 12326–12333, https://doi.org/10.1021/acs.iecr.6b03424.

- [2] S.K. Sharma, R.V. Jasra, Synthesis of 2-propylheptanol from 1-pentanal in a single pot using bi-functional ruthenium hydrotalcite catalyst in batch and flow reaction, Indian J. Chem. A 54 (2005) 451–458.
- [3] L. Zhao, One-Step Synthesis of 2-Propyl Heptanol from n-Valeraldehyde, Doctoral Thesis, Hebei University of Technology, Tianjin, China, 2019 (in Chinese).
- [4] I.S.M. Loke, S.S.M. Loke, D.N. Vo, B. Abdullah, Influence of palladium on Ni-based catalyst for hydrogen production via thermo-catalytic methane decomposition, Chem. Eng. Trans. 57 (2017) 343–348, https://doi.org/10.3303/CET1757058.
- [5] W. Lin, H. Cheng, L. He, Y. Yu, F. Zhao, High performance of Ir-promoted Ni/TiO₂ catalyst toward the selective hydrogenation of cinnamaldehyde, J. Catal. 303 (2013) 110–116, https://doi.org/10.1016/j.jcat.2013.03.002.
- [6] S. Andonova, C.N. de Avil, K. Arishtirov, J.M.C. Bueno, S. Damyanova, Structure and redox properties of Co promoted Ni/Al₂O₃ catalysts for oxidative steam reforming of ethanol, Appl. Catal. B Environ. 1105 (2011) 346–360, https://doi. org/10.1016/j.apcatb.2011.04.029.
- [7] Z. Hou, T. Yashima, Small amounts of Rh-promoted Ni catalysts for methane reforming with CO₂, Catal. Lett. 89 (2003) 193–197, https://doi.org/10.1023/A: 1025746211314.
- [8] M.D. Navalikhina, N.E. Kavalerskaya, E.S. Lokteva, A.A. Peristyi, E.V. Golubina, V. V. Lumin, Hydrodechlorination of chlorobenzene on Ni and Ni-Pd catalysts modified by heteropolycompounds of the Keggin type, Russ. J. Phys. Chem. A 86 (2012) 1669–1675, https://doi.org/10.1134/S0036024412110192.
- [9] L. Zhao, X. Mu, T. Liu, K. Fang, Bi-metallic Ni-Co catalyst supported on Mn-Al oxide for selective catalytic CO hydrogenation to higher alcohols, Catal. Sci. Technol. 8 (2018) 2066–2076, https://doi.org/10.1039/C7CY02555F.
- [10] J. Kugai, V. Subramani, C. Song, M.H. Engelhard, Y.H. Chin, Effects of nanocrystalline CeO₂ supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol, J. Catal. 238 (2006) 430–440, https://doi.org/10.1016/j.jcat.2006.01.001.
- [11] J. Xiang, X. Wen, F. Zhang, Supported nickel-cobalt bimetallic catalysts derived from layered double hydroxide precursors for selective hydrogenation of pyrolysis gasoline, Ind. Eng. Chem. Res. 53 (2014) 15600–15610, https://doi.org/10.1021/ ie502721p.
- [12] C.C. Torres, J.B. Alderete, C. Mella, B. Pawelec, Maleic anhydride hydrogenation to succinic anhydride over mesoporous Ni/TiO2 catalysts: effects of Ni loading and temperature, J. Mol. Catal. A Chem. 423 (2016) 441–448, https://doi.org/ 10.1016/j.molcata.2016.07.037.
- [13] S. Lee, J.S. Kang, K.T. Leung, S.K. Kim, Y. Sohn, Magnetic Ni-Co alloys induced by water gas shift reaction, Ni-Co oxides by CO oxidation and their supercapacitor applications, Appl. Surf. Sci. 386 (2016) 393–404, https://doi.org/10.1016/j. apsusc.2016.06.050.
- [14] J.W. Che, M.J. Hao, W.Z. Yi, H. Kobayashi, Y. Zhou, L. Xiao, J. Fan, Selective suppression of toluene formation in solvent-free benzyl alcohol oxidation using supported Pd-Ni bimetallic nanoparticles, Chin. J. Catal. 38 (2017) 1870–1879, https://doi.org/10.1016/S1872-2067(17)62904-8.
- [15] M. Jabłońska, R. Palkovits, It is no laughing matter: nitrous oxide formation in diesel engines and advances in its abatement over rhodium-based catalysts, Catal. Sci. Technol. 6 (2016) 7671–7687, https://doi.org/10.1039/C6CY01126H.