

Acid- and Base-Catalyzed Hydrolytic Hydrogen Evolution from Diboronic Acid

Yi Wang⁺,^[a] Jialu Shen⁺,^[a] Yu Huang,^[a] Xiang Liu,^{*[a]} Qiuxia Zhao,^[b] and Didier Astruc^{*[b]}

The efficient production of H_2 from hydrogen-rich sources, particularly from water, is a crucial task and a great challenge, both as a sustainable energy source and on the laboratory scale for hydrogenation reactions. Herein, a facile and effective synthesis of H_2 and D_2 from only acid- or base-catalyzed metal-free hydrolysis of $B_2(OH)_4$, a current borylation reagent, has been developed without any transition metal or ligand. Acid-catalyzed H_2 evolution was completed in 4 min, whereas the

Introduction

Hydrogen-rich inorganic hydrides, metal hydrides, nanostructured materials, and chemical storage materials such as NH₃BH₃, NaBH₄ or related compounds based on boron^[1] have been regarded as most promising for chemical hydrogen storage materials due to their high hydrogen content and easily storage as solids.^[2] Typically, hydrolysis of NH₃BH₃, NaBH₄ or related boron compounds catalyzed by optimized transition-metal nanoparticles smoothly generates H₂ under ambient conditions.^[3] On the other hand, several simple organic/ inorganic compounds such as for instance ethanol and water have been shown to be useful in transfer hydrogenation, a very rich organic chemistry field.^[4] Indeed, the transport and current laboratory use of explosive H₂ is dangerous and hazardous. In this respect, another commercially available class of boron compounds, diboronic acid and esters, B_2X_4 (X=OH and pinacolate, pin, respectively)^[5] has shown great usefulness in organic synthesis,^[6] in particular for hydrogenation and cross coupling with haloarenes producing arylboronic derivatives that are well known as precursors of C-C bonds upon Miyaura-Suzuki coupling.^[7] These two diboron derivatives have indeed largely been used in transition-metal-catalyzed transfer hydro-

[a]	Y. Wang, ⁺ J. Shen, ⁺ Y. Huang, Prof. Dr. X. Liu
	College of Materials and Chemical Engineering,
	Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion
	Materials, Material Analysis and Testing Center
	China Three Gorges University,
	Yichang, Hubei 443002, China
	E-mail: xiang.liu@ctgu.edu.cn
	https://www.x-mol.com/groups/liu_xiang
[b]	Q. Zhao, Prof. Dr. D. Astruc
	ISM, UMR CNRS N° 5255, Univ. Bordeaux
	351 Cours de la Libération, 33405 Talence Cedex, France
	E-mail: didier.astruc@u-bordeaux.fr
	http://astruc.didier.free.fr/
r+1	These such as here as the bound of a such here this work, and should be as a

[⁺] These authors have contributed equally to this work and should be considered as co-first authors.

Supporting information for this article is available on the WWW under https://doi.org/10.1002/ejic.202100093

base-catalyzed process needed 6 min. The large kinetic isotopic effects for this reaction with D_2O , deuteration experiments and mechanistic studies have confirmed that both H atoms of H_2 originate from water using either of these reactions. This new, metal-free catalytic system holds several advantages, such as high efficiency, simplicity of operation, sustainability, economy, and potential further use.

genation of a variety of substrates using water as the hydrogen source,^[8] and H₂ has been found as intermediate^[9] or $product^{[10]}$ in some of these reactions.

The mechanism of H₂ formation from water whereby both hydrogen atoms from H₂ are provided by water is therefore clearly of different nature from those involving transition-metal catalyzed hydrolysis of NH₃BH₃ or NaBH₄ by which one H atom is provided from water and the other one from NH₃BH₃ or NaBH₄.^[10] Moreover, several reports have also appeared showing useful substrate hydrogenation using these diboron compounds with water as the only hydrogen source in the absence of transition metal catalyst.^[11] In a seminal article on the reactions of B₂Cl₄, Wartik and Apple had noted: "B₂(OH)₄ is a white solid which dissolved in a large excess of water to liberate traces of hydrogen. The rate of hydrogen evolution was increased somewhat by the addition of sulfuric acid and became guite rapid on the addition of sodium hydroxide".^[12] In parallel, Schlesinger had demonstrated metal-free acid-catalyzed H₂ formation from NaBH₄, and, on the contrary, decrease of hydrolytic activity in basic medium,[13] and Xu et al had disclosed similar trends with hydrolytic H₂ production from NH₃BH₃.^[14]

Given the interest in H₂ evolution and the above applications of these diboron reagents involving their hydrolysis and hydrogenation reaction, we have re-investigated the B₂(OH)₄ hydrolysis reaction in the absence of transition-metal catalyst. Here we report the metal-free acid-catalyzed and basecatalyzed H₂ evolution upon hydrolysis of diboronic acid, B₂(OH)₄. (Eq. 1). The mechanisms of these reactions are proposed based on kinetic studies including kinetic isotope effect (KIE) using D₂O, *in situ* tandem reactions and deuteration experiments. Compared to transition-metal nanoparticle-catalyzed hydrolysis of B₂(OH)₄, this catalytic system also holds several advantages, such as high efficiency, simplicity of operation, sustainability, economy and potential further use.

$$B_2(OH)_4 + 2 H_2O \xrightarrow{\text{Acid or Base}} 2 B(OH)_3 + H_2$$
(1)

Eur. J. Inorg. Chem. **2021**, 1–7

Wiley Online Library

Results and Discussion

Acid-catalyzed H₂ evolution

The study started with hydrogen evolution upon hydrolysis of diboronic acid (1.0 mmol) in the presence of 0.05 mol/L of H_2SO_4 at 30 °C and, in this way, H_2 was obtained in 92% yield in 7 min. Then, it was found that Na_2SO_4 did not work, which indicates that the catalytic efficiency of H_2SO_4 is attributed to the protons (aq. H_3O^+). This acid-catalyzed diboronic acid hydrolysis has been kinetically evaluated by varying the concentrations in catalyst and diboronic acid and studying the temperature effect. H_2 evolution in this reaction has been carried out under various acid concentrations: 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 M (mol/L), while the initial diboronic acid concentration was kept constant at 0.5 M. Figure 1 shows the plots of

Figure 1. Time plots of the catalytic evolution of H_2 as a function of the H_2SO_4 concentration. Inset image: plots of the rates of H_2 generation vs. the concentration of H_2SO_4 , both on natural logarithmic scales.

Figure 2. Plots of the volume of hydrogen generated vs. time for the H_2 evolution at various amount of $B_2(OH)_4$ (both on natural logarithmic scales).

www.eurjic.org

These are not the final page numbers! 77

Eur. J. Inorg. Chem. 2021, 1-7

time vs. volume of H₂ generated by acid-catalyzed diboronic acid hydrolysis at different catalyst concentrations at 30°C and the plot of H₂ production rate vs. acid concentration in the logarithmic scale. The slope of 0.20 demonstrates that the acidcatalyzed hydrolysis of diboronic acid is first-order with respect to the catalyst concentration. In diboronic acid concentrationdependent hydrolysis, the acid concentration was kept at 0.5 M, while the diboronic acid amounts were set at 0.5, 0.75, 1.0 and 1.25 mmol, respectively. Figure 2 exhibits the plot of H₂ production rate vs. diboronic acid concentration in logarithmic scale. The slope of 0.92 indicates that the acid-catalyzed hydrolysis is also first-order with respect to the concentration of diboronic acid. Finally, to obtain the activation energy (E_a) of the H₂ production, diboronic acid (0.5 M) was hydrolyzed in the presence of 0.5 M sulfuric acid at various temperatures (from 303 K to 333 K). Figure 3 exhibits the plot of time vs. volume of H₂ generated during diboronic acid hydrolysis at various temperatures. The values of the rate constant k at different temperatures were calculated from the slope of the linear part of each plot for the determination of the activation energy, yielding the E_a value of 15.75 kJ/mol, based on the Arrhenius equation. HCl was also found to catalyze B₂(OH)₄ hydrolysis as well as H_2SO_4 with quantitative H_2 formation.

Base-catalyzed H₂ evolution

In a preliminary experiment, the H₂ evolution reaction has been initially conducted by using 1 mmol of B₂(OH)₄ in the presence of various amounts of Na₂CO₃ (from 0.2 mmol to 1.2 mmol) in water (2 mL) at 30 °C, and 1 mol H₂ *per* mol B₂(OH)₄ was produced (Figure 4a). The slope of the logarithmic plot of H₂ generation *vs.* concentration of Na₂CO₃ is 0.86, indicating that H₂ evolution is first order in catalyst concentration. Above 1 mmol Na₂CO₃, the catalytic efficiency of H₂ evolution no longer increased due to the saturation of the catalyst. Na₂SO₄

Figure 3. Plots of the hydrogen volume vs. time for evolution of H_2 catalyzed at various temperatures (both on natural logarithmic scales).

Full Papers doi.org/10.1002/ejic.202100093

Figure 4. Comparison of H₂ evolution catalyzed by (a) various amounts of Na₂CO₃; (b) 1 mmol of different bases. (c) Time plots of the catalytic H₂ evolution by 1 mmol Na₂CO₃ in various concentrations of B₂(OH)₄. (d) Plots of the hydrogen volume vs. time for catalyzed H₂ evolution at various temperatures by Na₂CO₃; inset image: kinetic data obtained from the Arrhenius plots

does not work for H₂ evolution, which shows that the catalytic efficiency of Na₂CO₃ is attributed to CO₃²⁻. For comparison, NH₃BH₃, NaBH₄, B₂Pin₂ and B(OH)₃ have been tested for basecatalyzed H₂ evolution under the same conditions, and neither of these boron compounds works. Then, H₂ evolution from B₂(OH)₄ hydrolysis was carried out in the presence of 1 mmol of various bases (Figure 4b), and it was found that Et₃N, NaOH, Na₂CO₃, CsOH, Cs₂CO₃ and KOH are very efficient for H₂ evolution. The acidic bicarbonate salts KHCO3 and NaHCO3 are less efficient than their corresponding carbonates K₂CO₃ and Na₂CO₃, respectively. Na₂HPO₄ and NaH₂PO₄ are little efficient for this H₂ evolution reaction, indicating that the nature of the alkali metal cation does not significantly influence the reaction. These experiments are thus strongly in favor of OH⁻ as the active catalytic species for H₂ evolution and, in the case of nonhydroxide base, OH⁻ is provided from water upon reaction with carbonate. Then, the influence of the concentration of $B_2(OH)_4$ on H₂ evolution in the presence of 1 mmol of Na₂CO₃ has been investigated at 30 °C (Figure 4c).

The slope of the logarithmic plot of H_2 generation vs. concentration of $B_2(OH)_4$ was found to be 1.02, showing that H_2 evolution is first order in B₂(OH)₄ concentration. The efficiency of H₂ evolution at different reaction temperatures from 303 to 318 K is shown in Figure 4d. Based on the Arrhenius equation, the activation energy (Ea) value is 46.4 kJ/mol for Na₂CO₃.

Kinetic and mechanistic study

The isotopic experiment using D₂O instead of H₂O has been carried out for acid or base-catalyzed B₂(OH)₄ hydrolysis, and the kinetic results are shown in Figure 5, showing that the primary KIEs are 5.47 and 5.48 for acid and base-catalyzed H₂

3

Figure 5. (a) Acid- and (b) base-catalyzed H₂ evolution in H₂O (black) or D₂O (red).

evolution, respectively, strongly suggesting that the O-H bond of H₂O is cleaved in the rate-determining reaction step in both acid and base-catalyzed H₂ evolution.^[15]

 $H_{\rm 2}$ generated from the hydrolysis of $B_2(OH)_4$ reaction is not only utilized for hydrogen storage, but also for in situ tandem reactions, and for mechanistic study of the B₂(OH)₄ hydrolysis reaction. For further confirming hydrogen evolution from the diboronic acid hydrolysis reaction catalyzed by the acid catalyst, the tandem reaction for the hydrogenation diphenylacetylene, norbornene and 1,1-diphenylethylene with H₂ produced from diboronic acid hydrolysis catalyzed by sulfuric acid, the reaction was carried out in a sealed two-chamber system at 30 °C for 12 h (Scheme S1), and all the reactions of diphenylacetylene, norbornene and 1,1-diphenylethene hydrogenation provided 99% yield of the desired products, confirming H₂ evolution from acid-catalyzed diboronic acid hydrolysis. In addition, the formation of B(OH)₃ was confirmed by ESI mass spectrometry (Figure S1), ¹H (Figure S2) and ¹¹B NMR (Figure S3) and XRD (Figure S4). Similarly, the tandem reactions for hydrogenation of norbornene and 1,1-diphenylethene with H₂ generated from B₂(OH)₄ hydrolysis catalyzed by Na₂CO₃ are represented in Scheme S2. Both hydrogenations of norbornene and 1,1diphenylethene provided 99% yield of the desired products, confirming the stoichiometric formation of H₂ upon basecatalyzed sealed two-chamber system (Figure 6), D₂ was generated from acid-catalyzed B₂(OH)₄ hydrolysis with D₂O, the reaction being catalyzed diboronic acid hydrolysis. Moreover, the mass spectrum (Figure S5) also confirmed the formation of the reaction product, $B(OH)_3$. In a by H_2SO_4 in the left chamber. This D₂ was utilized for the *in-situ* hydrogenation of norbornene catalyzed by commercial Pd/C in the right chamber. Then, the desired product 2f was obtained in 99% yield (Eq. 2), confirming that both H atoms of hydrogen are provided from water. In parallel, D₂ was also generated from base-catalyzed B₂(OH)₄ hydrolysis with D₂O, the reaction being catalyzed by Na₂CO₃ in the left chamber (Figure 7). This D_2 was utilized for the *in-situ* hydrogenation of norbornene catalyzed by Pd/C in the right chamber. Then, the desired product 2 g was obtained in 99% yield (Eq. 3), also confirming that both H atoms of hydrogen are provided from water. For the hydrogenation of 1,1-diphenylethene (1c) with D₂, the methyl group was 49% deuterated, whereas the benzylic position was only 51% deuterated, which corresponds to a total incorporation of 1.98 D, close to the expected 2 D. (Eq. 4). The uneven distribution is due to the

Figure 6. Tandem reaction for hydrogenation with D_2 generated from $B_2(OH)_4$ hydrolysis using D_2O catalyzed by H_2SO_4 .

Figure 7. Tandem reaction for hydrogenation in which D_2 is generated from $B_2(OH)_4$ hydrolysis with D_2O catalyzed by Na_2CO_3 .

facile H or D atom migration in the semi-hydrogenated radical species^[16] between the benzylic and homobenzylic positions due to the preferred benzylic radical stabilization.

A mechanistic proposal of acid-catalyzed hydrolysis of $B_2(OH)_4$ reaction is shown in Figure 8. Initially, the intermediate **A** is formed by the interaction of H_3O^+ with $B_2(OH)_4$. Although oxidative addition of the B–B bond of diboron to d⁸ metal is well known,^[17] its protonation is less so. Subsequently, it gives intermediate **B** by capturing one H atom from H_2O . Then, the intermediate **C** is afforded by the interaction of **B** with H_3O^+ . Next, **C** provides the intermediate **D** by capturing another H atom from water releasing H_2 . Finally, **D** releases a molecule of B(OH)₃, which leads to completion of the catalytic cycle. In this mechanism, the formation of H_2 from **C** results from considerable structural reorganization upon σ -bond metathesis,^[18] for which the large KIE value is taken into account.

Figure 8. Proposed mechanism for the acid-catalyzed hydrolysis of B₂(OH)₄.

Figure 9. Proposed mechanism for the base-catalyzed hydrolysis of B₂(OH)₄.

For the base-catalyzed hydrolysis of $B_2(OH)_4$ reaction (Figure 9), the catalytic cycle starts with the formation of the intermediate I by attack of OH⁻ onto $B_2(OH)_4$. The intermediate II is then produced by protonation of the anion I by water and release of $B(OH)_3$. Subsequently, intermediate III, obtained by hydrolysis of II, decomposes to $B(OH)_3$ and H_2 . Reductive elimination of H_2 from the B–O sites of III involves an important structural reorganization that is taken into account by the observed large primary KIE value.

Conclusion

In summary, metal-free acid- or base-catalyzed H_2 evolution is reported to proceed upon hydrolysis of $B_2(OH)_4$, in which both H atoms are obtained from water. $B_2(OH)_4$ is a frequently used borylation reagent and also sometimes in hydrogenation, thus the present findings are useful. Other boron compounds, such as NH₃BH₃, NaBH₄, B_2Pin_2 and $B(OH)_3$, do not work for basecatalyzed H_2 evolution in the absence of transition-metal nanoparticles, and in particular attempts to catalyze H_2 evolution upon base catalysis from all these reagents failed.

The large primary KIEs disclosed, $k_H/k_D = 5.47$ resp. $k_H/k_D = 5.48$, for acid and base-catalyzed H₂ evolution from B₂(OH)₄, respectively, with D₂O, confirmed water O–H bond cleavage as the rate- determining step for both reactions, and thus mechanisms are proposed (Figure 8 and Figure 9). The tandem reactions with D₂O that involves B₂(OH)₄ hydrolysis, norbornene

and 1,1-diphenylethene hydrogenation have confirmed the formation of D₂. Note that these reactions in D₂O also provide easy and useful syntheses of D₂. Based on the Arrhenius equation, the activation energy E_a is 15.75 kJ/mol and 46.4 kJ/ mol for H₂SO₄ and Na₂CO₃, respectively.

In sum, this system has the potential to achieve metal-free production and utilization of hydrogen, in spite of the fact that only one H₂ molecule is provided for each B₂(OH)₄ molecule. A serious drawback is the difficulty of reconverting diboronic acid from B(OH)₃, but this problem also is the same for the other hydride-rich boron derivatives such NH₃BH₃ and NaBH₄. Recent impressive progress has been accomplished along this line, however,^[19] and catalyzed B₂(OH)₄ hydrolysis is therefore becoming an excellent method to conveniently and stoichiometrically generate H_2 at the laboratory scale.

Experimental Section

Chemicals and reagents. All commercial materials were used without further purification, unless indicated. The deionized water was prepared in the laboratory. B₂(OH)₄, Et₃N, NaOH, Cs₂CO₃ K₂CO₃ CsOH.H₂O, KOH, Na₃PO₄, Na₂CO₃, NaHCO₃, KHCO₃, Na₂HPO₄, NaH₂PO₄, BH₃NH₃, NaBH₄, D₂O, CD₃OD, Pd/C, B₂Pin₂ and B(OH)₃ were purchased from Aladdin Reagent Co., Ltd. (Shanghai, China, http:// www.aladdin-e. com/).

Acid-catalyzed evolution of H₂ upon reaction between B₂(OH)₄ and H_2O . Generally, the evolution of H_2 upon reaction between $B_2(OH)_4$ and H_2O was conducted in water at 30 °C. In a roundbottom 10-mL flask, 1.0 mmol of B₂(OH)₄ was added. A solution of H₂SO₄ (0.5 mol/L, 2 mL) is injected into this flask, and timing started. The flask was fitted with a gas outlet, and a side arm was sealed with a tight-fitting septum cap. The flask was connected via the gas outlet to a water-filled gas burette. Gas evolution immediately began, and the amount of gas evolved was determined periodically by measuring the displacement of water in the burette. A quantitative conversion of $B_2(OH)_4$ produced 1.0 equivalents of $H_{2'}$ and occupied ca. 22.4 mL at atmospheric pressure. Prior to the reactions, the volumes were measured at atmospheric pressure and corrected for water vapor pressure at room temperature.

Base-catalyzed evolution of H₂ upon reaction between B₂(OH)₄ and H₂O. The reactions were conducted as above, except that the H_2SO_4 solution was replaced by NaOH (1.0 mmol, 2 mL).

The hydrogenation of diphenylacetylene, norbornene and 1,1diphenylethylene. The tandem reaction was carried out in the sealed two-chamber system. The left tube was used for hydrogen generation, and the right one was used for hydrogenation with H₂ generated in the left tube. The generated hydrogen in the left tube transported to the hydrogenation reaction into the right tube through the connecting glass tube.

Acknowledgements

Financial support from the National Natural Science Foundation of China (21805166), the 111 Project (D20015), the Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University (KF2019-05) and the outstanding young and middle-aged science and technology innovation teams, Ministry of Education, Hubei province, China (T2020004), Chinese Scientific Council (PhD grant to QZ), Université de Bordeaux and Centre National de la Recherche Scientifique (CNRS) is gratefully acknowledged.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Acid catalysis · Base catalysis · Boron · Hydrogen evolution · Reaction mechanisms

- [1] Z. G. Huang, S. N. Wang, R. D. Dewhurst, N. V. Ignat'ev, M. Finze, H. Braunschweig, Angew. Chem. Int. Ed. 2020, 59, 8800-8816.
- [2] a) A. Staubitz, A. P. Robertson, I. Manners, Chem. Rev. 2010, 110, 4079-4124; b) T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 2016, 1, 16059; c) C. Wang, D. Astruc, Chem. Soc. Rev. 2021, https://doi.org/ 10.1039/D0CS00515 K; d) J. Zhou, Y. Huang, J. Shen, X. Liu, Catal. Lett. 2021, https://doi.org/10.1007/s10562-021-03547-2.
- [3] a) Q.-L. Zhu, Q. Xu, Energy Environ. Sci. 2015, 8, 478-512; b) W.-W. Zhan, Q.-L. Zhu, Q. Xu, ACS Catal. 2016, 6, 6892-6905; c) B. J. Zhu, R. Q. Zou, Q. Xu, Adv. Energy Mater. 2018, 8, 1801193; d) J. Shen, W. Chen, G. Lv, Z. Yang, J. Yan, X. Liu, Z. Dai, Int. J. Hydrogen Energy 2021. 46, 796-805; e) C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 2017, 139, 11610-11615; f) F. Fu, C. Wang, Q. Wang, A. M. Martinez-Villacorta, A. Escobar, H. Chong, X. Wang, S. Moya, L. Salmon, E. Fouquet, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 2018, 140, 10034–10042; g) Q. Wang, F. Fu, S. Yang, M. M. Moro, M. de los Angeles Ramirez, S. Moya, L. Salmon, J. Ruiz, D. Astruc, ACS Catal. 2019, 9, 1110-1119; h) C. Wang, Q. Wang, F. Fu, D. Astruc, Acc. Chem. Res. 2020, 53, 2483-2493; i) Q. Yao, K. Yang, X. Hong, X. Chen, Z.-H. Lu, Catal. Sci. Technol. 2018, 8, 870-877; j) K. Wang, Q. Yao, S. Qing, Z.-H. Lu, J. Mater. Chem. A 2019,7, 9903-9911; k) Q. Yao, Y. Ding, Z.-H. Lu, Inorg. Chem. Front. 2020, 7, 3837-3874.
- [4] D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621-6686.
- [5] a) T. Wartik, E. F. Apple, J. Am. Chem. Soc. 1955, 77, 6400; b) R. A. Baber, N. C. Norman, A. G. Open, J. Rossi, New J. Chem. 2003, 27, 773-775; c) E. C. Neeve, S. J. Geier, I. Mkhalid, S. A. Westcott, T. B. Marder, Chem. Rev. 2016, 116, 9091-9161.
- [6] a) D. S. Matteson, Tetrahedron. 1989, 45, 1859-1885; b) T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510; c) V. J. Olsson, S. Sebelius, N. Selander, K. J. Szabo, J. Am. Chem. Soc. 2006, 128, 4588-4589.
- [7] a) L. T. Pilarski, K. J. Szabo, Angew. Chem. Int. Ed. 2011, 50, 8320-8332; b) A. Zernickel, W. Du, S. A. Ghorpade, D. N. Sawant, A. A. Makki, N. Sekar, J. Eppinger, J. Org. Chem. 2018, 83, 1842-1851.
- [8] a) V. Gurram, H. K. Akula, R. Garlapati, N. Pottabathini, M. M. Lakshman, Adv. Synth. Catal. 2015, 357, 451-462; b) D. P. Ojha, K. Gadde, K. R. Prabhu, Org. Lett. 2016, 18, 5062-5065; c) S. P. Cummings, T. N. Le, G. E. Fernandez, L. G. Quiambao, B. J. Stokes, J. Am. Chem. Soc. 2016, 138, 6107-6110; d) M. Flinker, H. Yin, R. W. Juhl, E. Z. Eikeland, J. Overgaard, D. U. Nielsen, T. Skrydstrup, Angew. Chem. Int. Ed. 2017, 56, 15910-15915; e) Q. Q. Xuan, Q. L. Song, Org. Lett. 2016, 18, 4250-4253; f) X. Han, J. Hu, C. Chen, Y. Yuan, Z. Shi, Chem. Commun. 2019, 55, 6922-6925; g) N. N. Shaikh, RSC Adv. 2019, 9, 28199-28206; h) N. N. Shaikh, M. A. Aziz, A. N. Kalanthoden, A. Helal, A. S. Hakeem, M. Bououdina, Catal. Sci. Technol. 2018, 8, 4709-4717; i) K. A. Korvinson, H. K. Akula, C. T. Malinchak, D. Sebastian, W. Wei, T. A. Khandaker, M. R. Andrzejewska, B. Zajc, M. K. Lakshman, Adv. Synth. Catal. 2020, 362, 166-176; j) A. M. Gates, W. L. Santos, Synthesis. 2019, 51, 4619-4624; k) Y. Wei, C. Zhao, Q. Xuan, Q. Song, Org. Chem. Front. 2017, 4, 2291-2295; I) D. Pi, H. Zhou, Y. Zhou, Q. Liu, R. He, G. Shen, Y. Uozumi, Tetrahedron. 2018, 74, 2121-2129.
- [9] S. K. Pedersen, H. G. Gudmundsson, D. U. Nielsen, B. S. Donslund, H. C. D. Hammershøj, K. Daasbjerg, T. Skrydstrup, Nat. Catal. 2020, 3, 843-850.
- [10] W. F. Chen, J. L. Shen, Y. P. Huang, X. Liu, D. Astruc, ACS Sustainable Chem. Eng. 2020, 8, 7513-7522.
- [11] a) Y. T. Xia, X. T. Sun, L. Zhang, K. Luo, L. Wu, Chem. Eur. J. 2016, 22, 17151-17155; b) Q. Xuan, C. Zhao, Q. Song, Org. Biomol. Chem. 2017,

15, 5140–5144; c) Y. Huang, K. Zheng, X. Liu, X. Meng, D. Astruc, *Inorg. Chem. Front.* **2020**, *7*, 939–945; d) D. Chen, Y. Zhou, H. Zhou, S. Liu, Q. Liu, K. Zhang, Y. Uozumi, *Synlett.* **2018**, *29*, 1765–1768.

- [12] T. Wartik, E. F. Apple, J. Am. Chem. Soc. 1958, 80, 6155–6158.
- [13] H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, E. K. Hyde, J. Am. Chem. Soc. 1953, 75, 215–219.
- [14] S. Liu, Y. Zhou, Y. Sui, H. Liu, H. Zhou, Org. Chem. Front. 2017, 4, 2175–2178.
- [15] M. Chandra, Q. Xu, J. Power Sources. 2006, 159, 855-860.
- [16] P. Michaud, D. Astruc, Angew. Chem. Int. Ed. Engl. 1982, 21, 918–919.
- [17] H. E. Burks, S. Liu, J. P. Morken, J. Am. Chem. Soc. 2007, 129, 8766-8773.
- [18] D. Astruc, Organometallic Chemistry and Catalysis, Springer, Berlin, 2007, Chapter 3.
- [19] Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang, H. Shao, Z. Huang, M. Zhu, Angew. Chem. Int. Ed. 2020, 59, 8623–8629.

Manuscript received: February 4, 2021 Revised manuscript received: March 1, 2021 Accepted manuscript online: March 2, 2021

FULL PAPERS

Metal-free H_2 or D_2 evolution is obtained in a few minutes from acidor base-catalyzed hydrolysis of diboronic acid, respectively, under ambient conditions and is coupled to hydrogenation reactions. Kinetic studies allow proposing mechanisms by considering primary kinetic isotope effects observed for both acid- and based-catalyzed reactions with D_2O .

Y. Wang, J. Shen, Y. Huang, Prof. Dr. X. Liu*, Q. Zhao, Prof. Dr. D. Astruc*

1 – 7

Acid- and Base-Catalyzed Hydrolytic Hydrogen Evolution from Diboronic Acid