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A new catalytic system for the N-monoalkylation of aqueous
ammonia with a variety of alcohols was developed. Water-solu-
ble dicationic complexes of iridium bearing N-heterocyclic car-
bene and diammine ligands exhibited high catalytic activity for
this type of reaction on the basis of hydrogen-transfer process-
es without generating harmful or wasteful byproducts. Various
primary amines were efficiently synthesized by using safe, inex-
pensive, and easily handled aqueous ammonia as a nitrogen
source. For example, the reaction of 1-(4-methylphenyl)ethanol
with aqueous ammonia in the presence of a water-soluble N-
heterocyclic carbene complex of iridium at 150 8C for 40 h
gave 1-(4-methylphenyl)ethylamine in 83 % yield.

Recently, much attention has been directed to the use of am-
monia as a nitrogen source for organic synthesis, because of
its abundance and low price.[1] To date, a number of reports on
transition-metal-catalyzed reactions for the synthesis of organic
amines by using gaseous (or liquid) ammonia or its solution in
an organic solvent have appeared.[2] Because the selective cata-
lytic synthesis of primary amine derivatives by the reaction of
alcohol substrates with ammonia generates no harmful or
wasteful byproducts (generating only H2O as a coproduct),
such a synthesis is considered important and desirable meth-
odology in the field of synthetic organic chemistry.[3, 4] The re-
action is based on hydrogen-transfer processes, called “bor-
rowing hydrogen” or “hydrogen autotransfer”.[5] For example,
Gunanathan and Milstein reported the synthesis of primary
amines from primary alcohols and pressurized gaseous ammo-
nia under the catalysis of an acridine-based pincer complex of
ruthenium (Scheme 1 a).[3a] Additionally, Beller et al. and Vogt
et al. independently reported the synthesis of primary amines
from secondary alcohols and liquid ammonia under the cataly-
sis of the Ru3(CO)12/2-(dicyclohexylphosphino)-1-phenyl-1H-pyr-
role system (Scheme 1 b).[3b,c]

Aqueous ammonia is an attractive nitrogen source consider-
ing its advantages in terms of safety and handling. Some sys-

tems involving the use of aqueous ammonia for the synthesis
of organic amines have been reported. However, most of them
required the employment of harmful organic halides as sub-
strates.[6] On the other hand, during the course of our studies
on hydrogen-transfer reactions catalyzed by iridium com-
plexes,[7] we reported the synthesis of a water-soluble dication-
ic iridium–ammine complex, [Cp*Ir(NH3)3][I]2 (1) (Cp* =h5-pen-
tamethylcyclopentadienyl), and its high catalytic activity for
the multialkylation of aqueous ammonia with alcohols to give
tertiary and secondary amines.[8] However, monoalkylation of
aqueous ammonia with alcohols leading to primary amines
has so far not been achieved.[9, 10] Herein, we report the synthe-
sis of new water-soluble iridium N-heterocyclic carbene (NHC)
complexes and their high catalytic performance for the N-alky-
lation of aqueous ammonia with alcohols to give primary
amines (Scheme 1 c).[11]

First, iridium NHC complexes 2–7 illustrated in Figure 1 were
synthesized.[12] Details of the procedures for their synthesis and
characterization (including single-crystal X-ray analysis of 4 and
5) are described in the Supporting Information. All of these
complexes were found to be stable in air, and dicationic com-
plexes 1 and 4–7 were soluble in water.

The catalytic activities of these iridium NHC complexes for
the monoalkylation of aqueous ammonia leading to primary
amines were evaluated. Initially, the reaction of 1-(4-methyl-
phenyl)ethanol with aqueous ammonia was investigated as a

Scheme 1. Selective catalytic synthesis of primary amines by N-alkylation of
ammonia with alcohols.

[a] Prof. Dr. K. Fujita, S. Furukawa, N. Morishima, M. Shimizu,
Prof. Dr. R. Yamaguchi
Graduate School of Human and Environmental Studies
Kyoto University
Sakyo-ku Kyoto 606-8501 (Japan)
E-mail : fujita.kenichi.6a@kyoto-u.ac.jp

Supporting Information and the ORCID identification number(s) for the
author(s) of this article can be found under https://doi.org/10.1002/
cctc.201702037.

ChemCatChem 2018, 10, 1 – 6 � 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1 &

These are not the final page numbers! ��These are not the final page numbers! ��

CommunicationsDOI: 10.1002/cctc.201702037

http://orcid.org/0000-0002-8362-2694
http://orcid.org/0000-0002-8362-2694
https://doi.org/10.1002/cctc.201702037
https://doi.org/10.1002/cctc.201702037


model reaction. The reactions were performed in a sealed reac-
tor at 150 8C. The results are summarized in Table 1. Upon per-
forming the reaction of 1-(4-methylphenyl)ethanol (1.0 mmol)
with aqueous ammonia (28 %, 20 mmol) for 20 h in the pres-
ence of water-soluble triammine complex 1 (2.0 mol %) without
an NHC ligand, 1-(4-methylphenyl)ethylamine (8 a) was ob-
tained in only 3 % yield (Table 1, entry 1). On the other hand,
dichloride complex 2, bearing an NHC ligand, exhibited superi-
or activity to give 8 a in 37 % yield (Table 1, entry 2). Thus, the
importance of the NHC ligand for the catalytic activity could
be suggested. Upon using diiodide complex 3, the yield of 8 a
was further improved to 46 % (Table 1, entry 3).[13] Moreover,
water-soluble dicationic diammine complex 4 exhibited the
highest catalytic activity to give 8 a in 54 % yield (Table 1,
entry 4). Complexes 5 and 6, which have ethyl and isopropyl
groups on the nitrogen atoms in the NHC ligands, respectively,
showed lower catalytic activity (Table 1, entries 5 and 6). Addi-
tionally, complex 7 having chlorides as counteranions exhibited
slightly lower catalytic activity than 4 (Table 1, entry 7). Increas-
ing the amount of aqueous ammonia did not improve the
yield of 8 a (Table 1, entry 8). Increasing the reaction time
(40 h) and catalyst loading (4.0 mol %) both improved the yield
(Table 1, entries 9 and 10). Finally, the optimal reaction condi-

tions were determined (Table 1, entry 11) to give 8 a in 83 %
yield.

To evaluate the scope of this catalytic system, reactions of
various secondary alcohols with aqueous ammonia under the
optimal conditions were conducted. The results are summar-
ized in Table 2. The reactions of 1-arylethanols having electron-
donating and electron-withdrawing substituents smoothly pro-
ceeded to give corresponding 1-arylethylamine derivatives 8 a–
i in good yields (Table 2, entries 1–9). 1-(Pyridin-2-yl)ethanol
could also be used as a substrate to give 1-(2-pyridyl)ethyla-
mine (8 j) in moderate yield (Table 2, entry 10). Moreover, cyclic
secondary alcohols such as 1-indanol, 1,2,3,4-tetrahydro-1-
naphthol, 1,2,3,4-tetrahydro-2-naphthol, and cyclohexanol
were also converted into corresponding primary amines 8 k–n
in good yields (Table 2, entries 11–14). Additionally, noncyclic
aliphatic secondary alcohols (e.g. , 4-phenyl-2-butanol and 2-

Figure 1. Iridium complexes 1–7 used in this study.

Table 1. Reaction of 1-(4-methylphenyl)ethanol with aqueous ammonia
to give 1-(4-methylphenyl)ethylamine (8 a) under various conditions.

Entry Catalyst NH3(aq) t Conversion[a] Yield[a]

[mmol] [h] [%] [%]

1 1 20 20 17 3
2 2 20 20 54 37
3 3 20 20 66 46
4 4 20 20 74 54
5 5 20 20 65 44
6 6 20 20 55 33
7 7 20 20 68 50
8 4 40 20 47 35
9 4 20 40 85 70
10[b] 4 20 20 91 79
11[b] 4 20 40 96 83

[a] Conversion of the alcohol was determined by GC analysis. [b] Catalyst
loading was 4.0 mol %.

Table 2. Reactions of various secondary alcohols with aqueous ammonia
catalyzed by 4 to give primary amines.

Entry Alcohol Product Yield[a] [%]

1 R = H 8 b (82)
2 R = 4-Me 8 a 63 (83)
3 R = 2-OMe 8 c 89
4 R = 3-OMe 8 d 88
5 R = 4-OMe 8 e 76
6 R = 2-Cl 8 f 88
7 R = 3-Cl 8 g 82
8 R = 4-Cl 8 h 73
9 R = 4-CF3 8 i 73

10 8 j 56

11 8 k 83

12 8 l 70

13 8 m 72

14 8 n (78)

15 8 o 70

16 8 p (59)

[a] Yield of isolated product. Yield determined by GC is given in paren-
theses.
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hexanol) were applied to this catalytic system, and they gave
primary amines 8 o and 8 p in moderate to good yields
(Table 2, entries 15 and 16).

The accomplishment of the synthesis of primary amines
through the monoalkylation of aqueous ammonia with primary
alcohols is a big challenge, as multialkylation leading to secon-
dary and tertiary amines must be prevented. Thus, the reaction
of (2-naphthyl)methanol with aqueous ammonia as a model
reaction under various conditions was conducted. The results
are summarized in Table 3. Upon performing the reaction of (2-

naphthyl)methanol with aqueous ammonia (20 equiv.) in the
presence of catalyst 4 (4.0 mol %) at 150 8C for 20 h (which
were the optimal conditions for the reaction of secondary alco-
hols with aqueous ammonia to give primary amines), the de-
sired primary amine, 1-(2-naphthyl)methanamine (9 a), was ob-
tained in only 27 % yield. The major product under these con-
ditions was the secondary amine bis(2-naphthalenylmethyl)a-
mine (10 a) (48 % yield), which was formed by dialkylation of
aqueous ammonia (Table 3, entry 1). In addition to increasing
the number of equivalents of aqueous ammonia, the employ-
ment of catalyst 6, which has more bulky isopropyl groups on
the nitrogen atoms in the NHC ligand, improved the yield of
9 a to 56 % (Table 3, entry 3). Finally, selective monoalkylation
was accomplished by performing the reaction at 170 8C to give
9 a in 78 % yield (Table 3, entry 4). Catalyst 6 was indispensable
for selective monoalkylation in the reaction of a primary alco-
hol with aqueous ammonia, because a similar reaction using
catalyst 4 resulted in lower yield of 9 a (Table 3, entry 5).[14]

Subsequently, reactions of various primary alcohols with
aqueous ammonia catalyzed by 6 were conducted to investi-
gate the substrate scope. The results are summarized in
Table 4. The reactions of benzylic alcohols having electron-do-
nating and electron-withdrawing substituents gave corre-
sponding benzylamine derivatives 9 b–g in moderate to good
yields (Table 4, entries 1–6). Besides, aliphatic primary alcohols
(e.g. , 3-phenyl-1-propanol and 4-phenyl-1-butanol) were
also applied to this catalytic system, and they gave primary

amines 9 h and 9 i in moderate to high yields (Table 4, entries 7
and 8).

We previously proposed mechanisms for the N-alkylation of
amines with alcohols that were catalyzed by iridium complexes
based on hydrogen-transfer processes.[7a–e] The catalytic reac-
tions presented in this study would proceed through a similar
mechanism, including three elementary steps (dehydrogena-
tion of an alcohol, formation of an imine, and transfer hydro-
genation of the imine), as shown in Scheme 2. The first step is

Table 3. Reaction of (2-naphthyl)methanol with aqueous ammonia to
give 1-(2-naphthyl)methanamine (9 a) and bis(2-naphthalenylmethyl)a-
mine (10 a) under various conditions.

Entry Alcohol NH3(aq) Catalyst T Yield[a] [%]
[mmol] [mmol] [mol %] [8C] 9 a 10 a

1 1.0 20 4 (4.0) 150 27 48
2 1.0 20 6 (4.0) 150 31 56
3 0.50 40 6 (2.0) 150 56 22
4 0.50 40 6 (2.0) 170 78 <5
5 0.50 40 4 (2.0) 170 60 14

[a] Yield of isolated product.

Table 4. Reactions of various primary alcohols with aqueous ammonia
catalyzed by 6 to give primary amines.

Entry Alcohol Catalyst 6 Product Yield[a]

[mol %] [%]

1 R = H 2.0 9 b (69)
2 R = 3-OMe 2.0 9 c 64
3 R = 4-OMe 2.0 9 d 45
4 R = 4-tBu 2.0 9 e 65
5 R = 3-Cl 2.0 9 f (83)
6 R = 4-Cl 2.0 9 g 77

7 4.0 9 h 88

8 4.0 9 i 68

[a] Yield of isolated product. Yield determined by GC is given in parenthe-
ses.

Scheme 2. Possible mechanism for the N-alkylation of aqueous ammonia
with alcohols.
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the formation of alkoxo–iridium species A by the reaction of
catalyst 4 or 6 with an alcohol. Then, iridium hydride species B
and the carbonyl intermediate (a ketone or an aldehyde) are
formed by b-hydrogen elimination from A. Condensation be-
tween the carbonyl intermediate and ammonia occurs to
afford an imine intermediate. Addition of iridium hydride spe-
cies B to the C=N bond of the imine intermediate gives
amido–iridium species C. Finally, amido–alkoxo exchange
occurs to release a primary amine product, and this is accom-
panied by regeneration of alkoxo–iridium species A. The intro-
duction of a strongly electron-donating NHC ligand enhances
the process of B to C (addition of Ir�H to C=N) by increasing
the nucleophilic character of the iridium hydride. Furthermore,
for reactions of primary alcohols with aqueous ammonia
(Table 4), the employment of catalyst 6 is important to accom-
plish the selective synthesis of primary amines, because the
more bulky isopropyl groups of the NHC ligand in 6 prevent
dialkylation to afford secondary amines by suppressing ap-
proach of the imine species, which might be generated by the
reaction of a primary amine (product of the first catalytic cycle)
with the aldehyde intermediate to the coordination sphere.[14]

In summary, we developed a new system for the selective
synthesis of primary amines by N-alkylation of aqueous ammo-
nia with alcohols catalyzed by new water-soluble N-heterocy-
clic carbene complexes of iridium. Various primary amines
were efficiently synthesized by using safe, inexpensive, and
easily handled aqueous ammonia as a nitrogen source.
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[12] Complexes 1 and 2 were prepared according to literature method: X.-
Q. Xiao, G.-X. Jin, J. Organomet. Chem. 2008, 693, 3363 – 3368. See also
reference 8.

[13] We have also performed the reaction in the presence of [Cp*IrI2]2

(2.0 mol %Ir) under the same conditions as Table 1. In this case, the
yield of 8 a was 11 %, also indicating the importance of NHC ligand for
high catalytic activity.

[14] We have attempted to prepare the Cp*Ir-NHC catalyst having more
bulky tBu groups on nitrogen atoms. However, it has not been success-
ful so far.
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N-Alkylation of Aqueous Ammonia
with Alcohols Leading to Primary
Amines Catalyzed by Water-Soluble
N-Heterocyclic Carbene Complexes of
Iridium

Just once: A new catalytic system for
the N-monoalkylation of aqueous am-
monia with a variety of alcohols to give
primary amines is developed. New
water-soluble dicationic complexes of
iridium bearing N-heterocyclic carbene

(NHC) and diammine ligands exhibit
high catalytic activities on the basis of
hydrogen-transfer processes without
generating harmful or wasteful byprod-
ucts.
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