Dalton Transactions

PAPER

Cite this: Dalton Trans., 2013, 42, 4052

Received 23rd October 2012, Accepted 9th January 2013 DOI: 10.1039/c3dt32530j

www.rsc.org/dalton

Introduction

The cleavage of Si-H and Si-Si bonds by transition metal complexes^{1,2} can be considered as one of the key steps in various catalytic reactions like hydrosilylations^{3,4} or disilylations⁵ of unsaturated compounds. The catalytic dehydrogenative coupling of silanes is a well recognized process.⁶ Thus, the coupling of primary or secondary silanes can be applied for the synthesis of polysilanes.⁷ However, the reverse reaction, catalytic hydrogenolysis of disilanes with H₂, still represents a major challenge. The reaction usually proceeds under harsh reaction conditions such as high pressure or high temperature and with low selectivities. Most of the procedures are covered by patent specifications.8 In 1972 Atwell et al. described a catalytic process with palladium on charcoal as a catalyst at 3.8 bar hydrogen pressure to produce HSiMe3 with a turnover number of 16.9 Note that to the best of our knowledge only one catalytic process in a homogeneous phase which proceeds under moderate pressure and temperature conditions was published by Rosenberg et al.¹⁰ They described the catalytic conversion of Ph₂HSiSiHPh₂ and H₂ to yield H₂SiPh₂ within one week by using 0.8 mol% [Rh(Cl)(PPh₃)₃] as a catalyst.

An example for the conversion of a disilane to give one equivalent of the corresponding tertiary silane is represented by the reaction of $(OEt)_3SiSi(OEt)_3$ with $[Pt(PEt_3)_3]$ (1) in the presence of H₂ to give the hydrido-silyl complexes *cis*-[Pt(H)-

RSCPublishing

View Article Online View Journal | View Issue

Activation of Si–Si and Si–H bonds at Pt: a catalytic hydrogenolysis of silicon–silicon bonds†

Jan Voigt, Maren A. Chilleck and Thomas Braun*

The activation of $Ph_2HSiSiHPh_2$ and $Me_3SiSiMe_3$ at $[Pt(PEt_3)_3]$ (1) yielded the products of oxidative addition. The formation of $[Pt(SiHPh_2)_2(PEt_3)_2]$ (2) as a mixture of the *cis* and *trans* isomers appears to proceed quantitatively, whereas a conversion to give *cis*- $[Pt(SiMe_3)_2(PEt_3)_2]$ (3) was not complete. Treatment of 1 with one equivalent of H_2SiPh_2 led to *cis*-and *trans*- $[Pt(H)(SiHPh_2)(PEt_3)_2]$ (*cis*-4, *trans*-4) together with the dinuclear complex $[(Et_3P)_2(H)Pt(\mu-SiPh_2)(\mu-\eta^2-HSiPh_2)Pt(PEt_3)]$ (5). In contrast, $HSiMe_3$ reacts with $[Pt(PEt_3)_3]$ to yield *cis*- $[Pt(H)(SiMe_3)(PEt_3)_2]$ (7) exclusively. Catalytic reactions of dihydrogen with the disilanes $Ph_2HSiSiHPh_2$ or $Me_3SiSiMe_3$ in the presence of catalytic amounts of $[Pt(PEt_3)_3]$ (1) led to the products of hydrogenolysis, H_2SiPh_2 and $HSiMe_3$. The conversion of $Me_3SiSiMe_3$ is much slower and needs higher temperature to proceed.

{Si(OEt)₃}(PEt₃)₂] and *trans*-[Pt(H){Si(OEt)₃}(PEt₃)₂] as well as HSi(OEt)₃. However, no subsequent reaction of the Pt complexes with dihydrogen was observed.¹¹ Previously, we also reported a cyclic process for the reaction of ClMe₂SiSiMe₂Cl with dihydrogen to yield HSiMe₂Cl.¹² Treatment of the bissilyl complex *cis*-[Pt(SiMe₂Cl)₂(PEt₃)₂] with dihydrogen gave *trans*-[Pt(H)₂(PEt₃)₂] and two equivalents of HSiMe₂Cl. In the presence of H₂ complex *trans*-[Pt(H)₂(PEt₃)₂] does not react with Me₂ClSiSiClMe₂ to give again the activation product *cis*-[Pt(SiMe₂Cl)₂(PEt₃)₂]. This inhibition reaction by dihydrogen hampered a catalytic conversion. However, by adding PEt₃ and a subsequent removal of H₂ *in vacuo* it is possible to regain the complex [Pt(PEt₃)₃], which then reacts again with ClMe₂Si-SiMe₂Cl to give [Pt(SiMe₂Cl)₂(PEt₃)₂].

In this paper we describe Si–Si activation reactions of $Ph_2HSiSiHPh_2$ and $Me_3SiSiMe_3$ at $[Pt(PEt_3)_3]$ (1). In addition, the reactivity of the bissilyl complexes *cis*- $[Pt(SiHPh_2)_2(PEt_3)_2]$ (*cis*-2) and *trans*- $[Pt(SiHPh_2)_2(PEt_3)_2]$ (*trans*-2) towards dihydrogen was investigated. The reactivity of the hydrido silyl complexes *cis*- $[Pt(H)(SiHPh_2)(PEt_3)_2]$ (*cis*-4) and *trans*- $[Pt(H)-(SiHPh_2)(PEt_3)_2]$ (*cis*-4) and *trans*- $[Pt(H)-(SiHPh_2)(PEt_3)_2]$ (*trans*-4) and *cis*- $[Pt(H)(SiMe_3)(PEt_3)_2]$ (7), which are possible intermediates in a catalytic process, was also studied. These investigations led to the development of a catalytic process for the hydrogenolysis of $Ph_2HSiSiHPh_2$ and $Me_3SiSiMe_3$.

Results

Si-Si activation at [Pt(PEt₃)₃](1)

A mixture of the bissilyl complexes cis-[Pt(SiHPh₂)₂(PEt₃)₂] (*cis*-2) and *trans*-[Pt(SiHPh₂)₂(PEt₃)₂] (*trans*-2) was synthesized

Department of Chemistry, Humboldt-Universitat Berlin, Brook-Taylor-Str. 2, Berlin, Germany. E-mail: thomas.braun@cms.hu-berlin.de; Fax: +49 (0)30 2093 7468; Tel: +49 (0)30 2093 3913

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/c3dt32530j

Paper

Scheme 1 Formation of the bissilyl complexes *cis*-2, *trans*-2 and 3.

by the oxidative addition of Ph₂HSiSiHPh₂ at [Pt(PEt₃)₃] (1) (Scheme 1). The reaction proceeds at room temperature, in benzene and is completed after 10 minutes. The ratio for *cis*-2:*trans*-2 is 1:0.27. The ³¹P{¹H} NMR spectrum for *cis*-2 shows a singlet with ¹⁹⁵Pt satellites at δ 15.3 ppm (¹J_{PtP} = 1706 Hz). The coupling constant is in a typical range of *cis*-substituted platinum phosphine bissilyl complexes.¹¹⁻¹³ In contrast, the resonance for complex *trans*-2 at δ 6.80 ppm in the ³¹P{¹H} NMR spectrum shows a much larger phosphorus–platinum coupling of ¹J_{PtP} = 2436 Hz, because of the weaker *trans*-influence of the phosphine ligands compared to the silyl groups.¹⁴

The ¹H NMR spectrum of *cis*-2 displays a virtual triplet with platinum satellites at δ 5.82 ppm ($J_{\text{PH,apparent}} = 15.7$ Hz) for the silicon-bound hydrogen atoms. ³¹P decoupling experiments reveal the ² J_{PtH} coupling constant to be 68.8 Hz. A triplet at δ 5.54 ppm with platinum satellites (${}^{2}J_{\text{PtH}} = 23.6$ Hz and ${}^{3}J_{\text{PH}} = 10.9$ Hz) for the silicon bound hydrogen atoms reveals the presence of *trans*-2. Note that Lee *et al.* prepared the same complexes by treatment of [Pt(PEt_3)_4] with 2 equivalents of H₂SiPh₂ followed by drying the reaction mixture *in vacuo*.¹⁵

It was described before that the oxidative addition of $Me_3SiSiMe_3$ at $[Pt(PEt_3)_3]$ (1) leads to the bissilyl complex *cis*- $[Pt(SiMe_3)_2(PEt_3)_2]$ (3) (Scheme 1).¹² In contrast to the reactivity of 1 towards Ph₂HSiSiHPh₂, the reaction with Me₃SiSiMe₃ is much slower. After 3 weeks at room temperature we observed approximately 50% conversion to give the bissilyl complex 3.

Other examples for the activation of Si–Si bonds at platinum complexes and the formation of bissilyl complexes were reported before.² For instance, Goto *et al.* showed that $[Pt(PEt_3)_3]$ (1) reacts with HMe₂SiSiMe₂H at 243 K in pentane to yield the bissilyl compound *cis*- $[Pt(SiMe_2H)_2(PEt_3)_3]$.¹⁶ Ito *et al.* reported that the reaction of $[Pt_3(CNAd)_6]$ (Ad = 1-adamantyl) with Me₃SiSiMe₃ at 353 K yields the bissilyl complex $[Pt(SiMe_3)_2(CNAd)_2]$ in nearly quantitative yields.¹⁷ Note that the activation of Ph₂HSiSiHPh₂ might proceed *via* an initial Si–H activation step and is therefore more facile.¹⁸

Reactions of H_2SiPh_2 and $HSiMe_3$ with $[Pt(PEt_3)_3](1)$

Treatment of 1 with one equivalent of H₂SiPh₂ at room temperature led instantly to a reaction. However, the products are highly dynamic in solution on the NMR time-scale. At room temperature a very broad feature from 5 ppm to 22 ppm was observed in the ${}^{31}P{}^{1}H$ NMR spectrum (121.5 MHz). In the ¹H NMR spectrum a broad resonance at δ –1.8 ppm with a coupling constant of ${}^{1}J_{PtH}$ = 932 Hz was observed. The low temperature (190 K) ³¹P{¹H}, ¹H, and ¹H, ²⁹Si HMBC NMR spectra indicate the presence of the three complexes cis-[Pt(H)- $(SiHPh_2)(PEt_3)_2$ (*cis*-4), *trans*- $[Pt(H)(SiHPh_2)(PEt_3)_2$ (*trans*-4) and the dinuclear compound $[(Et_3P)_2(H)Pt(\mu-SiPh_2)(\mu-\eta^2 HSiPh_2Pt(PEt_3)$ (5) as well as of hydrogen and PEt_3 in the reaction mixture (Scheme 2), the ratio cis-4: trans-4:5 is approximately 2:0.58:3.2. At low temperature, the signals of trans-4 and 5 sharpened whereas the resonances of cis-4 remained broad. The generation of 5 can be explained by the elimination of H₂ and PEt₃ from 2 equivalents of *cis*-4/*trans*-4. Nevertheless, free H₂ might induce an isomerisation between cis-4 and trans-4 via a Pt(IV) compound. Reductive elimination processes of tertiary silanes at Pt(II) are also known.¹⁹ In addition, a photochemical isomerization of Pt(II) hydrido-silyl complexes was reported.19,20

Note that even by evaporation of the volatiles and drying of the reaction mixture for 24 hours in a high vacuum it was not possible to achieve a quantitative formation of **5**. To verify the identity of *cis*-**4** and *trans*-**4**, we synthesised the complexes by an alternative route which involves a replacement of the silyl group in *cis*-[Pt(H)(SiPh₃)(PEt₃)₂] (**6**). Thus, the reaction of **6** with one equivalent of H₂SiPh₂ resulted at room temperature in broad signals in the ³¹P{¹H} NMR spectrum in a ratio of 1:0.22 for *cis*-**4** and *trans*-**4**. Free HSiPh₃ was also observed (Scheme 2).

At 190 K a resonance at δ 18.0 ppm with a coupling constant of ${}^{1}J_{\text{PtP}} = 2536$ Hz was found for complex *trans*-4 in the ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR spectrum. As mentioned above, the resonances for the complex *cis*-4 are broad even at low temperature and

appear at δ 22.5 ppm and δ 16.6 ppm. The signals exhibit coupling constants of ${}^{1}J_{\rm PPt} \sim 2260$ Hz (*cis* to a silyl ligand) and ${}^{1}J_{\rm PPt} \sim 1700$ Hz (*trans* to a silyl ligand). The latter value is in a typical range for complexes in which the metal bound silyl group exerts a strong *trans* influence.^{14,19} The 1 H,²⁹Si HMBC NMR spectrum reveals cross resonances at δ 6 ppm in the 29 Si domain for *cis*-4 and at δ –3 ppm for *trans*-4.

The ³¹P{¹H} NMR spectrum of 5 at 190 K shows two resonances for the inequivalent phosphine ligands; a triplet at δ 13.3 ppm (${}^{1}J_{PPt}$ = 3874 Hz, ${}^{2}J_{PPt}$ = 258 Hz) and a doublet at δ $-1.15 \text{ ppm} ({}^{1}J_{PPt} = 3500 \text{ Hz}, {}^{2}J_{PPt} = 105 \text{ Hz})$. The phosphorusphosphorus coupling constant is ${}^{3}J_{PP}$ = 23 Hz. The ¹H NMR spectrum displays a triplet resonance at δ –7.4 ppm with coupling constants of ${}^{1}J_{HPt}$ = 537 Hz, ${}^{2}J_{HPt}$ = 79 Hz, and ${}^{2}J_{HP}$ = 13 Hz for the non-bridging hydrido ligand. The signal for the bridging hydrogen atom is covered by the resonances of the ethyl groups, but the ¹H,²⁹Si HMBC NMR spectrum reveals a correlation at δ 1.2 ppm in the ¹H domain. The ¹H,²⁹Si HMBC NMR spectrum also shows a large downfield shift of the resonances at δ 179 ppm and δ 178 ppm in the ²⁹Si domain for the silicon containing groups compared to the signals *cis-4/trans-4*. Equilibrium reactions between hydrido-silyl complexes and unsymmetric binuclear platinum silyl complexes (Scheme 2) were described before by Braddock-Wilking et al.²¹ and by Mochida et al.²² The ³¹P, ¹H, and ²⁹Si NMR data for 5 are in good agreement with the reported literature data.

The observation of the broad resonances in the ³¹P NMR spectrum of cis-4 even at 190 K indicates a further equilibrium. VT NMR studies revealed no significant change of the chemical shift of the signals. We suggest a dynamic behaviour which is characterized by an intramolecular exchange of the hydrido and silvl ligands that involves free triethylphosphine (Scheme 3). The latter is always present in the solution, because of the equilibrium with 5 (see above). A similar broadening in the $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ and $^{1}\mathrm{H}$ NMR spectra for the signals of triethylphosphine hydrido-silyl complexes can be observed after treatment of $[Pt(PEt_3)_3]$ (1) with other silanes such as HSiMe₂Cl,¹² HSiEt₃,²³ HSiPh₃,²⁴ HSiMePh₂,¹¹ and HSi(OEt)₃ ¹¹ as long as residual PEt₃ is still present in the reaction mixture. The NMR resonances are broadened also by adding PEt₃ to solutions of the cis-[Pt(H)(SiR₃)(PEt₃)₂] (R₃ = Me₂Cl, Et₃, Ph₃, Me₃, MePh₂, OEt₃, Ph₂H) complexes. Intramolecular phosphine exchange on platinum hydrido silyl complexes was reported before.19

NMR studies of a reaction of **1** with HSiMe₃ at room temperature revealed after work-up 5% conversion to yield *cis*-[Pt(H)- $(SiMe_3)(PEt_3)_2$] (7) (Scheme 4).²⁵ However, at 193 K free phosphine reacts with complex **1** to form [Pt(PEt_3)_4] (**8**), which precipitates. Repeating this procedure yielded 50% conversion of **1** into **7**. Complex **7** can be isolated as a dark red oil. Note

Scheme 4 Reactivity of **1** with HSiMe₃.

Scheme 5 Reactivity of *cis*-2 and *trans*-2 towards dihydrogen.

that Trogler *et al.* synthesized 7 by reaction of $[Pt(C_2F_4)(PEt_3)_2]$ with an excess of HSiMe₃ at room temperature.²⁶

Reactivity of *cis*-[Pt(SiHPh₂)₂(PEt₃)₂] (*cis*-2) and *trans*-[Pt(SiHPh₂)₂(PEt₃)₂] (*trans*-2) towards dihydrogen

The reaction of *cis*-2 and *trans*-2 with H₂ under ambient conditions led to the formation of *cis*-[Pt(H)(SiHPh₂)(PEt₃)₂] (*cis*-4) and *trans*-[Pt(H)(SiHPh₂)(PEt₃)₂] (*trans*-4) in a ratio of 1:0.1 as well as of H₂SiPh₂ (Scheme 5). After one hour 80% of the starting material was converted according to the ¹H NMR spectrum. The *trans* isomer *trans*-2 could not be detected anymore which indicates a higher reactivity of *trans*-2, which might be caused by the strong *trans* influence of the silyl groups. In contrast, *cis*-2 does not convert completely even at higher dihydrogen pressure. After removal of the volatiles *in vacuo* the bissilyl complexes *cis*-2 and *trans*-2 (ratio 1:0.2) were regenerated by elimination of dihydrogen and consumption of the free silane (Scheme 5).

Development of catalytic processes for the formation of H₂SiPh₂ and HSiMe₃

Based on the stoichiometric reactions described above, we studied the reactivity of *cis*-2 and *trans*-2 (ratio 1:0.27) towards a possible catalytic hydrogenolysis of Ph₂HSiSiHPh₂ for producing H₂SiPh₂. The reaction of *cis*-2 and *trans*-2 with 10 equiv. of Ph₂HSiSiHPh₂ was carried out at different temperatures and dihydrogen pressures (Table 1). The progress of the reactions was monitored by NMR spectroscopy and GC-MS analysis. Note that the formation of H₂SiPh₂ at room temperature and one atmosphere of dihydrogen is very slow. After 12 hours only one equivalent of Ph₂HSiSiHPh₂ was converted. By increasing the temperature the reaction accelerated at 1.7 bar hydrogen pressure, but more products of a redistribution

Table 1 Silane products (mol%) after a reaction of Ph₂HSiSiHPh₂ with hydrogen in the presence of *cis*-2 and *trans*-2 (10 mol%) after 2 h

of the phenyl groups at the silane such as $HSiPh_3$, $PhH_2SiSiPh_3$ and H_3SiPh were formed (Table 1).

For a catalytic conversion, the reaction was finally performed at 6 bar dihydrogen pressure in an autoclave at room temperature with 25 equiv. of disilane. According to the GC-MS and ¹H NMR spectroscopic data, a turnover number of 18 was achieved after 50 hours, based on the disilane consumption (Scheme 6). In addition to the product H₂SiPh₂ less than 2% of HSiPh₃ and H₃SiPh were present as impurities. Notably, the amount of redistribution products is very low, although such reactions were observed frequently at transition metal centres.^{10,27} The ¹H and ³¹P NMR spectroscopic data of the resulting reaction mixture also showed the presence of the complexes *cis*-2 and *trans*-2 in a ratio of 1:0.27.

Rosenberg *et al.* estimated an equilibrium constant of K_c = 10⁴ at room temperature for the reaction of Ph₂HSiSiHPh₂ with dihydrogen to form two equivalents of H2SiPh2 with [Rh-(Cl)(PPh₃)₃] as a catalyst.¹⁰ This shows that the hydrogenolysis of Ph₂HSiSiHPh₂ is an exergonic process. For comparison, DFT calculations for the analogous reaction of Me₃SiSiMe₃ with dihydrogen at the B3LYP/cc-pVTZ level²⁸⁻³⁰ suggest that the hydrogenolysis yielding HSiMe₃ is also exergonic with an equilibrium constant of approximately $K = 10^9 (\Delta G =$ -54.0 kJ mol⁻¹) at 293 K. However, a reaction of Me₃SiSiMe₃ with dihydrogen in the presence of 1 at room temperature and 6 bar H₂ yielded only small amounts of HSiMe₃, but by increasing the temperature to 392 K a catalytic reaction was achieved. The conversion was monitored by NMR spectroscopy and GC-MS analysis. In a reaction of 1 with 100 equivalents of Me₃SiSiMe₃ at 393 K and a dihydrogen pressure of 1.7 bar a turnover number of 18, based on the disilane consumption, was achieved after 90 hours (Scheme 6). Monitoring the reaction by NMR spectroscopy revealed that after adding dihydrogen to the solution of **1** and disilane the NMR signals became very broad, and it was not possible to identify any platinum compounds. On cooling to 213 K only signals for $[Pt(H)_2(PEt_3)_3]$ (9) were observed by ¹H and ³¹P{¹H} NMR spectroscopy.³¹ After removal of the solvent and the excess silane under vacuum only complex **1** was present. Note that there are very few examples for the hydrogenolysis of Me₃SiSiMe₃ reported in the literature.⁹

Conclusions

Catalytic processes for the hydrogenolysis of Ph2HSiSiHPh2 and Me₃SiSiMe₃ were developed. Conceivable intermediates of the catalytic process were synthesised and identified by NMR spectroscopy. We consider the use of dihydrogen as a hydrogen source as superior to alternative methods for the transformation of silicon-silicon bonds into hydrogen-silicon bonds, which often include the reaction of disilanes with HCl at high temperature and high pressure resulting in a mixture of chloro and hydrido silanes.³² The development of a reaction route for the hydrogenolysis of disilanes is of certain importance, because it opens up new opportunities to access highervalue silanes which can be applied for further synthesis.^{12,33} Note that in the Müller-Rochow process chlorinated disilanes and polysilanes are produced, which might be converted into monosilanes by hydrogenolysis.³⁴ Other catalytic reactions which involve the activation of the Si-Si bond in Me₃SiSiMe₃ include the bissilylation of double bonds,³⁵ triple bonds,³⁶ or α,α-diketones.³⁷ The Si-Si bond in Me₃SiSiMe₃ can also be cleaved stoichiometrically on using for instance Br2, B2H6, MeLi or KOMe.38

Experimental

The synthetic work was carried out on a Schlenk line or in a glovebox. Toluene and pentane were purified by distillation from Na/K and stored under argon over molecular sieves (3 Å). High pressure experiments were performed in an autoclave HR-100 with a PTFE insert (Berghof instruments). NMR high pressure tubes were purchased from Wilmad Lab glass. NMR spectra were acquired on a Bruker DPX 300 or a Bruker AV 400 spectrometer. ¹H NMR spectra were referenced to residual C_6D_5H at δ 7.15 ppm. ³¹P{¹H} NMR spectra were referenced to external 85% H₃PO₄ at δ 0 ppm, respectively. ¹⁹F NMR spectra were referenced to C_6F_6 at δ –162.9 ppm. GC-MS data were

Paper

obtained at an Agilent Technologies GC 6890N which was equipped with a 5973 mass spectrometer as a detector. $[Pt(PEt_3)_3]$ (1) was prepared according to the literature.³⁹ Hexamethyldisilane and tetraphenyldisilane were purchased from ABCR.

Synthesis of *cis*-[Pt(SiHPh₂)₂(PEt₃)₂] (*cis*-2) and *trans*-[Pt(SiHPh₂)₂(PEt₃)₂] (*trans*-2)

A red solution of $[Pt(PEt_3)_3]$ (1) (400 mg, 0.73 mmol) in benzene (5 ml) was treated with 267 mg (0.73 mmol) Ph₂HSiSiHPh₂. After stirring for 10 min the colour of the solution turned vellow. The reaction mixture was then evaporated to dryness. A pale yellow highly viscous oil was obtained. Yield: 565 mg (97%). Ratio: *cis*-2 : *trans*-2 = 1:0.27 (Found C, 54.38; H, 6.55. C₃₆H₅₂P₂PtSi₂ requires C, 54.18; H, 6.57%). NMR data for *cis*-2: ¹H NMR (400.1 MHz, C_6D_6): δ 0.91 (18 H, m, t in the ¹H{³¹P} NMR spectrum, $J_{HH} = 7.6$ Hz, PCH₂CH₃), 1.73 (12 H, m, q in the ${}^{1}H{}^{31}P{}$ NMR spectrum, J_{HH} = 7.6 Hz, PCH_2CH_3 , 5.82 (2 H, vt + ¹⁹⁵Pt satellites, $J_{PH,apparent}$ = 15.7 Hz, J_{PtH} = 68.8 Hz, SiH), 7.25 (12 H, m, meta and para Ar), 7.87 (8 H, m, ortho Ar); ${}^{31}P{}^{1}H$ NMR (161.9 MHz, C₆D₆): δ 15.3 $(s + satellites, J_{PPt} = 1706 \text{ Hz}), {}^{1}\text{H}, {}^{29}\text{Si} \text{ HMBC NMR} (400.1 \text{ MHz})$ 79.5 MHz, C₆D₆): δ 7.8/–11 (s + ¹⁹⁵Pt satellites, ¹J_{SiPt} = 1330 Hz, ortho Ar), 5.8/-11 (s, SiH). NMR data for trans-2: ¹H NMR (400.1 MHz, C_6D_6): δ 0.83 (18 H, m, t in the ¹H{³¹P} NMR spectrum, $J_{\rm HH}$ = 7.4 Hz, PCH₂CH₃), 1.99 (12 H, m, q in the ¹H{³¹P} NMR spectrum, $J_{HH} = 7.4$ Hz, PCH₂CH₃), 5.54 (2 H, t + 195 Pt satellites, $J_{\rm PH}$ = 10.9 Hz, $J_{\rm PtH}$ = 23.6 Hz, SiH), 7.20 (4 H, m, *para* Ar), 7.37 (8 H, m, *meta* Ar), 8.04 (8 H, m, *ortho* Ar); ³¹P{¹H} NMR (161.9 MHz, C_6D_6): δ 6.80 (s + ¹⁹⁵Pt satellites, J_{PPt} = 2436 Hz); ¹H,²⁹Si HMBC NMR (400.1 MHz/79.5 MHz, C₆D₆): δ 8.0/5 (s + ¹⁹⁵Pt satellites, J_{SiPt} = 875 Hz, ortho Ar), 5.5/5 (s, SiH).

Reaction of [Pt(PEt₃)₃] (1) with H₂SiPh₂

A red solution of 48.6 mg (0.09 mmol) 1 in 1 ml benzene was treated with 16.3 µl (0.09 mmol) H₂SiPh₂. The colour of the solution changed rapidly to pale yellow. After stirring for 30 min all volatiles were removed in vacuo. A yellow highly viscous oil was obtained. Yield: 49 mg (90%). Selected NMR data (in the ¹H NMR spectrum the signals for the PEt₃ ligands at cis-4, trans-4 and 5 overlap). NMR data for cis-4: ¹H NMR (300.1 MHz, toluene-d⁸, 190 K): δ –1.81 (1 H, br, d + ¹⁹⁵Pt satellites, ¹J_{PtH} = 925 Hz, ²J_{PH(trans)} = 132 Hz, PtH), 5.41 (1 H, m + ¹⁹⁵Pt satellites, ${}^{1}J_{SiH} = 155$ Hz, ${}^{2}J_{PtH} = 25$ Hz, SiH), 7.14 (2 H, m, para Ar), 7.31 (4 H, meta Ar), 8.11 (4 H, m, ortho Ar); ${}^{31}P{}^{1}H{}$ NMR (121.5 MHz, toluene-d⁸, 190 K): δ 16.6 (s, br, + ¹⁹⁵Pt satellites, J_{PPt} = 2260 Hz, P *cis* to Si), 22.5 (s, br, + ¹⁹⁵Pt satellites, ${}^{1}J_{PPt}$ = 1700 Hz, P *trans* to Si); ${}^{1}H$, ${}^{29}Si$ HMBC NMR (300.1 MHz/ 59.6 MHz, toluene-d⁸, 190 K): δ 8.1/6 (s + ¹⁹⁵Pt satellites, ¹J_{PtSi} = 1140 Hz, ortho Ar), 7.3/6 (s + 195 Pt satellites, $^{1}J_{PtSi}$ = 1140 Hz, meta Ar), 5.4/6 (s + ¹⁹⁵Pt satellites, ${}^{1}J_{PtSi}$ = 1140 Hz, SiH). NMR data for *trans*-4: ¹H NMR (300.1 MHz, toluene-d⁸, 190 K): δ 0.45 (1 H, t + ^{195}Pt satellites, $^1\!J_{\text{PtH}}$ = 750 Hz, $^2\!J_{\text{PH}}$ = 18 Hz, PtH), 5.52 (1 H, m + ¹⁹⁵Pt satellites, ${}^{2}J_{PtH}$ = 27 Hz, ²⁹Si satellites not observed, SiH), 7.20-7.30 (6 H, m, meta and para Ar), 7.91 (4 H, m, ortho Ar); ${}^{31}P{}^{1}H{}$ NMR (121.5 MHz, toluene-d⁸,

190 K): δ 18.0 (s + ¹⁹⁵Pt satellites, $J_{\rm PPt}$ = 2536 Hz); ¹H,²⁹Si HMBC NMR (300.1 MHz/59.6 MHz, toluene-d⁸, 190 K): δ 7.9/ -3 (s + ¹⁹⁵Pt satellites, ¹ $J_{\rm PtSi}$ = 995 Hz, *ortho* Ar), 5.3/-3 (s, SiH). NMR data for 5: ¹H NMR (300.1 MHz, toluene-d⁸, 190 K): -7.41 (1 H, t + ¹⁹⁵Pt satellites, ¹ $J_{\rm PtH}$ = 536 Hz, ² $J_{\rm PtH}$ = 79 Hz, ² $J_{\rm PH}$ = 13 Hz, PtH), 8.07 (4 H, m, *ortho* Ar, PtHSi), 8.16 (4 H, m, *ortho* Ar), the signal for PtHSi hydrogen is covered by resonances of the Et groups; ³¹P{¹H} NMR (121.5 MHz, toluene-d⁸, 190 K): δ -1.2 (d + ¹⁹⁵Pt satellites, ¹ $J_{\rm PPt}$ = 3500 Hz, ² $J_{\rm PPt}$ = 105 Hz, ⁴ $J_{\rm PP}$ = 23 Hz, Pt(*P*Et₃)₂), 13.3 (t + ¹⁹⁵Pt satellites, ¹ $J_{\rm PPt}$ = 3874 Hz, ² $J_{\rm PPt}$ = 258 Hz, ³ $J_{\rm PP}$ = 23 Hz, Pt(*P*Et₃); ¹H,²⁹Si HMBC NMR (300.1 MHz/59.6 MHz, toluene-d⁸, 190 K): δ -7.4/179 (s, PtH), 8.2/179 (s, *ortho* Ar), -7.4/178 (s, PtH), 1.2/178 (s, Pt-H-Si), 8.1/178 (s, *ortho* Ar).

Reaction of *cis*-[Pt(SiHPh₂)₂(PEt₃)₂] (*cis*-2) and *trans*-[Pt(SiHPh₂)₂(PEt₃)₂] (*trans*-2) with H₂

Hydrogen gas was bubbled into a bright yellow solution of cis-[Pt(SiHPh₂)₂(PEt₃)₂] (*cis*-2) and *trans*-[Pt(SiHPh₂)₂(PEt₃)₂] (*trans*-2) (48 mg, 0.06 mmol) in C₆D₆. Within one hour the solution turned colourless. The NMR spectrum shows the presence of cis-[Pt(H)(SiHPh₂)(PEt₃)₂] (*cis*-4) and *trans*-4 in a ratio of 1:0.1 as well as of H₂SiPh₂.

Reaction of cis-[Pt(H)(SiPh₃)(PEt₃)₂] (6) with H₂SiPh₂

112 mg (0.16 mmol) **6** were suspended in 3 ml C₆D₆ and 30 μ l (0.16 mmol) H₂SiPh₂ were added at room temperature. The reaction mixture became clear. The ¹H, ³¹P and ¹H, ²⁹Si HMBC NMR spectroscopic data of the solution revealed the presence of the complexes *cis*-4 and *trans*-4 as well as of HSiPh₃. Ratio: *cis*-4 : *trans*-4 = 1 : 0.22.

Reaction of [Pt(PEt₃)₃] (1) with HSiMe₃

A red solution of $[Pt(PEt_3)_3]$ (1) (125 mg, 0.23 mmol) in toluene (3 ml) was cooled to -80 °C and an excess of HSiMe₃ was condensed to the solution. The resulting suspension was filtered and the filtrate was treated a second time with HSiMe₃ and filtered again. After removing the solvent from the filtrate a dark red oil was obtained. The ¹H and ³¹P NMR spectroscopic data reveal the formation of *cis*-[Pt(H)(SiMe₃)(PEt₃)₂] (7).²⁶

Catalytic formation of H_2SiPh_2 by reaction of $Ph_2HSiSiHPh_2$ with dihydrogen in the presence of *cis*-2 and *trans*-2

87 mg (0.11 mmol) of a mixture of *cis*-2 and *trans*-2 in a ratio of 1:0.27 were dissolved in C_6D_6 (3 ml). The resulting yellow solution was combined with 1 g (2.75 mmol) Ph₂HSiSiHPh₂ in 20 ml C_6D_6 and the mixture was then transferred into an autoclave. 6 bar dihydrogen were fed. The reaction was monitored by NMR spectroscopy and GC-MS measurements. After 50 hours the reaction was interrupted, the mixture dried in a vacuum and the resulting oily solid was dissolved in C_6D_6 and investigated by NMR spectroscopy. The GC-MS and ¹H NMR spectroscopic data revealed the formation of H₂SiPh₂ (TON = 18, based on the disilane consumption, 36 equiv. silane H₂SiPh₂ with respect to the amount of a catalyst). The ¹H and ³¹P NMR spectroscopic data of the residue showed the presence of the complexes *cis*-2 and *trans*-2 (ratio *cis*-2 : *trans*-2 = 1 : 0.20).

Catalytic formation of HSiMe_3 by reaction of $\mathrm{Me}_3\mathrm{SiSiMe}_3$ with dihydrogen

A mixture of 10 mg (0.018 mmol) of 1 in toluene (0.7 ml) and 0.036 ml (1.8 mmol) Me₃SiSiMe₃ in C₆D₆ (0.1 ml) was transferred into an NMR pressure tube. 1.7 bar hydrogen pressure was then applied. The NMR tube was heated to 120 °C. After 90 hours the solution was investigated by ¹H NMR spectroscopy and by GC-MS. The spectroscopic data reveal the formation of HSiMe₃ (TON 18, based on the disilane consumption, 36 equiv. silane HSiMe₃ with respect to the amount of catalyst). After evaporating the volatiles and drying the solution in a vacuum the residue was dissolved in C₆D₆, and complex [Pt(PEt₃)₃] (1) was observed in the NMR spectrum.

Acknowledgements

We would like to acknowledge the Deutsche Forschungsgemeinschaft for financial support. We also thank the BASF SE for a gift of solvents.

References

- 1 J. Y. Corey, Chem. Rev., 2011, 111, 863-1071.
- 2 H. K. Sharma and K. H. Pannell, *Chem. Rev.*, 1995, 95, 1351–1374.
- 3 A. J. Chalk and J. F. Harrod, *J. Am. Chem. Soc.*, 1965, 87, 16–21.
- 4 F. Ozawa, J. Organomet. Chem., 2000, 611, 332-342.
- 5 M. Suginome and Y. Ito, *Chem. Rev.*, 2000, **100**, 3221–3256.
- 6 I. Ojima, S.-I. Inaba and T. Kogure, *J. Organomet. Chem.*, 1973, 55, C7–C8; J. F. Harrod and Y. Mu, *Polyhedron*, 1991, 10, 1239–1245; J. Y. Corey, *Adv. Organomet. Chem.*, 2004, 51, 1–52.
- 7 L. S. Chang and J. Y. Corey, *Organometallics*, 1989, 8, 1885–1893; H. G. Woo, J. F. Walzer and T. D. Tilley, *J. Am. Chem. Soc.*, 1992, 114, 7047–7055; B. J. Grimmond and J. Y. Corey, *Inorg. Chim. Acta*, 2002, 330, 89–94.
- 8 Union Carbide Co., *US Pat.*, 2 606 811, 1952; Rhodia Chimie, *Fr* 99/00771, 1999; Dow Corning Co., *US Pat.*, 6 013 235, 2000; Wacker Chemie AG, *DE* 10 2007 055 732 A1, 2008.
- 9 Dow Corning Co., US Pat., 3 639 105, 1972.
- 10 L. Rosenberg, C. W. Davis and J. Yao, J. Am. Chem. Soc., 2001, 123, 5120–5121.
- 11 J. Voigt and T. Braun, Dalton Trans., 2011, 40, 12699-12704.
- 12 A. Roscher, A. Bockholt and T. Braun, *Dalton Trans.*, 2009, 1378–1382.
- 13 H. Yamashita, T. A. Kabayashi, T. Hayashi and M. Tanaka, *Chem. Lett.*, 1990, 1447–1450.
- 14 T. G. Appleton, H. C. Clark and L. E. Manzer, *Coord. Chem. Rev.*, 1973, **10**, 335–422.

- 15 Y. J. Kim, J. I. Park and S. C. Lee, *Organometallics*, 1999, **18**, 1349–1352.
- 16 H. Yamashita, M. Tanaka and M. Goto, Organometallics, 1992, 11(10), 3227–3232.
- 17 M. Suginome, H. Oike, P. H. Shuff and Y. Ito, J. Organomet. Chem., 1996, 521, 405–408.
- M. J. Michalczyk, C. A. Recatto, J. C. Calabrese and M. J. Fink, *J. Am. Chem. Soc.*, 1992, **114**, 7955–7957; H. Arii, M. Takahashi, A. Noda, M. Nanjo and K. Mochida, *Organometallics*, 2008, **27**, 1929–1935.
- 19 D. Chan, S. B. Duckett, S. L. Heath, I. G. Khazal, R. N. Perutz, S. Sabo-Etienne and P. L. Timmins, Organometallics, 2004, 23, 5744–5756.
- 20 H. C. Clark, G. Ferguson, M. J. Hampden-Smith,
 H. Ruegger and B. L. Ruhl, *Can. J. Chem.*, 1988, 66, 3120–3127.
- 21 J. Braddock-Wilking, J. Y. Corey, K. A. Trankler, H. Xu, L. M. French, N. Praingam, C. White and N. P. Rath, *Organometallics*, 2006, 25, 2859–2871.
- 22 H. Arii, M. Takahashi, A. Noda, M. Najo and K. Mochida, *Organometallics*, 2008, **27**, 1929–1935.
- 23 J. J. Garcia, B. E. Mann, H. Adams, N. A. Bailey and P. M. Maitlis, *J. Am. Chem. Soc.*, 1995, **117**, 2179–2186.
- 24 T.-A. Koizumi, K. Okasada and T. Yamamoto, *Organometallics*, 1997, **16**, 6014–6016.
- 25 After removing the volatiles from the solution the starting compound $[Pt(PEt_3)_3]$ (1) is regenerated, because 1 is in equilibrium with 7 and HSiMe₃, and HSiMe₃ is highly volatile.
- 26 R. S. Paonessa, A. L. Prignano and W. C. Trogler, Organometallics, 1985, 4, 647–657.
- 27 K. Takaki, K. Komeyama and K. Takehira, *Tetrahedron*, 2003, 59, 10381–10395; H. Hashimoto, H. Tobita and H. Ogino, *J. Organomet. Chem.*, 1995, 499, 205–211;
 I. Ojima, S. I. Inaba and T. Kogure, *J. Organomet. Chem.*, 1973, 55, C7–C8; A. D. Sadow and T. D. Tilley, *Organometallics*, 2001, 20, 4457–4459.
- 28 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09 (Revision A.02), Gaussian, Inc., Wallingford, CT, 2009.

- 29 S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, 58, 1200–1211; C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter*, 1988, 37, 785–789; A. D. Becke, *J. Chem. Phys.*, 1993, 98, 5648–5652; P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, 98, 11623–11627.
- 30 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007–1023;
 D. E. Woon and T. H. Dunning, J. Chem. Phys., 1993, 98, 1358–1371.
- 31 L. M. Sanow, M. Chai, D. B. McConnville, K. J. Galat, R. S. Simons, P. L. Rinaldi, W. J. Youngs and C. A. Tessier, *Organometallics*, 2000, **19**, 192–205.
- 32 Wacker Chemie GmbH, *DE*, 10039172 C1, 2000; Wacker Chemie GmbH, *EP*, 1 533 315, 2004; T. Toma, *et al.*, *US Pat.* 2008/0200710, 2008.
- 33 G. W. Parshall and S. D. Ittel, Homogeneous Catalysts: The Applications and Chemistry of Catalysts by Transition Metal Complexes, Wiley, New York, 1992; M. Bols and T. Skrydstrup, Chem. Rev., 1995, 95, 1253–1277; K. A. Horn, Chem. Rev., 1995, 95, 1317–1350; E. Langkopf and D. Schinzer, Chem. Rev., 1995, 95, 1375–1408; M. Wright and B. B. Cochran, Organometallics, 1996, 15, 317–324; I. Matsuda, Y. Fukuta, T. Tsuchihashi and H. Nagashima, Organometallics, 1997, 16, 4327–4345; D. Karshtedt, A. T. Bell and T. D. Tilley, Organometallics, 2006, 25, 4471–4482; T. J. Clark, K. Lee and I. Manners, Chem.-Eur. J., 2006, 12, 8634–8648; T. Braun, F. Wehmeier and K. Altenhöner, Angew. Chem., 2007, 119, 5415–5418; T. Braun, F. Wehmeier and K. Altenhöner, Angew. Chem., Int. Ed., 2007, 46, 5321–5324.

- 34 T. H. Lane and S. A. Burns, *Curr. Top. Microbiol. Immunol.*, 1996, 210, 3–12; B. Kanner and K. M. Lewis, in *Catalyzed Direct Reactions of Silicon*, ed. K. M. Lewis and D. G. Rethwisch, Elsevier, Amsterdam, Netherlands, 1993, p. 1; C. E. Elschenbroich, *Organometallchemie*, B. G. Teubner, Wiesbaden, 2003, vol. 4, p. 144; J. M. Bablin, A. C. Crawford, D. C. DeMoulpied and L. N. Lewis, *Ind. Eng. Chem. Res.*, 2003, 42, 3555–3565.
- 35 T. Hayashi, T. Kobayashi, A. M. Kawamoto, H. Yamashita and M. Tanaka, *Organometallics*, 1990, 9, 280–281;
 T. Pohlmann and A. de Meijere, *Org. Lett.*, 2000, 2, 3877– 3879.
- 36 Y. Ito, M. Suginome and M. Murakami, *J. Org. Chem.*, 1991, 56, 1948–1951; H. Yamashita, M. Catellani and M. Tanaka, *Chem. Lett.*, 1991, 241–244; T. Matsuda, Y. Suda and Y. Fujisaki, *Synlett*, 2011, 813–816.
- 37 H. Yamashita, N. P. Reddy and M. Tanaka, *Chem. Lett.*, 1991, 315–318.
- 38 E. Hengge and F. J. Krysl, *Monatsh. Chem.*, 1981, 112, 731– 741; G. A. Olah, L. D. Field, K. Lammertsma, D. Pacquin and K. Suemmermann, *Nouv. J. Chim.*, 1983, 7, 279–282; W. C. Still, *J. Org. Chem.*, 1976, 41, 3063–3064; H. Sakurai, A. Okada, M. Kira and K. Yonezawa, *Tetrahedron Lett.*, 1971, 19, 1511–1514; H. Sakurai and F. Kondo, *J. Organomet. Chem.*, 1975, 92, C46–C48; P. D. Lickiss and C. M. Smith, *Coord. Chem. Rev.*, 1995, 145, 75–124; see also: C. Marschner, *Eur. J. Inorg. Chem.*, 1998, 221–226; G. Gutekunst and A. G. Brook, *J. Organomet. Chem.*, 1982, 225, 1–3.
- 39 T. Yoshida, T. Matsuda and S. Otsuka, *Inorg. Synth.*, 1990, 28, 119–123.