Article

Structure-activity relationship studies of Retro-1 analogs against Shiga toxin

Hajer Abdelkafi, Aurélien Michau, Valérie Pons, Flora Ngadjeua, Alexandra Clerget, Lilia Ait Ouarab, DavidAlexandre Buisson, David Montoir, Lucie Caramelle, Daniel Gillet, Julien Barbier, and Jean-Christophe Cintrat J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.0c00298 • Publication Date (Web): 10 Jul 2020

Downloaded from pubs.acs.org on July 11, 2020

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Structure-activity relationship studies of Retro-1 analogs against Shiga toxin

Hajer Abdelkafi ${ }^{\dagger}$, Aurélien Michau ${ }^{\ddagger}$, Valérie Pons ${ }^{\dagger}$, Flora Ngadjeua ${ }^{\ddagger}$, Alexandra Clerget ${ }^{\ddagger}$, Lilia Ait Ouarab ${ }^{\dagger}$, David-Alexandre Buisson ${ }^{\dagger}$, David Montoir ${ }^{\dagger}$, Lucie Caramelle ${ }^{\ddagger}$, Daniel Gillet ${ }^{t,}{ }^{*}$, Julien Barbier ${ }^{*}$, and Jean-Christophe Cintratt,**
${ }^{\dagger}$ Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SCBM, 91191 Gif-sur-Yvette, France
${ }^{\ddagger}$ Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, 91191 Gif-sur-Yvette, France

Abstract

High-throughput screening has shown that Retro-1 inhibits ricin and Shiga toxins by diminishing their intracellular trafficking via the retrograde route, from early endosomes to the Golgi apparatus. In order to improve the activity of Retro-1, a SAR study was undertaken and yielded an analog with a roughly 70 -fold better EC_{50} against Shiga toxin cytotoxicity measured in a cell protein synthesis assay.

INTRODUCTION

Shiga toxins (Stx) are a family of structurally and functionally similar protein toxins produced by Shigella dysenteriae and some serogroups of Escherichia coli. ${ }^{1}$ Gram-negative bacteria producing Stx are pathogenic and responsible for a number of human foodborne diseases such as bloody diarrhea and hemolytic uremic syndrome (HUS), the most feared complication of the infection defined by acute renal failure, thrombocytopenia and microangiopathic hemolytic anemia. ${ }^{2}$ Stx belong to the group of AB_{5} toxins and consist of a catalytically active A-subunit (StxA) and a binding pentameric B-subunit (StxB). After binding of StxB to the globotriaosylceramide (Gb3) receptor at the cell surface, Stx is endocytosed and traffics through endosomes to the endoplasmic reticulum (ER) by the retrograde pathway. ${ }^{3}$ Once in the ER, StxA translocates to the cytosol where it arrests protein biosynthesis of host cells by enzymatically inactivating ribosomes. Hitherto, no specific therapies are available to treat Stx intoxication. At the hospital, management of HUS is based on general supportive care, and early dialysis for acute renal failure. Plasma exchange has been explored without indication of its efficacy. ${ }^{4,5}$ Yet, the massive outbreak of Stxproducing E. coli in Germany in 2011 allowed assessment of new drugs, such as the humanized monoclonal antibody eculizumab directed against the complement protein C5 and approved for the treatment of the genetic related disorder atypical HUS (aHUS). However, a retrospective study concluded that there was no benefit for eculizumab-treated HUS patients. ${ }^{5}$

Therapeutics that hamper Stx binding, uptake, trafficking, translocation or enzymatic activity are highly relevant for the treatment of STEC infections (for a review see ${ }^{6}$). Thus, blocking of the intracellular retrograde trafficking of Stx can be one viable strategy to arrest the intracellular action of the toxin, as demonstrated either by the activity of chemical compounds (Figure 1), or by manganese ions. ${ }^{7-16}$

Retro-2 ${ }^{7}$
$E C_{50}=27.3 \mu \mathrm{M}$

$E C_{50}=2-10 \mu \mathrm{M}$

Compound 75^{9} $25 \mu \mathrm{M}$

Figure 1. Chemical structures of some known cellular inhibitors of Shigatoxins. EC_{50} values or active concentrations are indicated. NBT: Nitrobenzylthioinosine.

Identified by high-throughput screening, Retro-1 selectively blocked Stx retrograde trafficking at the early endosome/trans-Golgi network (TGN) interface, thus protecting exposed cells from the cytotoxic action of Stx. ${ }^{7}$ Unlike various small molecules that inhibit intracellular Stx transport,

Retro-1 did not perturb cellular morphology nor did it affect other trafficking pathways. Here, we report on the development of a related compound Retro-1.1 with a similar mode of action and conferring improved protective efficacy against Stx on human cells.

RESULTS AND DISCUSSION

Synthesis of Retro-1. The synthesis of compound 6, Retro-1, was achieved starting from the commercially available 2-amino, 5-bromo benzophenone 1 (Scheme 1) in 39\% yield over 4 steps. First, regioselective bromination was performed with NBS with complete conversion. Acetylation with bromoacetyl bromide was immediately followed by cyclization with ammonia to yield the benzodiazepine 4 in 66% yield over two steps. Then, reduction of the imino moiety with $\mathrm{NaBH}_{3} \mathrm{CN}$ yielded the two enantiomers of benzodiazepine 5 which were treated with propionyl chloride to obtain Retro-1 as a mixture of two enantiomers. In addition, racemic Retro-1 was obtained as a 1:1 mixture of conformers as detected by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{17}$ High-temperature NMR allowed us to obtain coalescence of the two conformer signals (see supplementary materials).

Scheme 1. Synthetic route to Retro-1

$\mathbf{8}$
alprazolam

9
bromazepam

10 lorazepam, $\mathrm{R}=\mathrm{Cl}$ 11 oxazepam, $\mathrm{R}=\mathrm{H}$

12 flunitrazepam, $R=F$ 13 clonazepam, $\mathrm{R}=\mathrm{Cl}$

14 prazepam, $\left.R_{1}=\mathrm{Cl}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\right\}$

19

20, $R=H$
21, $R=B r$

$$
16, \mathrm{R}_{1}=\mathrm{Cl}, \mathrm{R}_{2}=\mathrm{Cl}, \mathrm{R}_{3}=\mathrm{H}
$$

$$
\text { 17, } \mathrm{R}_{1}=\mathrm{Cl}, \mathrm{R}_{2}=\mathrm{Cl}, \mathrm{R}_{3}=\mathrm{CH}_{3}
$$

$$
\mathbf{1 8}, \mathrm{R}_{1}=\mathrm{Br}, \mathrm{R}_{2}=\mathrm{F}, \mathrm{R}_{3}=\mathrm{CH}_{3}
$$

Figure 2. Initial screening of commercially available benzodiazepinones and miscellaneous derivatives

All of these compounds were inactive which strongly suggests that a benzodiazepine scaffold and not a benzodiazepinone one is mandatory. All benzodiazepines were synthesized according to the scheme 2 :

Scheme 2. General procedure for the synthesis of 1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one.

procedure a

Modification of N4. We then checked the impact of the N4 amide substitution by introducing small variations around the propionyl group.

Table 1. Preliminary evaluation of the substitution at N4

Compound	$\mathbf{R}_{\mathbf{1}}$	Yield $(\%)$	Protection $(\%)$	EC50 $(\boldsymbol{\mu M})$
$\mathbf{2 2}$	\mathbf{O}	50	inactive	n.d.
$\mathbf{2 3}$	\mathbf{O}	78	80.2	10.93 ± 0.15

24		84	inactive	n.d.
25		83	inactive	n.d.
26	\sim	91	>100	3.98 ± 0.63

Unfortunately, the four amide analogs we synthesized proved inactive (Table 1, compounds 22, $\mathbf{2 4}, \mathbf{2 5}$) or less active than the parent Retro-1 (Table 1, compound 23) in Stx protection assays. It should be reiterated that Retro-1 (see below), but also the analogs presented in Table 1 (compounds 22-25), give rise to conformers, presumably due to the presence of the tertiary amide. We therefore decided to synthesize a reduced analog of Retro-1, i.e. compound 26. Compound 26 was indeed the best analog and showed slightly better protection compared to Retro-1 ($6.2 \mu \mathrm{M}$). This reduced analog not only yielded an active compound, but also got rid of conformers, thereby simplifying the analysis. This propylated compound was therefore a good starting point for more extensive SAR studies. Based on this N-propyl analog, we then investigated the impact of the N1 amide substitution (Table 2).

Substitution at N1. The synthesis of N1-substituted benzophenones were achieved via either classical alkylation reaction from diazepinones (see experimental part for conditions) or Ullmann arylation according to scheme 3:

Scheme 3. Synthesis of N1-substituted diazepin-2-one from 7-bromo-5-phenyl-4-propyl, 1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one.

None of the analogs we synthesized in this series proved active against Shiga toxin, with aliphatic (Table 2, compound 27), allylic or benzylic (compounds 32 and 33) or aromatic/heteroaromatic (compounds 28-31) substituents. These results suggest that the NH bond is crucial for bioactivity and may be involved in H bonding with the target(s) or may point to a small hydrophilic cavity.

Table 2. Modification on the N1 amide

Compound	R	Yield (\%)	Protection (\%)	$\begin{aligned} & \mathbf{E C}_{50} \\ & (\mu \mathrm{M}) \end{aligned}$
27	$\mathrm{Me} \rightarrow$	48	inactive	n.d.
28	\widehat{s}^{N}	50	inactive	n.d.
29		41	inactive	n.d.
30		52	inactive	n.d.
31		37	inactive	n.d.
32	"	81	inactive	n.d.
33	\geqslant	70	inactive	n.d.

Modification of the aromatic rings. Faced with these rather disappointing results, we decided to evaluate the impact of the BZD phenyl ring substitution. The latter was functionalized
either by palladium-catalyzed cross-coupling, taking advantage of the bromine at C 7 , or by the use of initially functionalized 2-aminobenzophenones according to scheme 4 .

Scheme 4. Late stage functionalization of 7-bromo-5-phenyl-4-propyl, 1,3,4,5-tetrahydro$\mathbf{2 H}$-benzo[e][1,4]diazepin-2-one via palladium-catalyzed cross-coupling or via early stage functionalization.

Table 3. Evaluation of the substitution at the phenyl benzodiazepine ring
Compound
(10)

Based on palladium coupling reactions, various aromatic (compounds 34, 35, 38) and heteroaromatic (compounds 36,37) compounds were synthesized, but were completely inactive.

9-Bromo or 8-methoxy derivatives of compound 29 were also obtained (compounds 39, 40), but did not protect cells against Stx. Substitution of the bromide at C7 by a chloride, iodide or azide maintained the protection of the cells against Stx (compounds 41, 42, 43).

Substitution at C5. Because of the difficulty of late-stage modifications, we decided to obtain some benzodiazepines modified at C5 from different 2-amino, 5-bromobenzophenone analogs. The latter were either commercially available (Table 4, compounds 45, 46, 48) or obtained by Friedel-Craft reaction between 5-bromoaniline and the corresponding benzonitrile (compound 44).

Table 4. Evaluation of substitution at C 5

Compound	R	Yield (\%)	Protection (\%)	$\begin{aligned} & \mathrm{EC}_{50} \\ & (\mu \mathrm{M}) \end{aligned}$
44		66	14.4	n.d.
45		56	inactive	n.d.
46		62	>100	3.87 ± 0.01
47		71	59.6	n.d.
48		21	>100	12.82 ± 0.21

Compound 47 was obtained via a directed palladium iodination reaction previously developed in our group. ${ }^{15}$ Except for a 2-monofluorinated analog (compound 46) and a 2,4-difluorinated analog
(compound 48), all compounds tested proved less potent than compound 29. Despite the fact that the fluoride atom is slightly larger than the hydrogen atom, little change to the steric bulk of the molecule is usually seen. The biggest changes in bioactivity are usually due to a large electronegativity difference between these two atoms (besides the higher lipophilicity of fluoride), but here there seems to be no influence of this parameter on bioactivity against Stx, though better cell membrane permeation cannot be ruled out.

Modification at the $\mathbf{N} 4$ secondary amine. In a final round of the SAR study, based on previous experience with the reduction of the propionyl substituent (see Table 2), we examined more extensively the effect of substitution on the secondary amine. The substituents were introduced by either reductive amination or nucleophilic substitution from compound $\mathbf{5}$ according to scheme 5:

Scheme 5. Introduction of substituents at N4.

RT, overnight

$\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{AcOH}, \mathrm{MeOH}$ procedure c

$X=F, C l, B r, I$

Table 5. Structure-activity relationship of compounds modified at N4

Compound	R	Yield (\%)	Protection (\%)	$\begin{aligned} & \hline \mathrm{EC}_{50} \\ & (\mu \mathrm{M}) \end{aligned}$
49		50	20.6	n.d.
50	N	79	5.3	n.d.
51		91	38.8	n.d.
52		85	inactive	n.d.
53		74	29.9	n.d.
54	$[\underbrace{s i}$	86	58.2	n.d.
55	π_{s}	88	12.2	n.d.
56	$\sqrt{-1}$	92	2.9	n.d.
57		88	Inactive	n.d.
58	8	95	Inactive	n.d.
59		78	Inactive	n.d.
5	H	74	Inactive	n.d.
60	${ }_{4} \mathrm{Me}$	90	Inactive	n.d.
61	$\widehat{\sim}$	23	85.8	8.81 ± 2.70
62	ヘ	85	29.5	n.d.
63	v	62	Inactive	n.d.
64	B	24	>100	4.70 ± 0.01

65		27	>100	5.16 ± 0.64
66		64	>100	0.60 ± 0.04
67		46	Inactive	n.d.
68		57	>100	1.29 ± 0.26
69		63	>100	3.91 ± 0.63
70		72	Inactive	n.d.
71		47	Inactive	n.d.
72		100	Inactive	n.d.
73	$\stackrel{\square}{\text { L }}$	55	Inactive	n.d.
74	\mathbb{V}	38	>100	6.50 ± 0.14

Numerous analogs were synthesized and tested. First, compounds bearing an indole ring were obtained, but were less active than Retro-1 (compound 49). Then, pyridine substituents were introduced (4-substituted, compound 50 or 3 -substituted pyridine, compound 51), but neither compound showed improved efficiency. The naphthyl derivative $\mathbf{5 2}$ was completely inactive. A closely related structure, the quinoline moiety 53, showed lower activity than Retro-1. A few small heterocyclic thiophenyl (compounds 54, 55) and furyl (compounds 56, 57) substituents were synthesized and screened, but without any improvement. A phenyl substituent was introduced with either a one-methylene (compound 58) or three-methylene (compound 59) linker, but with complete loss of activity. Many aliphatic substituents (compounds 60-70) were introduced and we obtained more potent inhibitors, especially with acyclic or cyclic derivatives (compounds 66, 68, 69). It should be noted that more sterically demanding ramified aliphatic chains (compounds 63 ,
67) and substituted aliphatic rings (compound 70) gave lower bioactivity. The most promising candidates in this series were cyclopentyl derivatives (compounds 66, 68, 69). Finally, functionalized aliphatic chains were inactive (compounds 71-73), or less active (compound 74).

Halide effect. Having the best analog in hand (compound 66), we focused our attention on the effect of bromide, since we already experienced a change in bioactivity with different halogens at C7 (see Table 4, compounds 41, 42). Therefore, we synthesized analogs containing respectively no halide (75), fluoride (76), chloride (77) and iodide (78). The iodinated analog (compound 78) afforded an improved EC_{50} value of around 300 nM , suggesting that a putative X-bond with electron-rich groups present in the target(s) might account for this ranking of halogenated derivatives (Figure 3). ${ }^{18,19}$

Figure 3. Effect of halogen at C 7 on the bioactivity against Shiga toxin

Since compound 78 was the best analog of Retro-1 synthesized during this SAR study, we decided to name it Retro-1.1.

Separation of enantiomers and attribution of configuration and biological activities. A chiral phase separation of the enantiomers of Retro-1.1 was carried out on a ChiralPak IA HPLC, which allowed us to obtain two enantiomers, Retro-1.1.a and Retro-1.1.b (Figure S1).

In order to determine the absolute configuration of each enantiomer, we decided to take advantage of the enantiomers of Retro-1 (scheme 6), an assignment that was previously achieved by X-ray crystallography. ${ }^{17}$

Scheme 6. Strategy to determine the absolute configurations of compounds 5 and 78 (Retro-

1.1)

Step 1: We synthesized the two enantiomers of Retro-1 from the separated enantiomers of 5 which allowed us retrospectively to identify $(S)-\mathbf{5}$ and $(R)-\mathbf{5}$.

Step 2: With the assignment of compound 5 enantiomers in hand, we decided to perform a twostep chemical modification, knowing that no inversion of configuration could occur during these transformations, which allowed us to obtain an HPLC profile of (S)-Retro-1.1 and (R)-Retro-1.1.

HeLa cells were then challenged against Stx in the presence of each enantiomer of Retro-1.1 (Figure 4). (S)-enantiomer of Retro-1.1 proved to be the eutomer, as already experienced with Retro-1. ${ }^{17}$

Figure 4. Evaluation of protective activity towards Stx cytotoxicity of each enantiomer of Retro1.1. HeLa cells were incubated for 4 hours with racemic Retro-1.1 (grey), (R)-Retro-1.1 (white), or (S)-Retro-1.1 (black) before the addition of Stx for 20 hours. Medium was removed and replaced by DMEM containing [$\left.{ }^{14} \mathrm{C}\right]$-leucine at $0.5 \mu \mathrm{Ci} / \mathrm{mL}$ for 7 hours before counting. Each data point represents the mean of duplicate \pm SD of two independent experiments.

To prove that the mode of action of Retro-1.1 obtained herein prevents the deleterious effect of Stx by blocking its intracellular trafficking through the retrograde pathway, as reported for Retro1, we examined the subcellular distribution of fluorescently labeled Stx. These experiments
showed that Shiga toxin is not able to reach the Golgi apparatus in the presence of (S)-Retro-1.1, whereas (R)-Retro-1.1 appeared unable to block Stx trafficking inside cells (Figure 5, Figure S2).

Figure 5. (\pm)-Retro-1.1 and (S)-Retro-1.1 block the retrograde transport of Shiga toxin. Cells were pretreated for 1 hour with (\pm)-Retro-1.1 (upper panel), (S)-Retro- 1.1 (middle panel) or (R)-Retro1.1 (lower panel) at $1 \mu \mathrm{M}$ before addition of Alexa488-labeled StxB $(0.1 \mu \mathrm{~g} / \mathrm{mL}$, green). Cells
were fixed with 4% PFA, and labeled with phalloidin-Atto-550 (red) and DAPI (blue) for actin and nuclei staining, respectively. Scale bar, $20 \mu \mathrm{~m}$.

CONCLUSION

Based on our SAR study, we were able to obtain benzodiazepinones that afforded cells greater protection against Shiga toxin than the parent molecule Retro-1. This SAR study shows that a halogen atom at C7 is mandatory. The most active compound, (S)-Retro-1.1, provides an EC_{50} of 90 nM corresponding to a 70 -fold improvement compared to the parent Retro-1. We also show that this compound blocks the retrograde trafficking of Shiga toxin. Experiments are in progress to decipher the mode of action of this compound and to identify its cellular target(s). As Retro-1 blocks retrograde trafficking similarly to Retro-2, it would be worth testing optimized Retro-1 compounds against various pathogens, in particular viruses such as poxvirus, cytomegalovirus and enterovirus 71, for which Retro-2 derivatives proved efficient. ${ }^{20-22}$

EXPERIMENTAL SECTION

Synthesis

All chemicals and solvents used in the syntheses were reagent grade and were used without additional purification. THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled respectively from sodium/benzophenone ketyl and calcium hydride before use. Glassware was flame-dried under vacuum and cooled under nitrogen to room temperature. All reactions were performed under dry nitrogen gas and monitored by thin-layer chromatography (TLC). TLC was performed with precoated TLC silica gel 60 F254,
and organic compounds were visualized by UV light (254 nm), iodine vapor, or phosphomolybdic acid $[10 \% ~(w / v)$ in ethanol] staining with heating.

Large-scale purification was performed on a CombiFlash with a UV-visible detector with RediSep columns. The samples were adsorbed on Celite or silica and loaded into solid load cartridges. An ethyl acetate/cyclohexane or methanol/methylene chloride gradient was employed. Fractions were collected based on UV detection at 254 nm .

HPLC-MS analysis and purification were performed using a Waters system (2525 binary gradient module, in-line degasser, 2767 sample manager, 2996 Photodiode Array Detector) with a binary gradient solvent delivery system. This system was coupled with a Waters Micromass ZQ system with a ZQ2000 quadrupole analyzer. The ionization was performed by electrospray and the other parameters were as follows: source temperature $120^{\circ} \mathrm{C}$, cone voltage 20 V , and continuous sample injection at $0.3 \mathrm{~mL} / \mathrm{min}$ flow rate. Mass spectra were recorded in both positive and negative ion mode in the m / z 100-2,000 range and treated with the Mass Lynx 4.1 software.

The eluent was a gradient of $(99.9 \%$ water / $0.1 \% \mathrm{HCOOH})$ and $(99.9 \% \mathrm{MeCN} / 0.1 \% \mathrm{HCOOH})$ or $(99.9 \%$ water / $0.1 \% \mathrm{HCOOH})$ and $(99.9 \% \mathrm{MeOH} / 0.1 \% \mathrm{HCOOH})$. Each compound was applied to a $100 \times 4.6 \mathrm{~mm}(5 \mu \mathrm{~m})$ WATERS XBridge C 18 column equilibrated with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ or $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 95: 5$.

Gradient A: Samples were eluted by increasing MeOH to 100% (25 min) then 100% (5 min). Gradient B: Samples were eluted by increasing MeOH to 90% (24 min), then 100% (1 min) and then staying at 100% (5 min).

Gradient C: Samples were eluted by increasing MeOH to 80% (24 min), then 100% (1 min) and then staying at 100% (5 min).

Gradient D: Samples were eluted by increasing MeCN to 100% (25 min) then 100% (1 min).
Gradient E: Samples were eluted by increasing MeCN to 90% (24 min), then 100% (1 min) and then staying at 100% (5 min).

Gradient F: Samples were eluted by increasing MeCN to $80 \%(24 \mathrm{~min})$, then $100 \%(1 \mathrm{~min})$ and then staying at 100% (5 min).

Gradient G: Samples were eluted by increasing MeCN to 60% (24 min), then 100% (1 min) and then staying at 100% (5 min).

HPLC (chiral) analyses were performed on a system equipped with a binary gradient solvent delivery system (LC-20AB, Shimadzu), an SIL-20A autosampler (Shimadzu), and a photodiode array detector (SPD-20A, Shimadzu).

The purity of the compounds was assessed by UPLC/UV (DAD $210-400 \mathrm{~nm}$) using a Waters Acquity system equipped with a BEH XBridge C18 column $\left(1.7 \mu \mathrm{M}, 2.1 * 50\right.$ at $\left.40^{\circ} \mathrm{C}\right)$ and purity was $\geq 95 \%$ from the analysis detection mode (compounds $65,67,68,69$ were mixtures of diastereomers). Elution conditions were as follow:

Solvent:	A: $\mathrm{H}_{2} \mathrm{O}+1 / 1000 \mathrm{HCO}_{2} \mathrm{H}, \mathrm{B}: \mathrm{ACN}+1 / 1000 \mathrm{HCO}_{2} \mathrm{H}$		
T0	$0.4 \mathrm{~mL} / \mathrm{min}$	$95 \% \mathrm{~A} 5 \% \mathrm{~B}$	
T3min	$0.4 \mathrm{~mL} / \mathrm{min}$	$0 \% \mathrm{~A}$	100% B
T3.1min	$0.6 \mathrm{~mL} / \mathrm{min}$	$0 \% \mathrm{~A}$	$100 \% \mathrm{~B}$
T4min	$0.6 \mathrm{~mL} / \mathrm{min}$	$0 \% \mathrm{~A}$	100% B

NMR experiments were performed on a Bruker Avance 400 Ultrashield spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$ spectra were recorded at room temperature at 400 MHz and 100 MHz , respectively, with samples dissolved in DMSO-D6 at a concentration of approximately 5 mM . The DMSO singlet signal was set up at 2.50 ppm . Chemical shifts are given in ppm and the coupling constants in Hz . Spectral data are consistent with assigned structures.

High-resolution mass spectrometry (HRMS) was performed on an ESI/TOF LCP premier XE mass spectrometer (Waters) using flow injection analysis mode.

Physicochemical properties were calculated using MarvinSketch 5.4.1.1 software (ChemAxon)

High-resolution mass spectrometry (HRMS) was performed using the imagif platform (CNRS, Gif-sur-Yvette, France), and recorded on an ESI/TOF LCP premier XE mass spectrometer (Waters) using flow injection analysis mode.

For procedure (a): see the synthesis of Compound $\mathbf{4}$
For procedure (b): see the synthesis of Compound $\mathbf{6}$
For procedure (c): see the synthesis of Compound 26
For procedure (d): see the synthesis of Compound 28
For procedure (e): see the synthesis of HA467
For procedure (f): see the synthesis of Compound 34
For procedure (g): see the synthesis of HA244

7-Bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (4)

To a solution of 2-aminobenzophenone ($10.14 \mathrm{mmol}, 2 \mathrm{~g}$) in dichloromethane $(100 \mathrm{~mL})$ was added N -bromosuccinimide ($10.14 \mathrm{mmol}, 1.8 \mathrm{~g}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour at this
temperature and for 2 hours at room temperature. The organic layer was washed with water (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was used in the next step without purification.

Procedure (a): To a solution of 5-bromo-2-aminobenzophenone $\mathbf{2}$ (10.14 mmol) in dichloromethane (100 mL) was added bromoacetyl bromide ($12.16 \mathrm{mmol}, 1.27 \mathrm{~mL}$) followed by a 2 M aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 hours at this temperature. The organic layer was separated and washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum to give 5-bromo-2-bromoacetamidebenzophenone $\mathbf{3}$ as a yellowish solid. At $0{ }^{\circ} \mathrm{C}$, 5-bromo-2-bromoacetamidebenzophenone $\mathbf{3}(10.14 \mathrm{mmol})$ was dissolved in a solution of $\mathrm{NH}_{3}(7 \mathrm{M}$ in $\mathrm{MeOH}, 130 \mathrm{~mL})$ and the mixture was stirred for 1 hour at this temperature and then allowed to warm up to room temperature overnight. The crude mixture was dried under vacuum, diluted in ethyl acetate and washed with water. The organic layer was concentrated under vacuum, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was purified by flash chromatography (cyclohexane-ethyl acetate, 1-1). The desired compound $\mathbf{4}$ was obtained as a white solid ($2.11 \mathrm{~g}, 66 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 10.66(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.7 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.61-7.30 (m, 5H), 7.33 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathbf{2 S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 170.6,168.8,139.5,139.1,133.08,129.6,128.6,123.8$, $114.8,57.5$
I.R. (neat, $\mathbf{c m}^{-1}$) 3430, 2951, 1680, 1605, 1476, 1381, 1355, 1319, 1285, 1259, 1233, 1193, 1082, 1012, 946, 895

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O} 315.0133$, found 315.0134

7-Bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (5)

To a solution of $\mathbf{4}(1.58 \mathrm{mmol}, 500 \mathrm{mg})$ in methanol $(15 \mathrm{~mL})$ was added $\mathrm{NaBH}_{3} \mathrm{CN}(2.37 \mathrm{mmol}$, $150 \mathrm{mg})$ followed by acetic acid ($7.9 \mathrm{mmol}, 440 \mu \mathrm{~L}$) dropwise. The mixture was stirred at room temperature until complete conversion of the starting material. The mixture was than evaporated to dryness, diluted in ethyl acetate and washed with a saturated solution of NaHCO_{3}, then water. The organic layer was concentrated under vacuum, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was purified by flash chromatography (cyclohexane-ethyl acetate, $1-1$ to 1-2). The desired compound 5 was obtained as a white solid ($370 \mathrm{mg}, 74 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 9.96(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=2.14 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}$ br, 1 H$), 3.39(\mathrm{dd}, J=15.7 \mathrm{~Hz}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=15.7 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 173.6,141.9,136.6,128.8,127.8,122.9,115.5,61.7$, 50.8
I.R. (neat, cm $^{-1}$) $3441,3309,3258,3208,3150,3095,3064,2947,2825,1675,1578,1482,1380$, 1284, 1248, 1227, 1173, 119, 1076, 1052, 1027, 948, 913, 880, 855

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O} 317.0290$, found 317.0291
Procedure (b): 7-Bromo-5-phenyl-4-propionyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (6)

To a solution of compound $5(0.315 \mathrm{mmol}, 100 \mathrm{mg})$ in dichloromethane (3 mL) was added propionyl chloride ($0.410 \mathrm{mmol}, 36 \mu \mathrm{~L}$) followed by triethylamine ($0.315 \mathrm{mmol}, 44 \mu \mathrm{~L}$). The mixture was allowed to stir at room temperature overnight. A solution of saturated NaHCO_{3} was added and the organic layer was extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, then
concentrated under vacuum. The crude mixture was washed with diethyl ether. The crude mixture was purified by flash chromatography (cyclohexane-ethyl acetate, 5-1 to 1-1) furnishing the desired compound 6 as a white solid ($374 \mathrm{mg}, 79 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m} 100^{\circ} \mathrm{C}: 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=8.7 \mathrm{~Hz}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=14 \mathrm{~Hz}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}, J$ $=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 172.9-172.3,168.8-168.3,139.3-139.1,136.7-136.5$, 133.8-133.4, 132.0-131.7, 131.7-131.6, 128.7-128-4, 127.5-127.2, 126.6-126.4, 123.5-123.5, 115.9-115.8, 61.4-59.2, 49.2-46.1, 26.2-25.7, 9.3-9.2
I.R. (neat, $\mathbf{c m}^{-1}$) $3198,3131,3055,2973,2935,1684,1628,1491,1449,1421,1382,1331,1315$, 1244,
$1201,1129,1082,1023,964,921,892,827$
HRMS $\mathbf{m} / \mathbf{z}[(\mathbf{M}+\mathbf{H})+]$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2} 373.0552$, found 373.0554

7,9-Dibromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (19)

To a solution of 2-amino-5-bromobenzophenone $2(1.014 \mathrm{mmol}, 200 \mathrm{mg}$) in dichloromethane (10 mL) was added N -bromosuccinimide ($1.014 \mathrm{mmol}, 189 \mathrm{mg}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour at this temperature and for 2 hours at room temperature. The organic layer was washed with water (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was used in the next step without purification. Then, according to procedure (a), 120 mg of the desired compound was obtained ($0.304 \mathrm{mg}, 30 \%$ over 2 steps $)$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=9.98(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.41(\mathrm{~m}, 5 \mathrm{H})$, $7.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=169.3,167.5,138.1,137.0,136.6,130.6,129.1,128.4$, $117.8,115.5,56.7,26.3$
I.R. (neat, cm $^{-1}$) $3367,3204,3073,1688,1607,1579,1461,1446,1379,1317,1231,1175,1151$, 1011, 858, 736

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O} 329.9238$ found 329.9233

5-(2-Iodophenyl)-1-methyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (15)

To a solution of 5-phenyl-1-methyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (30 mg, 0.12 $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.2 \mathrm{~mL})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(2.7 \mathrm{mg}, 0.012 \mathrm{mmol})$ and N -iodosuccinimide ($54 \mathrm{mg}, 0.24 \mathrm{mmol}$). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 15 minutes. The crude mixture was evaporated, diluted in ethyl acetate (10 mL), and washed with a 2 M aqueous solution of NaOH (5 mL). The residue was purified by flash chromatography (cyclohexane/ethyl acetate $1: 1$), affording $30 \mathrm{mg}(69 \%)$ of the desired compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D}_{3} \mathrm{CN}\right) \delta(\mathrm{ppm})=7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=1.5 \mathrm{~Hz}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=9.2 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{dt}, J=7.9 \mathrm{~Hz}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{C N}\right) \delta(\mathrm{ppm})=173.5,170.1,145.5,140.3,132.5,131.6,130.1,129.6$, 129.3, 124.9, 122.6 (C-9), 118.3 (C-9a), 96.8 (C-2'), 57.7 (C-3), 35.1 (1- $\left.\mathrm{CH}_{3}\right)$
I.R. (neat, $\mathbf{c m}^{-1}$) $3057,2988,2850,1676,1611,1573,1489,1449,1361,1324,1280,1201,1167$, $1128,1076,1046,1014,984,939,915$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{IN}_{2} \mathrm{O} 377.0151$ found 377.0145

5-(p-Tolyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (20)

According to procedure (a): From 2-amino-4'-methylbenzophenone ($0.946 \mathrm{mmol}, 200 \mathrm{mg}$), 124 mg of the desired product was obtained ($0.870 \mathrm{mmol}, 92 \%$ over 2 steps)
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.52(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=8.4 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.01$ (m, 2H), 2.35 (s, 3H)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=172.1,171.5,141.1,139.1,136.2,132.1,131.7,130.0$, $129.0,127.0,123.4,121.4,56.2,21.5$
I.R. (neat, $\mathbf{c m}^{-1}$) $3182,3104,3059,2973,2923,2843,1675,1603,1577,1484,1442,1428,1322$, 1299, 1181, 1020, 1006, 924

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} 251.1184$ found 251.1172

7-Chloro-5-(2-chlorophenyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (16)
According to procedure (a): From 2-amino-2',5-dichlorobenzophenone ($1.87 \mathrm{mmol}, 500 \mathrm{mg}$), 220 mg of the desired product was obtained ($0.729 \mathrm{mmol}, 39 \%$ over 2 steps $)$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.79(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H})$
I.R. (neat, $\mathbf{c m}^{-1}$) 3210, 3123, 3072, 2928, 2851, 1688, 1616, 1591, 1569, 1482, 1434, 1387, 1325, 1230, 1195, 1059, 951

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} 305.0248$ found 305.0240

7-Bromo-5-(p-tolyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (21)

To a solution of 2-amino-4'-methylbenzophenone ($0.946 \mathrm{mmol}, 200 \mathrm{mg}$) in dichloromethane (10 mL) was added N -bromosuccinimide ($0.946 \mathrm{mmol}, 168 \mathrm{mg}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour at this temperature and 2 hours at room temperature. The organic layer was washed with water (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was used in the next step without purification. Then, according to procedure (a), 209 mg of the desired product was obtained ($0.633 \mathrm{mmol}, 67 \%$)
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 10.63(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.7 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.18-4.04 (s, 2H), $2.36(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} \mathbf{~ p p m}: 172.3,169.8,141.1,138.0,136.0,134.7,129.7,129.2$, 128.9, 123.1, 116.2, 56.5, 21.2

IR (neat, cm $^{-1}$) 3209, 3117, 3049, 2922, 2853, 1682, 1604, 1567, 1478, 1381, 1346, 1320, 1230, $1182,1021,1011,945$

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O} 329.0290$ found 329.0282

7-Chloro-5-(2-chlorophenyl)-1-methyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (17)

To a suspension of $\mathrm{NaH}(17 \mathrm{mg}, 0.708 \mathrm{mmol})$ in $\mathrm{THF}(4 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C} 7$-chloro-5-(2-chlorophenyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (100 mg, 0.329 mmol). After 30
minutes of stirring at room temperature, $\operatorname{MeI}(20 \mu \mathrm{~L}, 0.329 \mathrm{mmol})$ was added and the mixture was stirred for an additional hour at room temperature. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the mixture was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The residue was concentrated under vacuum and purified by flash chromatography (cyclohexane/ethyl acetate $5: 1$ to $1: 1$), affording $60 \mathrm{mg}(57 \%)$ of the desired compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 10.63(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.7 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.18-4.04 (s, 2H), $2.36(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} \mathbf{~ p p m}: 169.2,168.6,141.7,137.7,132.9,131.4,131.1,131.0$, $130.9,129.5,127.9,127.1,122.7,56.7,34.8$

IR (neat, cm $^{-1}$) 2986, 2923, 2854, 1678, 1484, 1345, 1323, 1196, 1129

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} 319.0405$ found 319.0398

4-Acryloyl-7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (22)

According to procedure (b): From 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $5(100 \mathrm{mg}, 0.419 \mathrm{mmol})$ and acroyl chloride ($44 \mu \mathrm{~L}, 0.545 \mathrm{mmol}$), 78 mg of the desired product was obtained $(0.210 \mathrm{mmol}, 50 \%)$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=2$ rotamers $10.11(\mathrm{~s}, 1 \mathrm{H}), 10.07(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=$
$2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=16.6 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 2 \mathrm{H})$, 7.20-7.35 (m, 5H), 6.94-7.01 (m, 5H), 6.68-6.77 (m, 2H), 6.62 (s, 1H), 6.14-6.26 (m, 2H), 5.71-

$5.83(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=170.4,166.6,166.6,166.0,138.4,137.5,135.5,134.7$, 134.2, 133.1, 132.7, 132.1, 130.8, 130.6, 130.4, 129.9, 129.0, 128.4, 128.2, 127.9, 127.0, 126.8, 126.6, 123.7, 122.9, 117.5, 117.4, 63.4, 48.7, 46.2,
I.R. (neat, $\mathbf{c m}^{-1}$) 3211, 3129, 2989, 1662, 1367, 791, 699
HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 371.0395, found 371.0405
\section*{7-Bromo-4-butyryl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one as mixture 1:1 of 2 conformers (23)}

According to procedure (b): From 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $5(200 \mathrm{mg}, 0.633 \mathrm{mmol})$ and butyryl chloride ($66 \mu \mathrm{~L}, 0.633 \mathrm{mmol}$), 192 mg of the desired product was obtained ($0.495 \mathrm{mmol}, 78 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.11(\mathrm{~s}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dt}, J=9.7 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.05-6.92(\mathrm{~m}$, $6 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=172.1,171.4,168.7,168.3,139.3,139.2,136.7$,

$$
\begin{aligned}
& 136.5,133.8,133.4,132.0,131.8,131.7,131.6,128.6,128.4,127.5,127.2,126.6,126.3,123.6, \\
& 123.4,115.9,115.8,61.5,59.1,49.3,46.0,34.7,34.0,18.14,18.05,13.7,13.6
\end{aligned}
$$

I.R. (neat, $\mathbf{c m}^{-1}$) $3213,3134,3000,2966,2875,1662,1617,1492,1438,1401,1339,1321,1302$, $1232,1213,1193,1157,1140,1031,962,835$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{2} 387.0708$ found 387.0724

7-Bromo-4-isobutyryl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one as
mixture 5:6 of 2 conformers (24)
According to procedure (b): From 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $5(200 \mathrm{mg}, 0.633 \mathrm{mmol})$ and isobutyryl chloride ($66 \mu \mathrm{~L}, 0.633$ $\mathrm{mmol}), 205 \mathrm{mg}$ of the desired product was obtained ($0.532 \mathrm{mmol}, 84 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.13(\mathrm{~s}, 1 \mathrm{H}), 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dt}, J=1.9 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.05-6.89(\mathrm{~m}$, $6 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.06-2.97(m, 1H), 2.94-2.84(m, 1H), $1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.94(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=176.7,170.4,138.6,134.7,134.6,132.2,130.7,129.3\right.$, $129.1,128.2,127.7,126.9,122.7,117.7,59.5,48.6,31.1,19.9,19.1$
I.R. (neat, $\mathbf{c m}^{-1}$) 3218, 3137, 2972, 2933, 2876, 1676, 1489, 1410, 1222, 1203, 1160, 1087, 908

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{2} 387,0708$ found 387.0692

7-Bromo-4-(cyclopropanecarbonyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one as mixture 5:6 of 2 conformers (25)

According to procedure (b): From 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $5(200 \mathrm{mg}, 0.633 \mathrm{mmol})$ and cyclopropanecarbonyl chloride ($57 \mu \mathrm{~L}$, $0.633 \mathrm{mmol}), 202 \mathrm{mg}$ of the desired product was obtained ($0.526 \mathrm{mmol}, 83 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.13(\mathrm{~s}, 1 \mathrm{H}), 10.07(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.19$ $(\mathrm{m}, 6 \mathrm{H}), 7.07-6.92(\mathrm{~m}, 6 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 0.85-0.63(\mathrm{~m}, 8 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=172.8,171.9,168.6,139.4,139.3,136.7,136.4$, $133.8,133.4,132.0,131.9,131.7,131.3,128.6,128.4,127.4,127.2,126.7,126.4,123.6,123.4$, $115.9,115.8,61.6,59.5,49.1,46.4,11.2,8.3,8.02,7.7,7.4$
I.R. (neat, $\mathbf{c m}^{-1}$) $3216,3126,3084,3101,3059,3030,2939,2918,1677,1609,11583,1492,1448$, $1425,1381,1298,1245,1217,1191,1171,1084,1058,1033,887$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2} 385.0552$ found 385.0538

Procedure (c): 7-Bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-
one (26)

Procedure (c): To a solution of 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $5(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ in methanol $(3 \mathrm{~mL}, 0.01 \mathrm{M})$ was added $\mathrm{NaBH}_{3} \mathrm{CN}(30 \mathrm{mg}, 0.473$ $\mathrm{mmol})$ and acetic acid $(88 \mu \mathrm{~L}, 1.58 \mathrm{mmol})$. The solution was stirred at room temperature for 4 hours and then propionaldehyde $(21 \mu \mathrm{~L}, 0.378 \mathrm{mmol})$ was added and the solution was stirred at
room temperature until complete consumption of starting materials. The crude mixture was evaporated, diluted in ethyl acetate $(10 \mathrm{~mL})$ and washed with a saturated solution of NaHCO_{3} (3 mL). The residue was concentrated under vacuum and purified by flash chromatography (cyclohexane/ethyl acetate $5: 1$ to $1: 1$), affording $103 \mathrm{mg}(91 \%)$ of the desired compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.00(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 6.95$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.58$ (m, 2H), 1.66-1.53 (m, 2H), $0.9(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.9,140.5,136.1,133.8,133.0,131.3,128.6,128.5$, $127.8,122.0,117.1,68.5,55.3,52.8,36.7,20.8,11.5$
I.R. (neat, $\mathbf{c m}^{-1}$) 3202, 3084, 2960, 2932, 2872, 1662, 1486, 1400, 1375, 732, 699

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O} 359.0759$ found 359.0756

Procedure (d): 7-Bromo-5-phenyl-4-propyl-1-(pyridin-2-yl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (28)

To a solution of 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dioxane ($500 \mu \mathrm{~L}, 0.2 \mathrm{M}$) was added $\mathrm{CuI}(2.6 \mathrm{mg}, 0.014 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (38 $\mathrm{mg}, 0.28 \mathrm{mmol}, \mathrm{N}, \mathrm{N}$ '-dimethylethylenediamine ($3.4 \mu \mathrm{~L}, 0.028 \mathrm{mmol}$) and 2-bromopyridine (13.3 $\mu \mathrm{L}, 0.14 \mathrm{mmol})$. The mixture was heated at $110^{\circ} \mathrm{C}$ in a sealed tube overnight than purified by flash chromatography (cyclohexane/ethyl acetate $10: 1$ to $3: 1$), affording $30 \mathrm{mg}(50 \%)$ of the desired compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=8.44(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dt}, J=7.8 \mathrm{~Hz}, J=1.8$
$\mathrm{Hz}, 1 \mathrm{H}), 7.53-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$
$(\mathrm{s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.41(\mathrm{~m}, 2 \mathrm{H})$, $0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=167.6,153.1,149.0,141.3,140.1,137.8,137.5,133.1$,
$131.4,128.6,127.9,126.1,122.1,121.8,120.1,67.8,55.9,53.5,20.8,11.6$
I.R. (neat, $\mathbf{c m}^{-1}$) $3060,3028,2959,2927,2871,2851,1681,1586,1571,1477,1465,1432,1338$, $1303,1284,1235,1174,1113,1062,979,862$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OBr} 436.1024$ found 436.1022

7-Bromo-5-phenyl-4-propyl-1-(4-(trifluoromethyl)phenyl)-1,3,4,5-tetrahydro-2H-

 benzo[e][1,4]diazepin-2-one (29)According to procedure (d): From 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($50 \mathrm{mg}, 0.139 \mathrm{mmol}$) and 2-bromobenzotrifluoride ($20 \mu \mathrm{~L}, 0.139$ $\mathrm{mmol}), 29 \mathrm{mg}$ of the desired product was obtained ($0.057 \mathrm{mmol}, 41 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=7.52-7.17(\mathrm{~m}, 10 \mathrm{H}), 6.91(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.5$
$\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.29-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$
I.R. (neat, $\mathbf{c m}^{-1}$) 3063, 3026, 2961, 2933, 2873, 2819, 1682, 1613, 1596, 1490, 1477, 1449, 1326, $1278,1267,1166,1125,1069,1029,907$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OBr} \mathrm{F}_{3} 503.0946$ found 503.0932

7-Bromo-1-(3,5-dimethylphenyl)-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (30)

According to procedure (d): From 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($50 \mathrm{mg}, 0.139 \mathrm{mmol}$) and 1-bromo-3,5-dimethylbenzene ($19 \mu \mathrm{~L}$, 0.139 mmol), 34 mg of the desired product was obtained ($0.072 \mathrm{mmol}, 52 \%$).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.53-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.52(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=167.6,142.5,140.9,140.2,138.9,136.6,133.2,131.5$, $129.2,128.7,128.3,127.8,125.8,125.3,119.3,68.4,67.2,57.0,21.3,20.9,11.7$
I.R. (neat, $\mathbf{c m}^{-1}$) 3060, 3025, 2960, 2931, 2871, 2824, 1678, 1610, 1596, 1476, 1452, 1403, 1317, 1082, 986, 845

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OBr} 463.1385$ found 463.1380

1-(4-Benzoylphenyl)-7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-

 benzo[e][1,4]diazepin-2-one (31)According to procedure (d): From 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($50 \mathrm{mg}, 0.139 \mathrm{mmol}$) and 4-bromobenzophenone ($36 \mathrm{mg}, 0.139$ $\mathrm{mmol}), 28 \mathrm{mg}$ of the desired product was obtained ($0.051 \mathrm{mmol}, 37 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.75-7.65(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.46$
$(\mathrm{m}, 5 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.49(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.89-$ 0.80 (m, 3H)
I.R. (neat, $\mathbf{c m}^{-1}$) 3059, 2960, 2930, 2876, 1685, 1659, 1599, 1476, 1447, 1306, 1277, 1175, 1079, 1028, 938

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br} 539.1334$ found 539.1326

1-Benzyl-7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (HA253)

According to procedure (e): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(200 \mathrm{mg}, 0.636 \mathrm{mmol})$ and benzyl bromide $(76 \mu \mathrm{~L}, 0.636 \mathrm{mmol}), 200 \mathrm{mg}$ of the desired product was obtained ($0.496 \mathrm{mmol}, 78 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.63(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 6 \mathrm{H})$, $7.27(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$ ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=169.6,168.9,141.2,137.7,136.3,134.4,132.8,132.0$, $131.0,129.6,128.8,128.6,128.5,127.6,127.5,124.2,117.6,56.6,49.7$
I.R. (neat, $\mathbf{c m}^{-1}$) $3062,3029,2962,2925,2853,1672,1606,1478,1402,1320,1262,1182,1089$, 1067, 1028, 908

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O} 405.0603$ found 405.0583

1-Benzyl-7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (32)

According to procedure (c): From 1-benzyl-7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(30 \mathrm{mg}, 0.074 \mathrm{mmol})$ and propionaldehyde ($5 \mu \mathrm{~L}, 0.088 \mathrm{mmol}$), 27 mg of the desired product was obtained $(0.059 \mathrm{mmol}, 81 \%)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.33-7.01(\mathrm{~m}, 12 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53-2.33 (m, 2H), 1.53-1.22 (m, 2H), $0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=168.1,141.5,140.2,137.6,137.5,133.1,131.5,128.7$, $128.6,128.4,127.9,127.8,123.6,119.7,67.6,56.0,52.7,50.3,20.9,11.7$
I.R. (neat, $\mathbf{c m}^{-1}$) 3062, 3028, 2961, 2931, 2873, 2826, 1666, 1479, 1454, 1412, 1376, 1317, 1080, 956, 865

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OBr} 449.1228$ found 449.1228

7-Bromo-1-methyl-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (27)

To a suspension of $\mathrm{NaH}(8 \mathrm{mg}, 0.333 \mathrm{mmol})$ in THF (2 mL) was added at $0^{\circ} \mathrm{C} 7$-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($60 \mathrm{mg}, 0.167 \mathrm{mmol}$). After 30 minutes of stirring at room temperature, $\operatorname{MeI}(10 \mu \mathrm{~L}, 0.250 \mathrm{mmol})$ was added and the mixture was stirred for an additional hour at room temperature. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the mixture was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The residue was concentrated under vacuum and purified by flash chromatography (cyclohexane/ethyl acetate $5: 1$ to $1: 1$), affording 30 mg (48\%) of the desired compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=7.58(\mathrm{dd}, J=2.3 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}$, $6 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H})$, 2.51-2.42 (m, 2H), 1.51-1.43 (m, 2H), $0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=168.7,141.9,140.5,135.9,133.1,131.5,128.3,127.5$, $123.2,120.1,119.3,67.6,56.5,53.3,34.0,28.4,20.6,11.4$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O} 373.0916$ found 373.0914

Procedure (e): 1-Allyl-7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (HA467)

To a solution of 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one 4 ($200 \mathrm{mg}, 0.636$ mmol), in THF ($6.4 \mathrm{~mL}, 1 \mathrm{M}$) was added a 1 M solution of NaHMDS ($636 \mu \mathrm{~L}, 0.636 \mathrm{mmol}$). The mixture was stirred for 1 hour at $0^{\circ} \mathrm{C}$, then allyl iodide ($58 \mu \mathrm{~L}, 0.636 \mathrm{mmol}$) was added and the mixture was stirred for 6 hours at room temperature. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the mixture was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The residue was concentrated under vacuum and purified by flash chromatography (cyclohexane/ethyl acetate $5: 1$ to $1: 1$), affording $180 \mathrm{mg}(80 \%)$ of the desired compound.
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.49-7.13(\mathrm{~m}, 8 \mathrm{H}), 5.72-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.14-4.93(\mathrm{~m}, 2 \mathrm{H})$, $4.69(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=16.1 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=16.0 \mathrm{~Hz}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=169.0,168.5,141.9,138.1,134.3,132.7,132.7,131.1$, $130.7,129.4,128.4,123.6,117.4,117.2,56.9,49.7$
I.R. (neat, $\mathbf{c m}^{-1}$) $3347,3063,3025,2986,2924,1672,1645,1606,1587,1575,1478,1423,1400$, $1356,1319,1264,1222,1187,1073,1013,986,938,916$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O} 355.0446$ found 355.0441

1-Allyl-7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (33)
According to procedure (c): From 1-allyl-7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(30 \mathrm{mg}, 0.084 \mathrm{mmol})$ and propionaldehyde ($5 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$), 28 mg of the desired product was obtained ($0.058 \mathrm{mmol}, 70 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=7.33-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H})$,
5.72-5.57(m, 1H), 5.08-5.1 (m, 2H), 4.50(s, 1H), 4.25 (dd, $J=15.4 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}$, $J=15.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=167.5,141.7,140.7,136.7,133.4,133.3,131.5,128.6$, $128.1,127.8,123.4,119.4,117.8,68.1,56.6,53.5,49.8,20.9,11.7$
I.R. (neat, $\mathbf{c m}^{-1}$) $3062,3025,2960,2931,2872,2823,1668,1480,1452,1411,1372,1305,1239$, 1227, 1177, 1127, 1089, 1068, 926

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OBr} 399.1072$ found 399.1057

Procedure (f) 7-(4-Methoxyphenyl)-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (34)

To a solution of $26(0.028 \mathrm{mmol}, 10 \mathrm{mg})$ in a mixture DME- $\mathrm{H}_{2} \mathrm{O}(250 \mu \mathrm{~L}-25 \mu \mathrm{~L})$ were added 4methoxyphenylboronic acid ($0.030 \mathrm{mmol}, 4.6 \mathrm{mg}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.002 \mathrm{mmol}, 2.6 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$
($0.055 \mathrm{mmol}, 7.7 \mathrm{mg}$). The mixture was stirred at $110^{\circ} \mathrm{C}$ under microwave irradiation for 1 hour. The mixture was washed with water (2 mL) and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was concentrated under vacuum, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was purified by flash chromatography (cyclohexane-diethyl etherethyl acetate, 6-5.5-0.5), furnishing the desired compound ($10 \mathrm{mg}, 93 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.40(\mathrm{~m}, 2 \mathrm{H})$, $1.63-42(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR (400 MHz, (CDCl ${ }_{3}$) $\boldsymbol{\delta} \mathbf{~ p p m : ~ 1 7 4 . 5 , ~ 1 5 9 . 2 , ~ 1 4 1 . 5 , ~ 1 3 6 . 7 , ~ 1 3 5 . 8 , ~ 1 3 5 . 5 , ~ 1 3 2 . 5 , ~ 1 3 2 . 2 , ~}$ 131.1, 128.8, 128.6, 128.2, 127.8, 127.6, 126.6, 121.1, 114.3, 69.0, 55.5, 55.4, 53.2, 21.0, 11.7
I.R. (neat, cm $^{-1}$) $3186,3062,3034,2960,2935,2818,1670,1606,1489,1465,1378,1244$, 1178, 1064, 1026, 817

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} 387,2073$, found 387.2082

7-(4-Hydroxyphenyl)-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (35)

According to procedure (f): From 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($20 \mathrm{mg}, 0.055 \mathrm{mmol}$) and 4-hydroxyphenylboronic acid (8.5 mg , $0.061 \mathrm{mmol}), 4 \mathrm{mg}$ of the desired product was obtained ($0.011 \mathrm{mmol}, 20 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.49(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40-7.09(\mathrm{~m}, 9 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$
I.R. (neat, $\left.\mathbf{c m}^{-1}\right) 3585,3183,3064,2963,1878,1651,1609,1491,1436,1393,1267,1222$,

1177, 1078, 1065, 844
HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} 373.1916$, found 373.1903

5-Phenyl-4-propyl-7-(pyridin-4-yl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (36)

According to procedure (f): From 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($20 \mathrm{mg}, 0.055 \mathrm{mmol}$) and pyridineboronic acid ($12.5 \mathrm{mg}, 0.061$ $\mathrm{mmol}), 11 \mathrm{mg}$ of the desired product was obtained ($0.031 \mathrm{mmol}, 56 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 8.63(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.4 \mathrm{~Hz}$, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J$ $=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74 .269(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3$ Hz, 3H)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 173.9,149.2,148.2,140.9,138.2,133.3,132.3,132.1$, $131.6,130.3,128.8,128.7,128.6,128.0,127.1,121.5,121.2,69.1,55.5,53.0,21.0,11.7$
I.R. (neat, $\mathbf{c m}^{-1}$) 3209, 3059, 2961, 1669, 1596, 1514, 1485, 1359, 1260, 1094, 1029, 908, 814

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O} 358.1919$, found 358.1919

5-Phenyl-4-propyl-7-(thiophen-3-yl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (37)
According to procedure (f): From 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($20 \mathrm{mg}, 0.055 \mathrm{mmol}$) and 3-thienylboronic acid ($0.061 \mathrm{mmol}, 7.8$ $\mathrm{mg}), 14 \mathrm{mg}$ of the desired product was obtained ($0.038 \mathrm{mmol}, 70 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=1.9 \mathrm{~Hz}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, \mathrm{J}=2.9 \mathrm{~Hz}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.07$
$(\mathrm{s}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.87$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 172.0,142.3,141.1,137.2,131.0,130.8,129.1,128.8$, $128.5,127.7,126.3,121.3,120.6,68.4,55.9,54.2,20.7,11.9$
I.R. (neat, $\mathbf{c m}^{-1}$) $3203,3054,2961,2926,2873,2850,1663,1586,1493,1421,1264$

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OS} 363.1531$, found 363.1534

7-(3,5-Bis(trifluoromethyl)phenyl)-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (38)

According to procedure (f): From 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($20 \mathrm{mg}, 0.055 \mathrm{mmol}$) and 3,5-bis(trifluoromethyl)phenylboronic acid $(0.061 \mathrm{mmol}, 16 \mathrm{mg})(0.061 \mathrm{mmol}, 7.8 \mathrm{mg}), 15 \mathrm{mg}$ of the desired product was obtained $(0.030$ mmol, 55\%).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta} \mathbf{~ p p m}: 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, J=2.06$ $\mathrm{Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.17(\mathrm{~m}, 6 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.2(\mathrm{~m}, 2 \mathrm{H})$, $2.62-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
I.R. (neat, $\mathbf{c m}^{-1}$) $3207,3083,2962,2933,2875,1666,1610,1379,1276,1179,1131,1070,1002$, 893, 844

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O} 493.1715$, found 493.1697

7,9-Dibromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (39)

According to procedure (c): From 7,9-dibromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one ($100 \mathrm{mg}, 0.255 \mathrm{mmol}$) and propionaldehyde ($17 \mu \mathrm{~L}, 0.306 \mathrm{mmol}$), 80 mg of the desired product was obtained ($0.183 \mathrm{mmol}, 72 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.65(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}$, $4 \mathrm{H}), 6.97(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-$ $2.35(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=168.4,141.2,137.3,137.2,134.5,132.8,128.9,128.1$, $118.0,117.9,68.1,56.6,53.2,20.5,11.9$
I.R. (neat, $\mathbf{c m}^{-1}$) $3378,3188,3066,3028,2960,2932,2872,2825,1674,1581,1556,1462,1351$, $1268,1239,1207,1149,1081,1063,1029,939,863$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O} 436.9864$ found 436.9855 .

Procedure (g) + procedure (a) 7-Bromo-8-methoxy-5-phenyl-1,3-dihydro-2H-

benzo[el[1,4]diazepin-2-one (HA244)

Procedure (g) To a 1 M solution of $\mathrm{BCl}_{3}(2.7 \mathrm{~mL}, 2.72 \mathrm{mmol})$ in 1,2-dichlorethane ($24 \mathrm{~mL}, 0.1$ M) were added at $0{ }^{\circ} \mathrm{C}$ 4-bromo-3-methoxyaniline ($500 \mathrm{mg}, 2.47 \mathrm{mmol}$), benzonitrile ($383 \mu \mathrm{~L}$, $3.70 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(362 \mathrm{mg}, 2.72 \mathrm{mmol})$. The reaction was stirred at room temperature for 30 minutes and then refluxed for 16 hours. The reaction was cooled to $0^{\circ} \mathrm{C}$ and a 1 M solution of HCl $(3 \mathrm{~mL})$ was added. The mixture was stirred for 2 hours at $80^{\circ} \mathrm{C}$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 30 \mathrm{~mL})$ after the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was purified by flash chromatography (cyclohexane-ethyl acetate, 10-1 to 1-1), affording the desired compound ($250 \mathrm{mg}, 33 \%$). Then,
according to procedure (a), 160 mg of the desired compound was obtained ($0.442 \mathrm{mg}, 54 \%$ over 2 steps).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.58(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 6.92$ (s, 1H), 3.91 (s, 3H), 3.48-3.22 (m, 2H)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=171.7,170.2,158.2,139.9,138.8,135.5,130.7,129.7\right.$, $128.4,120.9,106.5,103.9,56.7,56.6$

7-Bromo-8-methoxy-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (40)

According to procedure (c): From 7-bromo-8-methoxy-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one ($60 \mathrm{mg}, 0.174 \mathrm{mmol}$) and propionaldehyde ($17 \mu \mathrm{~L}, 0.306 \mathrm{mmol}$), 30 mg of the desired product was obtained ($0.076 \mathrm{mmol}, 44 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathbf{2 S O}\right) \delta(\mathrm{ppm})=9.99(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.64-$ $1.42(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR (100 MHz, $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=174.2,155.7,141.1,135.4,127.8,124.7,106.7,104.4$, $68.0,56.5,55.5,53.0,20.9,11.7$
I.R. (neat, $\mathbf{c m}^{-1}$) 3205, 3083, 2961, 2932, 2873, 1667, 1603, 1575, 1493, 1451, 1364, 1246, 1203, 1053, 850

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br} 389.0865$ found 389.0866

7-Iodo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (41)

To a solution of 2-aminobenzophenone ($500 \mathrm{mg}, 2.53 \mathrm{mmol}$) in EtOH (25 mL) were added $\mathrm{I}_{2}(966$ $\mathrm{mg}, 7.59 \mathrm{mmol})$ and $\mathrm{AgSO}_{4}(3.16 \mathrm{~g}, 9.36 \mathrm{mmol})$. The mixture was stirred overnight at room temperature. Flash chromatography (cyclohexane-ethyl acetate, 9-1 to 7-1) afforded 289 mg of the monoiodinated compound ($0.885 \mathrm{mmol}, 35 \%$) along with some diiodinated compound (ortho and para positions).

Then procedure (a): From (2-amino-5-iodophenyl)(phenyl)methanone ($289 \mathrm{mg}, 0.894 \mathrm{mmol}$) and bromoacetyl bromide ($93 \mu \mathrm{~L}, 1.072 \mathrm{mmol}$), 215 mg of the desired compound was obtained ($0.596 \mathrm{mmol}, 67 \%$).

Then procedure (c): From 7-iodo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (0.298 $\mathrm{mmol})$ and propylaldehyde ($20 \mu \mathrm{~L}, 0.357 \mathrm{mmol}), 65 \mathrm{mg}$ of the desired product was obtained $(0.160$ mmol, 54\%).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.01(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ $(\mathrm{s}, 1 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.84$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=174.8,140.8,139.9,137.4,136.9,133.2,128.7,128.4$, $127.8,122.5,87.7,68.5,55.4,53.1,21.9,20.9,11.7$
I.R. (neat, $\mathbf{c m}^{-1}$) 3213, 3099, 2957, 2934, 2869, 1667, 1475, 1450, 1375, 1329, 1255, 1116, 1064, 1030, 931, 845

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OI} 407.0620$ found 407.0615

7-Chloro-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (42)

According to procedure (c): From 7-chloro-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one ($171 \mathrm{mg}, 0.627 \mathrm{mmol}$) and propionaldehyde ($43 \mu \mathrm{~L}, 0.752 \mathrm{mmol}$), 197 mg of the desired product was obtained ($0.622 \mathrm{mmol}, 99 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.08(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ $(\mathrm{s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.56(\mathrm{~m}, 2 \mathrm{H})$, $0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$,
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=174.2,140.6,135.8,132.8,130.9,129.4,128.6,128.4$,
127.7, 121.8, 68.5, 55.3, 52.8, 20.8, 11.5
I.R. (neat, cm $^{-1}$) 3067, 2926, 1652, 1491, 1402,700

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O} 315.1264$ found 315.1267

7-Azido-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (43)

To a solution of 7-bromo-5-phenyl-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $(50 \mathrm{mg}, 0.139 \mathrm{mmol})$ in a mixture of dioxane $-\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~mL}, 0.4 \mathrm{~mL})$ were added $\mathrm{NaN}_{3}(18 \mathrm{mg}$, 0.278 mmol), CuI ($5 \mathrm{mg}, 0.027 \mathrm{mmol}$), sodium ascorbate ($3 \mathrm{mg}, 0.014 \mathrm{mmol}$) and N, N'dimethylethylenediamine ($7 \mu \mathrm{~L}, 0.041 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours under microwave irradiation. Flash chromatography (cyclohexane-ethyl acetate, 5-1 to 1-1) afforded 25 mg of the desired compound ($0.077 \mathrm{mmol}, 56 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.97(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06(\mathrm{dd}, J=2.5 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.40-3.22(\mathrm{~m}$, $1 \mathrm{H}), 3.14(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.4,140.6,136.1,134.1,133.0,128.6,127.8,121.9$, $121.6,118.9,68.6,55.5,52.7,20.7,11.4$
I.R. (neat, $\mathbf{c m}^{\mathbf{- 1}}$) 3203, 3062, 2961, 2873, 2112, 1664, 1496, 1451, 1304, 1080

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O} 322.1668$ found 322.1670

7-Bromo-4-propyl-5-(pyridin-4-yl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (44)
According to procedure (g): From 4-bromoaniline ($500 \mathrm{mg}, 2.9 \mathrm{mmol}$) and 4-cyanopyridine (454 $\mathrm{mg}, 4.36 \mathrm{mmol}), 70 \mathrm{mg}$ of the desired product was obtained ($0.261 \mathrm{mmol}, 9 \%$).

Then procedure (a): From (2-amino-5-bromophenyl)(pyridin-3-yl)methanone (70 mg, 0.254 mmol) and bromoacetyl bromide ($26 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$), 8 mg of the desired product was obtained ($0.025 \mathrm{mmol}, 8 \%$).

Then procedure (c): From 7-bromo-5-(pyridin-4-yl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one ($8 \mathrm{mg}, 0.025 \mathrm{mmol}$) and propionaldehyde $(2 \mu \mathrm{~L}, 0.030 \mathrm{mmol}), 6 \mathrm{mg}$ of the desired product was obtained ($0.016 \mathrm{mmol}, 66 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D}_{3} \mathrm{CN}\right) \delta(\mathrm{ppm})=8.46(\mathrm{~d}, J=6.02 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=2.3$
$\mathrm{Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,

$$
\begin{aligned}
& 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.46 \\
& (\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \\
& { }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=169.9,144.0,136.4,134.0,133.3,130.9,124.8,124.4, \\
& 118.9,68.1,58.2,54.8,21.0,11.8
\end{aligned}
$$

I.R. (neat, $\mathbf{c m}^{-1}$) $3075,2962,2932,1678,1596,1485,1391,1259,1185,1085,1017,908$

HRMS $\boldsymbol{m} / \boldsymbol{z}\left[(\mathbf{M}+\mathbf{H})^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O} 360.0711$ found 360.0708

7-Bromo-4-propyl-5-(p-tolyl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (45)

According to procedure (c): From 7-bromo-5-(p-tolyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one ($50 \mathrm{mg}, 0.152 \mathrm{mmol}$) and propionaldehyde ($9 \mu \mathrm{~L}, 0.182 \mathrm{mmol}$), 32 mg of the desired product was obtained ($0.085 \mathrm{mmol}, 56 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.06(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.01 (m, 4H), $4.92(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.39$ (m, 2H), 0.91-0.75 (m, 3H)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=171.2,138.1,137.6,133.3,133.0,130.8,129.1,128.0$, $122.4,115.4,67.2,55.3,53.2,20.7,20.1,11.5$
I.R. (neat, cm $^{-1}$) 3204, 3084, 2961, 2930, 2872, 1662, 1487, 1375, 1397, 1071, 905

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O} 373.0916$ found 373.0902

7-Bromo-5-(2-fluorophenyl)-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one
(46)

According to procedure (a): From 2-amino-5-bromo-2'-fluorobenzophenone (100 mg, 0.429 $\mathrm{mmol}), 68 \mathrm{mg}$ of the desired product was obtained ($0.205 \mathrm{mmol}, 48 \%$).

Then procedure (c): From 7-bromo-5-(2-fluorophenyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one ($68 \mathrm{mg}, 0.205 \mathrm{mmol}$) and propionaldehyde ($12 \mu \mathrm{~L}, 0.245 \mathrm{mmol}$), 48 mg of the desired product was obtained ($0.265 \mathrm{mmol}, 62 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.19(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46-7.39 (m, 2H), 7.30-7.18 (m, 2H), $7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}$, $1 \mathrm{H}), 3.45-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
I.R. (neat, $\mathbf{c m}^{-1}$) 3215, 3089, 2960, 2872, 1665, 1580, 1481, 1373, 1229, 1097

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrFN}_{2} \mathrm{O} 377.0665$ found 377.0655

7-Bromo-2'-iodo-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-one (HA211)

To a solution of 7-bromo-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-one ($30 \mathrm{mg}, 0.095$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(950 \mu \mathrm{~L})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.0095 \mathrm{mmol})$ and N -iodosuccinimide $(43 \mathrm{mg}, 0.19 \mathrm{mmol})$. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 15 minutes. The crude mixture was evaporated, diluted in ethyl acetate (10 mL), and washed with a 2 M aqueous solution of NaOH (5 mL). The residue was purified by flash chromatography (cyclohexane/ethyl acetate $1: 1$), affording the desired product ($17 \mathrm{mg}, 41 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right): \delta=10.82(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.7 \mathrm{~Hz}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52\left(\mathrm{dt}^{\prime}, J=7.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d appt, $J=7.8 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H})$
${ }^{13} \mathbf{C - N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right): \delta=170.7,169.1,143.7,139.2,139.1,134.3,131.4,130.8$, 128.1, 123.1, 114.3, 96.9, 56.8
I.R. (neat, $\mathbf{c m}^{-1}$) $3207,3117,2927,2852,1689,1617,1479,1429,1382,1322,1291,1255,1230$, 1195, 1164, 1134, 1088, 1047, 1011, $945 \mathrm{~cm}^{-1}$

HR-MS (ESI+): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrIN}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right): 440.9099$, found: 440.9090

7-Bromo-5-(2-iodophenyl)-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (47)

According to procedure (c): From 7-bromo-5-(2-iodophenyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one ($58 \mathrm{mg}, 0.131 \mathrm{mmol}$) and propionaldehyde ($9 \mu \mathrm{~L}, 0.156 \mathrm{mmol}), 45$ mg of the desired product was obtained ($0.093 \mathrm{mmol}, 71 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.28(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=$ $1.6 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J$ $=7.3 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.37-$ $3.27(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{S O}\right) \boldsymbol{\delta}(\mathrm{ppm})=169.8,141.6,139.8,139.0,132.9,131.6,131.2$, $130.2,130.0,128.5,122.6,115.9,101.7,71.9,55.0,51.7,19.8,11.5$
I.R. (neat, $\mathbf{c m}^{-1}$) $3165,3041,2955,2926,2869,1682,1666,1597,1478,1457,1435,1379,1323$, 1262, 1171, 1115, 1067, 937

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrIN}_{2} \mathrm{O} 484.9725$ found 484.9726

7-Bromo-5-(2,4-difluorophenyl)-4-propyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (48)

Procedure (g): From 4-bromoaniline ($500 \mathrm{mg}, 2.9 \mathrm{mmol}$), 2,4-difluorobenzonitrile ($606 \mathrm{mg}, 4.36$ $\mathrm{mmol}), 35 \mathrm{mg}$ of the desired product was obtained ($0.116 \mathrm{mmol}, 4 \%$).

Then procedure (a): From (2-amino-5-bromophenyl)(2,4-difluorophenyl)methanone (35 mg , $0.116 \mathrm{mmol})$ and bromoacetyl bromide ($12 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$), 8 mg of the desired product was obtained ($0.025 \mathrm{mmol}, 21 \%$).

Then procedure (c): From 7-bromo-5-(2,4-difluorophenyl)-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one ($8 \mathrm{mg}, 0.025 \mathrm{mmol}$) and propionaldehyde ($9 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), 19 mg of the desired product was obtained ($0.010 \mathrm{mmol}, 43 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathbf{C N}\right) \delta(\mathrm{ppm})=10.19(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dt}, J=9.9 \mathrm{~Hz}, J$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=8.4 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.39(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OBrF}_{2} 395.0571$ found 395.0563

4-((1H-Indol-2-yl)methyl)-7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-

 2-one (49)According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and 1 H -indole-3-carbaldehyde ($55 \mathrm{mg}, 0.378 \mathrm{mmol}$), 70 mg of the desired product was obtained ($0.157 \mathrm{mmol}, 50 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.96(\mathrm{~s}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.10(\mathrm{~m}$, $4 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.13(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$,
I.R. (neat, cm $^{-1}$) $3450,3058,1666,1486,1456,1398,1226,736$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O} 446.0868$ found 446.0882

7-Bromo-5-phenyl-4-(pyridin-4-ylmethyl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-
 one (50)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and isonicotinaldehyde ($36 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 102 mg of the desired product was obtained ($0.248 \mathrm{mmol}, 79 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.18(\mathrm{~s}, 1 \mathrm{H}), 8.53-8.50(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.5$ $\mathrm{Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}$, 1H), 3.78 (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (d, $J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=172.0,149.7,147.4,139.4,136.6,133.7,133.0,131.7$, $128.9,128.6,128.3,123.7,122.3,117.8,68.1,56.7,52.6$,
I.R. (neat, $\mathbf{c m}^{-1}$) $3207,3069,1676,1476,1375,1069,826,794,697,493$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O} 408.0711$ found 408.0720

7-Bromo-5-phenyl-4-(pyridin-3-ylmethyl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (51)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and nicotinaldehyde ($36 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 117 mg of the desired product was obtained ($0.286 \mathrm{mmol}, 91 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.18(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=$ $4.8 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=171.9,149.9,148.5,139.6,137.0,136.6,133.7,133.6$, 133.1, 131.7, 128.9, 128.6, 128.3, 123.5, 122.3, 117.8, 68.1, 55.1, 52.2
I.R. (neat, $\mathbf{c m}^{-1}$) 3057, 2844, 1677, 1477, 1356, 1356, 1078, 788, 697

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O} 408.0711$ found 408.0707

7-Bromo-4-(naphthalen-1-ylmethyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-

2-one (52)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and 2-naphthaldehyde ($51 \mu \mathrm{~L}, 0.378 \mathrm{mmol}), 123 \mathrm{mg}$ of the desired product was obtained ($0.267 \mathrm{mmol}, 85 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.16(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathrm{ppm})=174.7,140.3,136.1,134.1,133.9,132.3,131.8,131.6$, $128.7,128.6,128.1,127.9,126.0,125.8,125.2,124.5,122.3,116.9,67.8,56.2,53.1$,
I.R. (neat, $\mathbf{c m}^{-1}$) 3105, 3061, 1658, 1487, 1378, 905, 726, 693

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O} 457.0916$ found 457.0932

7-Bromo-5-phenyl-4-(quinolin-4-ylmethyl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (53)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and quinoline-2-carbaldehyde ($60 \mathrm{mg}, 0.378 \mathrm{mmol}$), 107 mg of the desired product was obtained ($0.233 \mathrm{mmol}, 74 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.15(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}$, 2H), 7.75-7.70 (m, 2H), 7.59-7.54 (m, 1H), $7.48(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.26(\mathrm{~m}$, $5 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.6,158.8,147.5,140.0,136.8,136.0,133.9,132.2$, 131.6, 129.6, 129.0, 128.8, 128.6, 128.5, 128.0, 127.5, 127.4, 126.4, 122.4, 120.5, 117.2, 68.5, 60.3, 53.7,
I.R. (neat, $\mathbf{c m}^{-1}$) 3057, 1666, 1478, 1379, 725

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O} 458.0868$ found 458.0846

7-Bromo-5-phenyl-4-(thiophen-2-ylmethyl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (54)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one 4 ($100 \mathrm{mg}, 0.315 \mathrm{mmol}$) and thiophene-2-carbaldehyde ($35 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 112 mg of the desired product was obtained ($0.271 \mathrm{mmol}, 86 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right) \mathbf{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.14(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H})$,
$7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 3 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.3,141.7,139.9,136.3,133.8,132.7,131.6,128.8$, $128.5,128.0,126.6,126.4,125.5,122.3,117.5,67.3,52.8,52.6$
I.R. (neat, $\mathbf{c m}^{-1}$) 3237, 3044, 2929, 1671, 1477, 1374, 692

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{OS} 413.0323$ found 413.0317

7-Bromo-5-phenyl-4-(thiophen-3-ylmethyl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-
one (55)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one 4 ($100 \mathrm{mg}, 0.315 \mathrm{mmol}$) and thiophene-3-carbaldehyde ($33 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 115 mg of the desired product was obtained ($0.277 \mathrm{mmol}, 88 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.11(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H})$, $7.05(\mathrm{dd}, J=4.9 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}$, $1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.2,140.0,138.8,136.4,133.8,133.0,131.5,128.8$, $128.5,128.1,128.0,125.9,123.4,122.3,117.5,67.7,52.9,52.6$
I.R. (neat, $\mathbf{c m}^{-1}$) 3237, 3057, 2931, 1671, 1477, 1376, 777, 698

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{OS} 413.0323$ found 413.0328

7-Bromo-4-(furan-3-ylmethyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (56)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $\mathbf{4}(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and furan-3-carbaldehyde ($32 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 115 mg of the desired product was obtained ($0.289 \mathrm{mmol}, 92 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.09(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{brs}, 1 \mathrm{H}), 7.46$ $(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m})=172.6,143.3,141.1,140.0,136.3,133.8,133.2,131.5$, $128.8,128.5,128.0,122.1,121.7,117.6,110.8,67.5,52.4,48.3$,
I.R. (neat, $\mathbf{c m}^{-1}$) 3057, 1666, 1477, 1377, 1066, 821, 701

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2} 397.0552$ found 397.0551

7-Bromo-4-(furan-2-ylmethyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (57)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $\mathbf{4}(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and furan-2-carbaldehyde ($32 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 110 mg of the desired product was obtained ($0.277 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2 S O}\right) \delta(\mathrm{ppm})=10.09(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6 \mathrm{~Hz}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=3.1 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.3,151.3,142.4,139.8,136.3,133.8,132.8,131.5$, $128.7,128.5,127.9,122.3,117.4,110.2,109.3,67.6,53.0,50.6$
I.R. (neat, $\mathbf{c m}^{-1}$) 3187, 3097, 2931, 1671, 1477, 816, 725, 700

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2} 397.0552$ found 397.0545

4-Benzyl-7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (58)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and benzaldehyde ($38 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 122 mg of the desired product was obtained ($0.299 \mathrm{mmol}, 95 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.16(\mathrm{~s}, 1 \mathrm{H}), 8.53-8.50(\mathrm{~m}, 11 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.4,140.2,137.9,133.7,133.0,131.5,128.9,128.8$, 128.6, 128.4, 128.0, 127.4, 122.3, 117.4, 67.8, 57.8, 52.6
I.R. (neat, $\mathbf{c m}^{-1}$) 3031, 2928, 1669, 1475, 1378, 1066, 815, 750, 695

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O} 407.0759$ found 407.0744

7-Bromo-5-phenyl-4-(3-phenylpropyl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one

 (59)According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and hydrocinnamaldehyde ($49 \mu \mathrm{~L}, 0.378 \mathrm{mmol}$), 107 mg of the desired product was obtained ($0.245 \mathrm{mmol}, 78 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.04(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.10 (m, 11H), $7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=174.4,141.8,140.5,136.1,133.8,132.6,131.4,128.7$, $128.6,128.3,127.8,125.8,122.1,117.0,68.4,53.0,52.7,33.0,29.2$
I.R. (neat, $\mathbf{c m}^{-1}$) 3057, 2934, 1671, 1477, 1378, 719, 693

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O} 435.1072$ found 435.1061

7-Bromo-4-methyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (60)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and paraformaldehyde ($11 \mathrm{mg}, 0.378 \mathrm{mmol}$), 94 mg of the desired product was obtained ($0.283 \mathrm{mmol}, 90 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.12(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.25 (m, 5H), $7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=172.1,139.7,136.5,134.0,133.5,131.4,128.7,128.5$, $128.0,122.1,117.8,69.6,56.4,43.1$
I.R. (neat, $\mathbf{c m}^{-1}$) 3241, 3043, 2989, 1652, 1486, 1416, 1378, 1354, 1227, 749, 699, 561, 502

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O} 331.0446$ found 331.0446

7-Bromo-4-ethyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (61)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(100 \mathrm{mg}, 0.315 \mathrm{mmol})$ and acetaldehyde ($21 \mu \mathrm{~L}, 0.378 \mathrm{mmol}), 25 \mathrm{mg}$ of the desired product was obtained ($0.072 \mathrm{mmol}, 23 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2 S O}\right) \delta(\mathrm{ppm})=10.06(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.20 (m, 5H), $7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.4,140.4,136.3,133.8,133.3,131.3,128.7,128.5$, $127.8,122.0,117.3,68.0,52.5,47.8,13.1$
I.R. (neat, $\mathbf{c m}^{-1}$) 3202, 3084, 2970, 2931, 1662, 1484, 1389, 700

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O} 345.0603$ found 345.0598

7-Bromo-4-butyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (62)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(50 \mathrm{mg}, 0.158 \mathrm{mmol})$ and butyraldehyde $(17 \mu \mathrm{~L}, 0.189 \mathrm{mmol}), 50 \mathrm{mg}$ of the desired product was obtained ($0.134 \mathrm{mmol}, 85 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.06(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$,
7.39-7.20 (m, 5H), $7.09(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 2 \mathrm{H})$, $0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=175.5,140.8,136.4,133.9,133.1,131.4,130.4,130.1$, $128.8,128.7,127.9,122.3,117.2,68.7,53.3,53.03,29.9,20.3,14.1$ 1099, 1029, 972, 89

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O} 373.0916$ found 373.0902

7-Bromo-4-neopentyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (63)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $4(20 \mathrm{mg}, 0.063 \mathrm{mmol})$ and trimethylacetaldehyde $(16 \mu \mathrm{~L}, 0.151 \mathrm{mmol}), 15 \mathrm{mg}$ of the desired product was obtained ($0.039 \mathrm{mmol}, 62 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.03(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.15-7.06 (m, 3H), $5.16(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 2.68-2.31(\mathrm{~m}, 2 \mathrm{H}), 0.91$ (s, 9H)
I.R. (neat, $\mathbf{c m}^{-1}$) 3207, 3085, 2952, 2865, 1660, 1580, 1489, 1400, 1379, 1227, 1029

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O} 387.1072$ found 387.1064

7-Bromo-4-cyclohexyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (64)

According to procedure (c) at $60{ }^{\circ} \mathrm{C}$: From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(20 \mathrm{mg}, 0.063 \mathrm{mmol})$ and cyclohexanone ($8 \mu \mathrm{~L}, 0.076 \mathrm{mmol}$), 6 mg of the desired product was obtained ($0.015 \mathrm{mmol}, 24 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right): \delta=9.82(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.5 \mathrm{~Hz}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.34-$ $3.25(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-1.13(\mathrm{~m}, 11 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D C l}_{3}\right): \delta=176.1,142.2,136.1,133.7,133.4,131.2,128.4,128.1,127.3$, $122.5,116.7,65.7,60.3,50.7,35.5,31.1,30.1,25.3,24.2$
I.R. (neat, cm $^{-1}$) 3222, 3091, 2928, 2854, 1663, 1584, 1487, 1448, 1405, 1377, 1225, 1031, 971

7-Bromo-4-(1-cyclopropylethyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (as a mixture of 2 diastereoisomers) (65)

According to procedure (c) at $60{ }^{\circ} \mathbf{C}$: From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(20 \mathrm{mg}, 0.063 \mathrm{mmol})$ and cyclopropylmethylketone ($8 \mu \mathrm{~L}, 0.076$ $\mathrm{mmol}), 6.5 \mathrm{mg}$ of the desired product was obtained ($0.017 \mathrm{mmol}, 27 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.92-9.82(\mathrm{~m}, 1 \mathrm{H}), 7.52-6.82(\mathrm{~m}, 8 \mathrm{H}), 5.45-5.40(\mathrm{~m}$, $1 \mathrm{H}), 3.62-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.08(\mathrm{~m}, 3 \mathrm{H}), 0.92-0.75(\mathrm{~m}, 1 \mathrm{H}), 0.55-0.36(\mathrm{~m}$, $2 H), 0.29-0.22(\mathrm{~m}, 1 \mathrm{H}), 0.17-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.52-0.02(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=172.2,171.8,143.2,142.6,137.2,134.2,133.6$, $133.5,130.9,130.8,128.2,128.1,127.5,127.4,126.9,126.8,122.8,122.6,115.5,115.4,65.6$, $62.5,62.3,51.6,51.5,18.2,16.3,15.3,14.8,5.8,4.8,2.4,2.2$
I.R. (neat, $\mathbf{c m}^{-1}$) $3312,3197,3075,2974,2880,1741,1655,1581,1489,1400,1374,1351,1332$, $1228,1136,1099,1076,907,878,826$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OBr} 385.0915$ found 385.0919

7-Bromo-4-cyclopentyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (66)

According to procedure (c) at $60{ }^{\circ} \mathbf{C}$: From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(500 \mathrm{mg}, 1.58 \mathrm{mmol})$ and cyclopentanone ($167 \mu \mathrm{~L}, 1.89 \mathrm{mmol}$), 390 mg of the desired product was obtained ($1.011 \mathrm{mmol}, 64 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.98(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{dd}$, $J=8.5 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.02(\mathrm{t}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 2.96-2.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 4 \mathrm{H})$,
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=172.3,142.3,136.8,133.8,132.1,131.0,128.3$, 127.7, 127.0, 122.4, 115.05, 66.5, 63.2, 53.02, 23.1, 23.9
I.R. (neat, $\mathbf{c m}^{-1}$) $3194,3070,2993,2961,1648,1579,1491,1449,1421,1401,1377,1357,1324$, $1294,1253,1225,1179,1131,980,870,812$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O} 385.0916$ found 385.0915.

7-Bromo-4-(4-methylpentan-2-yl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (as a mixture of 2 diastereoisomers) (67)

According to procedure (c) at $60{ }^{\circ} \mathbf{C}$: From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(70 \mathrm{mg}, 0.222 \mathrm{mmol})$ and isobutylmethylketone ($28 \mu \mathrm{~L}, 1.89$ $\mathrm{mmol}), 41 \mathrm{mg}$ of the desired product was obtained ($0.102 \mathrm{mmol}, 46 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.83-9.72(\mathrm{~m}, 1 \mathrm{H}), 7.72-6.83(\mathrm{~m}, 8 \mathrm{H}), 5.24-5.22(\mathrm{~m}$, $1 \mathrm{H}), 3.40-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.05(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 3 \mathrm{H}), 0.89-0.79(\mathrm{~m}$, $3 \mathrm{H}), 0.73-0.69(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=175.5,174.5,142.7,141.7,136.4,135.0,134.9,133.7\right.$, $133.6,131.2,131.1,128.5,128.4,128.1,127.7,127.5,127.2,123.0,122.7,117.5,117.3,68.4$, $64.9,56.4,55.5,51.7,48.4,44.9,42.8,25.3,24.6,23.6,23.1,22.6,22.2,17.9,15.8$
I.R. (neat, $\mathbf{c m}^{-1}$) 3203, 3061, 3027, 2954, 2926, 2867, 1668, 1579, 1595, 1484, 1468, 1450, 1393, $1384,1366,1248,1225,1159,1127,1028,968,823$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OBr} 401.1228$ found 401.1238

7-Bromo-4-(3-methylcyclopentyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (as a mixture of diastereoisomers) (68)

According to procedure (c) at $60{ }^{\circ} \mathbf{C}$: From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(50 \mathrm{mg}, 0.158 \mathrm{mmol})$ and 3-metylcyclopentanone ($17 \mu \mathrm{~L}, 0.158$ $\mathrm{mmol}), 36 \mathrm{mg}$ of the desired product was obtained ($0.090 \mathrm{mmol}, 57 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=9.74-9.52(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 4 \mathrm{H})$, 7.15-7.11 (m, 1H), 7.09-6.95 (m, 1H), 3.58-3.45 (m, 2H), 3.29-3.02 (m, 1H), 2.32-1.18 (m, 8H), $1.10-0.92(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=176.3,176.2,176.0,141.7,141.6,141.5,135.8,134.3$, $134.2,131.5,128.7,128.6,128.5,128.4,127.6,127.5,122.4,122.3,122.2,116.5,116.4,67.9$, $67.8,67.7,67.5,62.4,62.3,61.8,61.6,52.7,52.6,52.4,49.4,48.9,41.4,41.0,40.7,39.3,38.7$, $32.7,32.3,32.2,32.1,31.9,31.8,31.0,30.5,27.0,22.1,22.0,21.4,21.1,20.9,20.1$
I.R. (neat, $\mathbf{c m}^{-1}$) 3204, 3083, 2950, 2866, 1657, 1579, 1488, 1449, 1401, 1365, 1224, 976, 907

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O} 399.1072$ found 399.1071

7-Bromo-4-(2-methylcyclopentyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2one (as a mixture of diastereoisomers) (69)

According to procedure (c) at $60{ }^{\circ} \mathbf{C}$: From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4(50 \mathrm{mg}, 0.158 \mathrm{mmol})$ and 2-methylcyclopentanone ($25 \mu \mathrm{~L}, 0.237$ $\mathrm{mmol}), 40 \mathrm{mg}$ of the desired product was obtained ($0.100 \mathrm{mmol}, 63 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=10.03-9.83(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.02(\mathrm{~m}, 8 \mathrm{H}), 5.30-5.26(\mathrm{~m}$, $1 \mathrm{H}), 3.38-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.10(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.85(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm})=172.9,172.3,171.3,143.2,142.3,141.8,137.0,136.7$, $136.5,134.1,134.0,133.8,131.5,131.1,131.0,128.4,128.3,128.0,127.8,127.7,127.2,127.1$, $127.0,126.6,122.8,122.3,122.1,115.6,114.9,114.8,72.4,66.4,66.2,64.8,64.4,64.1,54.3$, $53.7,53.5,36.1,34.6,33.9,32.4,30.7,30.6,28.3,26.8,26.7,22.0,19.9,19.8,19.7,14.1,13.3$ I.R. (neat, $\mathbf{c m}^{-1}$) $3193,3063,2957,2869,1654,1597,1579,1489,1448,1419,1400,1376,1320$, 1288, 1224, 1179, 1075, 1026, 974, 872

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OBr} 399.1072$ found 399.1075

7-Bromo-4-cyclopentyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (as a mixture of diastereoisomers) (70)

According to procedure (c) at $60{ }^{\circ} \mathbf{C}$: From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one $4100 \mathrm{mg}, 0.318 \mathrm{mmol}$) and 3,3-dimethylcyclopentanone (35 mg , 0.381 mmol), 94 mg of the desired product was obtained ($0.228 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=9.56-9.51(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.08(\mathrm{~m}, 6 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.22(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.11(\mathrm{~s}, 3 \mathrm{H}), 0.95-0.92(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=176.0,175.9,141.6,135.8,134.3,134.2,131.5,128.6$, $128.5,127.6,122.3,116.5,116.4,67.7,67.5,61.9,61.8,52.7,52.5,46.9,46.5,39.4,39.1,37.8$, $37.5,31.5,31.2,31.0,30.7,30.4$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OBr} 413.1228$ found 413.1224

Procedure (h) 4-Allyl-7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (71)

To a solution of 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one 5 (200 mg, $0.632 \mathrm{mmol})$ in THF (6 mL) was added allyl iodide ($319 \mu \mathrm{~L}, 1.896 \mathrm{mmol}$). The mixture was stirred at room temperature overnight after which the solvent was evaporated. The crude extract was purified by flash chromatography (cyclohexane-ethyl acetate: 9-1 to 5-1), affording 107 mg of the desired compound ($0.300 \mathrm{mmol}, 47 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.10(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=2.3 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
7.39-7.24 (m, 5H), $7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}$, $J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.38-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.12(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.7,140.1,136.3,134.5,133.6,133.0,131.3,128.6$, $128.4,127.8,122.2,118.6,117.3,67.5,56.7,52.9$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OBr} 357.0602$ found 357.0615

7-Bromo-4-(2-methoxyethyl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (72)

According to procedure (c): From 7-bromo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one $450 \mathrm{mg}, 0.158 \mathrm{mmol}$) and 3-methoxy-propionaldehyde ($24 \mu \mathrm{~L}, 0.237 \mathrm{mmol}$), 60 mg of the desired product was obtained ($0.158 \mathrm{mmol}, 100 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.08(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=2.2 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
7.39-7.20 (m, 5H), $7.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.41-3.12(\mathrm{~m}$, $5 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR (100 MHz, $\left.\mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathrm{ppm})=174.3,140.5,137.1,136.3,133.9,132.9,131.5,128.8$, 128.7, 127.9, 122.3, 117.2, 70.3, 68.7, 58.7, 53.0, 50.5
I.R. (neat, $\mathbf{c m}^{-1}$) 3203, 3062, 2923, 2871, 1660, 1596, 1579, 1480, 1449, 1383, 1258, 1225, 1113, 1028, 908

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br} 389.0865$ found 389.0852

7-Bromo-5-phenyl-4-(prop-2-yn-1-yl)-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one

(73)

Procedure (h): To a solution of 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $5(100 \mathrm{mg}, 0.316 \mathrm{mmol})$ in DMF ($3 \mathrm{~mL}, 0.316 \mathrm{mmol}$) was added propargyl bromide ($85 \mu \mathrm{~L}$, 0.948 mmol). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 hours and then purified by flash chromatography (cyclohexane-ethyl acetate, 5-1 to 1-1), furnishing the desired compound (62 mg , $55 \%)$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.08(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=2.2 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42-7.22 (m, 5H), $7.04(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.12(\mathrm{~m}$, 5H)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=172.4,139.4,136.5,133.9,133.2,131.7,129.0,128.5$, $128.3,118.0,78.9,73.8,67.1,54.0,44.1$
I.R. (neat, $\mathbf{c m}^{-1}$) $3296,3219,3062,2923,1671,1596,1579,1481,1449,1380,1284,1258,1173$, 1085, 1028, 908

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O} 355.0446$ found 355.0442

7-Bromo-4-(but-3-yn-1-yl)-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (74) According to procedure (c): From 7-bromo-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one $5(100 \mathrm{mg}, 0.316 \mathrm{mmol})$ and 1-bromo-4-butyne ($89 \mu \mathrm{~L}, 0.948 \mathrm{mmol}$), 45 mg of the desired product was obtained ($0.120 \mathrm{mmol}, 38 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right) \mathbf{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=10.09(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=2.2 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.12(\mathrm{~m}$, $3 \mathrm{H}), 2.83-2.53(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=173.8,140.0,136.2,133.9,132.8,131.7,128.8,128.7$,
128.1, 122.4, 117.4, 82.1, 69.7, 68.4, 53.1, 52.2, 18.2
I.R. (neat, $\mathbf{c m}^{-1}$) 3300, 3204, 3062, 2921, 2849, 1660, 1596, 1578, 1484, 1449, 1379, 1327, 1285, 1256, 1176, 1028, 975

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O} 369.0603$ found 369.0613

4-Cyclopentyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (75)

Procedure (a): From 2-aminobenzophenone ($2 \mathrm{~g}, 10.14 \mathrm{mmol}$) and bromoacetyl bromide (883 $\mu \mathrm{L}, 10.14 \mathrm{mmol}), 1.9 \mathrm{~g}$ of the desired product was obtained ($8.11 \mathrm{mmol}, 80 \%$).

Then procedure (c) at $60^{\circ} \mathbf{C}$: From 5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (100 $\mathrm{mg}, 0.423 \mathrm{mmol}$) and cyclopentanone ($45 \mu \mathrm{~L}, 0.507 \mathrm{mmol}$), 72 mg of the desired product was obtained ($0.232 \mathrm{mmol}, 55 \%$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{- N M R}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.86(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.02(\mathrm{~m}, 9 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}$, $2 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=172.1,142.9,137.3,131.8,129.4,128.3,128.1$,
$127.6,126.8,123.3,120.4,67.1,63.3,53.1,30.6,30.3,23.3,22.9$
I.R. (neat, $\mathbf{c m}^{\mathbf{- 1}}$) $3197,3064,2992,2956,1649,1585,1489,1432,1392,1360,1060$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O} 307.1810$ found 307.1797

4-Cyclopentyl-7-fluoro-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (76)

To a solution of 2-aminobenzophenone ($250 \mathrm{mg}, 2.53 \mathrm{mmol}$) in acetonitrile (13 mL) was added N-fluorosuccinimide ($400 \mathrm{mg}, 2.53 \mathrm{mmol}$) at room temperature. The mixture was stirred overnight. Flash chromatography (cyclohexane-ethyl acetate, 1-1) gave an inseparable mixture of the desired compound and the starting material (1.27 mmol).

Procedure (a): From (2-amino-5-fluorophenyl)(phenyl)methanone (1.27 mmol) and bromoacetyl bromide ($132 \mu \mathrm{~L}, 1.52 \mathrm{mmol}$).

Then procedure (c) at $60^{\circ} \mathbf{C}$: From 7-fluoro-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one (1.27 mmol) and cyclopentanone ($337 \mu \mathrm{~L}, 3.81 \mathrm{mmol}$), 10 mg of the desired product was obtained ($0.030 \mathrm{mmol}, 3 \%$ over 3 steps) after purification by HPLC.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})=9.84(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.10(\mathrm{~m}, 8 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.19$
$(\mathrm{m}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.33(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR (100 MHz, CDCl $\left.\mathbf{3}\right) \delta(\mathrm{ppm})=171.6,159.2,156.8,142.5,133.9,132.0,131.9,128.2$,
$127.5,126.9,122.2,122.1,117.8,117.6,115.2,114.9,66.5,63.6,53.1,30.5,30.2,23.2,22.9$
I.R. (neat, $\mathbf{c m}^{-1}$) 3309, 3197, 3087, 2996, 2957, 2908, 2859, 1650, 1620, 1597, 1514, 1501, 1495, $1450,1425,1409,1389,1369,1231,1129,1152,1090,976$

7-Chloro-4-cyclopentyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (77)

Procedure (a): From 2-amino-5-chlorobenzophenone ($300 \mathrm{mg}, 1.298 \mathrm{mmol}$) and bromoacetyl bromide ($135 \mu \mathrm{~L}, 1.557 \mathrm{mmol}$).

Then procedure (c) at $60^{\circ} \mathbf{C}$: From 7-chloro-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one (1.298 mmol) and cyclopentanone ($138 \mu \mathrm{~L}, 1.557 \mathrm{mmol}), 202 \mathrm{mg}$ of the desired product was obtained ($0.739 \mathrm{mmol}, 57 \%$ over 2 steps).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.98(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.06(\mathrm{~m}, 8 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}$, $2 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR ($\left.100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=172.1,142.2,136.3,131.6,130.9,128.2,128.0$, $127.6,127.0,126.9,121.9,66.4,63.2,52.9,30.6,30.2,23.1,22.8$
I.R. (neat, $\mathbf{c m}^{-1}$) 3309, 3195, 3078, 2993, 2962, 2873, 2857, 2830, 1650, 1599, 1583, 1492, 1450, $1423,1405,1379,1367,1358,1255,1226,1162,970,873$

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O} 341.1421$ found 341.1416

7-Iodo-4-cyclopentyl-5-phenyl-1,3,4,5-tetrahydro-2H-benzo[e][1,4]diazepin-2-one (78)

To a solution of 2-aminobenzophenone ($500 \mathrm{mg}, 2.53 \mathrm{mmol}$) in $\mathrm{EtOH}(25 \mathrm{~mL})$ were added $\mathrm{I}_{2}(966$ $\mathrm{mg}, 7.59 \mathrm{mmol}$) and $\mathrm{AgSO}_{4}(3.16 \mathrm{~g}, 9.36 \mathrm{mmol}$). The mixture was stirred overnight at room temperature. Flash chromatography (cyclohexane-ethyl acetate, 9-1 to 7-1) afforded 289 mg of the monoiodinated compound ($0.885 \mathrm{mmol}, 35 \%$) along with some diiodinated compound (ortho and para positions).

Then procedure (a): From (2-amino-5-iodophenyl)(phenyl)methanone (289 mg, 0.894 mmol) and bromoacetyl bromide ($93 \mu \mathrm{~L}, 1.072 \mathrm{mmol}$), 215 mg of the desired compound was obtained ($0.596 \mathrm{mmol}, 67 \%$).

Then procedure (c) at $60{ }^{\circ}$ C: From 7-iodo-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2one (0.298 mmol) and cyclopentanone ($30 \mu \mathrm{~L}, 0.327 \mathrm{mmol}$), 23 mg of the desired product was obtained ($0.053 \mathrm{mmol}, 18 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=9.94(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, \quad J=, 1 \mathrm{H})$, $7.21-7.20(\mathrm{~d}, \mathrm{~J}=\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H})$, $2.93-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.32(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta(\mathrm{ppm})=172.4,142.4,139.6,137.3,132.1,128.2,127.7$, $127.0,122.5,87.1,66.4,63.1,52.9,30.7,30.4,23.2,22.8$
I.R. (neat, $\mathbf{c m}^{-1}$) $3192,3067,2992,2959,2856,1652,1577,1488,1398,1449,1420,1398,1373$, 1362, 1226, 1132, 1047, 947

HRMS $m / z\left[(\mathrm{M}+\mathrm{H})^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OI} 433.0777$ found 433.0786

Chemicals for in vitro experiments

The following products were from the indicated commercial sources: $\left[{ }^{14} \mathrm{C}\right]$-leucine (PerkinElmer), Shiga-like toxin 2 (Stx, List Biological Laboratories, Inc.), DMSO (Sigma), fetal bovine serum (Sigma), glutamine, pyruvate, non-essential amino acids and antibiotic solutions (Gibco). Alexa-488-StxB was prepared as previously described. ${ }^{23}$

Intoxication assays

HeLa cells were maintained at $37{ }^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ in DMEM (Dulbecco's modified Eagle's medium, Invitrogen), supplemented with 10% fetal bovine serum, $4.5 \mathrm{~g} / \mathrm{L}$ glucose, $100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, 4 mM glutamine, 5 mM pyruvate. The cells were plated at a density of 50,000 cells per well in 96-well Cytostar- T^{TM} scintillating microplates (PerkinElmer) with scintillator incorporated into the polystyrene plastic. After incubation with either $30 \mu \mathrm{M}$ or various concentrations of compounds (or 0.1% DMSO) for 4 hours at $37^{\circ} \mathrm{C}$, cells were challenged with increasing doses of Stx in the continued presence of the compounds. After incubation for 20 hours, the medium was removed and replaced with DMEM without leucine (Eurobio) containing 10% fetal bovine serum, 2 mM L-glutamine, 0.1 mM non-essential amino acids, 1% penicillin/streptomycin supplemented by $0.5 \mu \mathrm{Ci} / \mathrm{mL}\left[{ }^{14} \mathrm{C}\right]$-leucine. The cells were grown for an additional 6 hours at $37{ }^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$ and 95% air. Protein biosynthesis was
then determined by measuring the incorporation of radiolabeled leucine into cells using a Wallac 1450 MicroBeta liquid scintillation counter (PerkinElmer).

The mean percentage of protein biosynthesis was determined and normalized from duplicate wells. Data were fitted with Prism v5 software (Graphpad Inc., San Diego, CA) to obtain the 50\% inhibitory toxin concentration (IC_{50}), i.e. the concentration of toxin that is required to kill 50% of cells. IC_{50} values and protection factor $\mathrm{R}\left(\mathrm{R}=\mathrm{IC}_{50} \mathrm{drug}^{\mathrm{I}} \mathrm{IC}_{50} \mathrm{DMSO}\right)$ were determined by the software's nonlinear regression "dose-response EC_{50} shift equation". The goodness of fit for Stx alone (carrier) or with drug was assessed by r^{2} and confidence intervals. The percentage of cell protection was calculated for each compound after determination of the R value (Rdrug) and compared to the R value of Retro-1 (Rref):

$$
\% \text { protection }=\frac{R d r u g-1}{\text { Rref }-1} \times 100
$$

All compounds were tested at $30 \mu \mathrm{M}$ and Retro- 1 compound equals 100% protection at $30 \mu \mathrm{M}$.

Determination of EC50 values

For compounds that displayed a percentage of protection equal to or greater than $100 \%, \mathrm{EC}_{50}$ represents the concentration of a compound that is required for 50% of its full inhibitory effect against Stx. EC_{50} was used to compare the efficacy of compounds because it is more precise than R values and the associated percentage protection. This is due to the fact that R values may fluctuate between cell experiments using different 96 -well plates corresponding to compounds tested on different days. In contrast, the EC_{50} value for a single compound is calculated from experimental data obtained using a single 96 -well plate. Cell assays were performed with various concentrations of the inhibitor. For each concentration, a percentage protection was determined
from R values calculated with Prism software with Rmax corresponding to the higher value of R of the series:

$$
\% \text { protection }=\frac{R-1}{R \max -1} \times 100
$$

Drug concentration was plotted against the corresponding percentage protection of cells and the half-maximal effective concentration $\left(\mathrm{EC}_{50}\right)$ was calculated by non-linear regression using the Prism software package.

Fluorescent staining

For fluorescence experiments, compound-treated HeLa cells were pre-incubated for 1 hour in the continued presence of the compounds $(1 \mu \mathrm{M})$. Compound-treated cells were then incubated with Alexa 488-StxB $(0.1 \mu \mathrm{~g} / \mathrm{mL})$ for 30 min on ice, followed by 45 min at $37^{\circ} \mathrm{C}$ in the continued presence of the compounds $(1 \mu \mathrm{M})$. After washing, cells were fixed with a solution of paraformaldehyde (4\%, 5 min), labeled with phalloidin-Atto-550 (1/1000, Sigma) for actin staining or immunolabeled for giantin (1/1000, ab53542, Abcam) and with DAPI ($1 \mu \mathrm{~g} / \mathrm{mL}$, Sigma) dissolved in the mounting medium for nuclei staining. Samples were imaged on an inverted SP8x confocal microscope (Leica) using a 63 x oil immersion objective, NA 1.4. Maximum projections of optical Z slices are shown.

ASSOCIATED CONTENT

Supporting Information.

NMR of the compounds in experimental section, UPLC/UV analysis, HPLC separation of enantiomers, colocalization of Stx B and Golgi apparatus (\pm)-Retro-1.1 (PDF)

Molecular formula strings (CSV)

AUTHOR INFORMATION

Corresponding Author

* JCC Tel: + 331690821 07. Fax: + 331690879 91. Email: jean-christophe.cintrat @cea.fr
* DG Tel: + 331690876 46. Fax: + 331690890 71. Email: daniel.gillet @cea.fr

Author Contributions

The manuscript was written with contributions from all authors. All authors approved the final version of the manuscript.

Funding Sources

This work (Project RetroScreen) was funded by the French National Agency for Research (ANR) under Contract ANR-11-BSV2-0018, and the joint ministerial program of R\&D against CBRNe risks.

ACKNOWLEDGMENTS

This work benefited from access to the light microscopy facility Imagerie-Gif (http://www.i2bc.paris-saclay.fr), a member of IBiSA (http://www.ibisa.net), supported by
"France-BioImaging" (ANR-10-INBS-04-01) and the Labex "Saclay Plant Science" (ANR-11-IDEX-0003-02). Instant JChem was used for structure database management, search and prediction (Instant JChem 19.8.0, 2019, ChemAxon [http://www.chemaxon.com]).

ABBREVIATIONS

Stx, Shiga toxin; HUS, hemolytic uremic syndrome; Gb3, globotriaosylceramide; ER, endoplasmic reticulum; TGN, trans-Golgi network; NBS, N-bromosuccinimide; HRMS, highresolution mass spectrometry.

REFERENCES

(1) Bergan, J.; Dyve Lingelem, A. B.; Simm, R.; Skotland, T.; Sandvig, K. Shiga Toxins. Toxicon 2012, 60, 1085-1107.
(2) Tarr, P. I.; Gordon, C. A.; Chandler, W. L. Shiga-Toxin-Producing Escherichia Coli and Haemolytic Uraemic Syndrome. Lancet 2005, 365, 1073-1086.
(3) Johannes, L.; Romer, W. Shiga Toxins--from Cell Biology to Biomedical Applications. Nat Rev Microbiol 2010, 8, 105-116.
(4) Tarr, P. I.; Sadler, J. E.; Chandler, W. L.; George, J. N.; Tsai, H. M. Should All Adult Patients with Diarrhoea-Associated HUS Receive Plasma Exchange? Lancet 2012, 379, 516-517.
(5) Menne, J.; Nitschke, M.; Stingele, R.; Abu-Tair, M.; Beneke, J.; Bramstedt, J.; Bremer, J. P.; Brunkhorst, R.; Busch, V.; Dengler, R.; Deuschl, G.; Fellermann, K.; Fickenscher, H.; Gerigk, C.; Goettsche, A.; Greeve, J.; Hafer, C.; Hagenmuller, F.; Haller, H.; Herget-

Rosenthal, S.; Hertenstein, B.; Hofmann, C.; Lang, M.; Kielstein, J. T.; Klostermeier, U. C.; Knobloch, J.; Kuehbacher, M.; Kunzendorf, U.; Lehnert, H.; Manns, M. P.; Menne, T. F.; Meyer, T. N.; Michael, C.; Munte, T.; Neumann-Grutzeck, C.; Nuernberger, J.; Pavenstaedt, H.; Ramazan, L.; Renders, L.; Repenthin, J.; Ries, W.; Rohr, A.; Rump, L. C.; Samuelsson, O.; Sayk, F.; Schmidt, B. M.; Schnatter, S.; Schocklmann, H.; Schreiber, S.; von Seydewitz, C. U.; Steinhoff, J.; Stracke, S.; Suerbaum, S.; van de Loo, A.; Vischedyk, M.; Weissenborn, K.; Wellhoner, P.; Wiesner, M.; Zeissig, S.; Buning, J.; Schiffer, M.; Kuehbacher, T.; consortium, E.-H. Validation of Treatment Strategies for Enterohaemorrhagic Escherichia Coli O104:H4 Induced Haemolytic Uraemic Syndrome: Case-Control Study. $B M J$ 2012, 345, e4565.
(6) Melton-Celsa, A. R.; O’Brien, A. D. New Therapeutic Developments against Shiga ToxinProducing Escherichia Coli. Microbiol. Spectr. 2014, https://doi.org/10.1128/microbiolspec.EHEC-0013-2013.
(7) Stechmann, B.; Bai, S. K.; Gobbo, E.; Lopez, R.; Merer, G.; Pinchard, S.; Panigai, L.; Tenza, D.; Raposo, G.; Beaumelle, B.; Sauvaire, D.; Gillet, D.; Johannes, L.; Barbier, J. Inhibition of Retrograde Transport Protects Mice from Lethal Ricin Challenge. Cell 2010, 141, 231-242.
(8) Selyunin, A. S.; Hutchens, S.; McHardy, S. F.; Mukhopadhyay, S. Tamoxifen Blocks Retrograde Trafficking of Shiga Toxin 1 and 2 and Protects against Lethal Toxicosis. Life Sci. alliance 2019, https://doi.org/10.26508/lsa.201900439.
(9) Saenz, J. B.; Doggett, T. A.; Haslam, D. B. Identification and Characterization of Small Molecules That Inhibit Intracellular Toxin Transport. Infect Immun 2007, 75, 4552-4561.
(10) Mukhopadhyay, S.; Linstedt, A. D. Manganese Blocks Intracellular Trafficking of Shiga

Toxin and Protects against Shiga Toxicosis. Science. 2012, 335, 332-335.
(11) Mahtal, N.; Wu, Y.; Cintrat, J. C.; Barbier, J.; Lemichez, E.; Gillet, D. Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins. Toxins (Basel). 2020, 12, 113.
(12) Gupta, N.; Pons, V.; Noël, R.; Buisson, D.-A.; Michau, A.; Johannes, L.; Gillet, D.; Barbier, J.; Cintrat, J.-C. (S)-N-Methyldihydroquinazolinones Are the Active Enantiomers of Retro2 Derived Compounds against Toxins. ACS Med. Chem. Lett. 2014, 5, 94-97.
(13) Donta, S. T.; Tomicic, T. K.; Donohue-Rolfe, A. Inhibition of Shiga-like Toxins by Brefeldin A. J. Infect. Dis. 1995, 171, 721-724.
(14) Barbier, J.; Bouclier, C.; Johannes, L.; Gillet, D. Inhibitors of the Cellular Trafficking of Ricin. Toxins (Basel) 2012, 4, 15-27.
(15) Abdelkafi, H.; Cintrat, J. C. Regioselective Halogenation of 1,4-Benzodiazepinones via CH Activation. Sci Rep 2015, 5, 12131.
(16) Ohmi, K.; Kiyokawa, N.; Sekino, T.; Suzuki, T.; Mimori, K.; Taguchi, T.; Nakajima, H.; Katagiri, Y. U.; Fujimoto, J.; Nakao, H.; Takeda, T. Nitrobenzylthioinosine (NBT), a Nucleoside Transport Inhibitor, Protects against Shiga Toxin Cytotoxicity in Human Microvascular Endothelial Cells. Endothelium 2001, 8, 261-268.
(17) Abdelkafi, H.; Michau, A.; Clerget, A.; Buisson, D. A.; Johannes, L.; Gillet, D.; Barbier, J.; Cintrat, J. C. Synthesis, Chiral Separation, Absolute Configuration Assignment, and Biological Activity of Enantiomers of Retro-1 as Potent Inhibitors of Shiga Toxin. ChemMedChem 2015, 10, 1153-1156.
(18) Sirimulla, S.; Bailey, J. B.; Vegesna, R.; Narayan, M. Halogen Interactions in ProteinLigand Complexes: Implications of Halogen Bonding for Rational Drug Design. J Chem

Inf Model 2013, 53, 2781-2791.
(19) Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. Halogen Bonding--a Novel Interaction for Rational Drug Design? J Med Chem 2009, 52, 2854-2862.
(20) Desai, D.; Lauver, M.; Ostman, A.; Cruz, L.; Ferguson, K.; Jin, G.; Roper, B.; Brosius, D.; Lukacher, A.; Amin, S.; Buchkovich, N. Inhibition of Diverse Opportunistic Viruses by Structurally Optimized Retrograde Trafficking Inhibitors. Bioorg. Med. Chem. 2019, 27, 1795-1803.
(21) Dai, W.; Wu, Y.; Bi, J.; Lu, X.; Hou, A.; Zhou, Y.; Sun, B.; Kong, W.; Barbier, J.; Cintrat, J. C.; Gao, F.; Gillet, D.; Su, W.; Jiang, C. Antiviral Effects of Retro-2(Cycl) and Retro-2.1 against Enterovirus 71 in Vitro and in Vivo. Antivir. Res 2017, 144, 311-321.
(22) Harrison, K.; Haga, I. R.; Pechenick Jowers, T.; Jasim, S.; Cintrat, J.-C.; Gillet, D.; SchmittJohn, T.; Digard, P.; Beard, P. M. Vaccinia Virus Uses Retromer-Independent Cellular Retrograde Transport Pathways To Facilitate the Wrapping of Intracellular Mature Virions during Virus Morphogenesis. J. Virol. 2016, 90, 10120-10132.
(23) Amessou, M.; Popoff, V.; Yelamos, B.; Saint-Pol, A.; Johannes, L. Measuring Retrograde Transport to the Trans-Golgi Network. Curr Protoc Cell Biol 2006, Chapter 15, Unit 1510.

Table of Contents graphic

