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ABSTRACT:  The highly regioselective electrophotocatalytic 
C-H functionalization of ethers is described. These reactions 
are catalyzed by a trisaminocyclopropenium (TAC) ion in a 
mild electrochemical potential with visible light irradiation. 
Ethers undergo oxidant-free coupling with isoquinolines, 
alkenes, alkynes, pyrazoles, and purines with typically high 
regioselectivity for the less-hindered α-position. The 
reaction is proposed to operate via hydrogen atom transfer 
(HAT) from the substrate to the photoexcited TAC radical 
dication, thus demonstrating a new reactivity mode for this 
electrophotocatalyst. 

 
Over recent decades, the functionalization of unactivated C–

H bonds has been established as a process of great value to 
organic synthesis.1 Among the oldest of strategies to achieve 
such transformations, hydrogen atom transfer (HAT) has served 
as the key initiating step for a wide range of important 
processes.2,3 Because the rate of hydrogen abstraction from a 
C–H bond depends both on the bond dissociation enthalpy 
(BDE) and polar effects in the transition state, C-H bonds in 
different environments (e.g. allylic, benzylic, α-oxy, and α-acyl 
positions) display large differences in reactivity. 

4 , 5 
Consequently, great success has been achieved for the selective 
activation of chemically distinct C–H bonds via HAT 
processes. However, regioselective activation of chemically 
similar C–H bonds remains a significant challenge.4, 6  As a 
prime example, the Minisci reaction, 

7  which involves the 
addition of a radical to heteroarenes, has proven to be a useful 
tool for building molecular complexity.8,9 While this strategy 
has been shown to be efficient for the construction of bioactive 
molecules, 

10 many examples of this reaction require the use of 
stoichiometric amount of peroxides and suffer from poor 
regiocontrol due to the strong similarity of nearly equivalent C-
H bonds (Scheme 1A).8,11 In pioneering work, MacMillan first 
reported the direct α-arylation of ethers by the combination of 
photoredox-catalyzed C–H activation and Minisci reaction.8b 
However, for a non-symmetric substrate such as 2-
methyltetrahydrofuran, only a 3.5:1 regioselectivity between α-
positions was observed. Later, a direct K2S2O8-promoted cross-
dehydrogenative coupling reaction was reported by Singh,8c but 
the elevated temperature (120 oC) of the method resulted in an 
even lower 1.6:1 regioselectivity. In 2017, Wang reported a N-
hydroxysuccinimide-mediated procedure which achieved only 
a 2:1 regioselectivity for the same product.8f Recently, a system 
involving Cu/Selectfluor enabled high regioselectivity in one 
example, although 2.0 equiv. of expensive Selectfluor was 

required to serve as the HAT acceptor.8g Thus, the development 
of a highly regioselective, catalytic platform for Minisci-type 
functionalization of ethers remains an open challenge. 

 

 
 
Figure 1. Electrophotocatalysis with a trisaminocyclopropenium 
radical dication (a) HAT process. (b) SET process.  
 

We recently reported a potent electrophotocatalytic system12 
involving trisaminocyclopropenium ion (TAC) 1. 13  In this 
process, the colorless TAC electrophotocatalyst was converted 
by anodic oxidation at mild potential to the open-shell, 
photoabsorptive TAC radical dication 2, followed by 
photoexcitation to produce 3 (Fig. 1B). The photoexcited TAC 
radical dication 3 was found to be sufficiently potent (Ered = 
3.33 V vs. SCE) to oxidize benzene and other unactivated 
arenes via single electron transfer (SET).13a Importantly, 
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calculations demonstrated that 3 has aminyl radical cation 
character on one of the nitrogen substituents. We thus 
envisioned that this intermediate might also be an effective 
HAT acceptor and thereby enable a diverse menu of 
transformations initiated by this alternative activation event. 
Furthermore, because it is known that H• transfer reactions are 
very sensitive to steric effects,14 we reasoned that the hindered 
nature of the TAC might enable highly regioselective reactions 
between chemically similar but sterically differentiated C–H 
bonds. In this Communication, we show that TAC 1 is indeed 
an effective electrophotocatalyst for highly regioselective ether 
C–H bond functionalizations. 

 
Table 1. Optimization studies 

 
a See SI for detailed procedures. Reactions performed under constant 
voltage (CV) conditions with light irradiation for 18 h (entries 1-5) or 36 h 
(entries 6-10) at rt. b Yields determined by 1H NMR spectroscopy. c Yield 
of isolated product.  
 

We first examined the electrophotocatalytic coupling of THF 
(4) and 4-bromoisoquinoline (5) (Table 1). By subjecting these 
reactants to 5 mol% 1 with a 1.5 V constant voltage undivided 
cell and visible light irradiation from a white light compact 
fluorescent light (CFL) in the presence of LiClO4, acetic acid, 
and CF3CO2H, a 42% yield of the Minisci product 6 was 
obtained. To probe whether the process was actually 
electrophotocatalytic, we eliminated the light, electricity, and 
catalyst in turn (entries 2-4) and found that each component was 
necessary, with only trace product (£5% yield) otherwise 
observed.15 The yield was also significantly diminished without 
the addition of CF3CO2H (entry 5), presumably because the 
protonation of isoquinoline is necessary for facile addition. 
Further optimization (see supporting information for details) of 
the conditions involving a slightly higher catalyst loading (8 
mol%) and longer reaction time of 36 h led to an 82% yield of 

adduct 6 (entry 16). Importantly, when we attempted the same 
reaction by direct electrolysis using up to 3.0 V constant 
voltage, the coupling product 6 was observed by 1H NMR as 
part of a complex mixture of multiple, unidentified products 
(entry 7, see also supporting information). Lower voltages (e.g. 
Ecell = 1.0 V) did not affect this reaction (entry 8). To 
demonstrate the preparative potential of this method, we 
conducted a large-scale reaction (8 mmol), from which 1.6 g of 
the product could be obtained (entry 10). Finally, we also 
examined these optimized conditions using a non-symmetric 
ether, 2-methyltetrahydrofuran (7) (entry 10), which led to a 
55% isolated yield of the corresponding adduct as a single 
regioisomer.  

With these optimized conditions, we explored some of the 
scope of this process. In addition to the formation of 6 (Table 2, 
entry 1), a variety of other isoquinoline partners could be 
utilized, giving rise to adducts 8-10 bearing halogens and ester 
functionality in various positions in moderate to good yields 
(entries 2-4). Other cyclic and acyclic ethers like 
tetrahydropyran and diethyl ether also led to the coupled 
products 11 and 12 in 62% and 52% yields respectively (entries 
5-6).  

Next, we sought to further explore the crucial issue of 
regioselectivity. As shown in Table 1, 2-methyltetrahydrofuran 
(7) delivered regioisomerically pure products 13-18 with a 
variety of functionalized isoquinoline reactants (entries 7-12). 
Isoquinoline itself also participated with high regioselectivity 
and moderate yield (entry 13). Other acyclic ethers were also 
shown to lead to single isomers with moderate to good yields 
(entries 14-20). It is worth noting that this procedure resulted in 
significant regioselectivity of primary over tertiary C-H bonds 
(entries 14-16), with only the primary C–H functionalized 
products 20-22 detected. However, in the competition between 
primary and secondary C–H bonds, the reaction mainly 
occurred at the secondary position (entry 17). In this case, the 
greater stability of the intermediate secondary carbon radical 
presumably outweighed the steric difference between the two 
positions. These conditions also showed excellent 
regioselectivity of tertiary versus secondary C-H bonds (entries 
18 and 19), with only the secondary C-H bonds undergoing 
reaction. For substrates with only slightly different steric 
environments, however, essentially no regioselectivity was 
observed (entries 20-21). Notably, no reaction was observed for 
2,5-dimethyltetrahydrofuran, which only has tertiary a-C-H 
bonds (entry 22).  In terms of other azole partners, we observed 
a reasonably efficient reaction with a quinoline partner (entry 
23) and a low efficiency with a pyridine substrate (entry 24). 
Other species examined (e.g. pyrimidine, quinoxaline, indole) 
did not react under these conditions. 
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Table 2. Electrophotocatalytic C–H functionalization of ethers with isoquinolines and other azoles.a,b,c 

 
 a 2 mL ether used. See SI for detailed procedures. Reactions performed under constant voltage (CV) with light irradiation for 36 h at rt. b Isolated 
yields. c Diastereomeric ratio (d.r.) determined by 1H NMR spectroscopy. 14: 1:1.6 d.r.; 13, 18: 1:1.1 d.r.; 15: 1:1.2 d.r.; 16, 17, 19: 1:1.0 dr. 
 

 
To further explore the scope of this electrophotocatalytic 

process, we examined the use of other radical acceptors (Table 
3). We initially chose to explore vinyl sulfones because of 
their synthetic versatility by oxidative or reductive removal of 
the phenylsulfonyl groups. In the case of phenyl vinyl sulfone, 
adduct 31 was isolated in 72% yield (entry 1). An “on-off” 
experiment demonstrated that this was not a radical chain 
process (see supporting information). Once again, 2-
methyltetrahydrofuran led to a single regioisomeric product 
32 resulting from HAT from the less hindered a-position 
(entry 2). Interestingly, the 2,5-disubstituted ether 33 was 
produced as the major product when 1,1-
bis(phenylsulfonyl)ethylene was used as the acceptor (entry 
3). We speculate that ion-pairing of the mono-substituted 
product conjugate base with the cationic TAC catalyst may 
accelerate the second functionalization. In addition, moderate 
yields of adducts 34 and 35 could be obtained with acrylate 
esters (entries 4 and 5). Finally, a propargylic ester led to the 
formation of the α, β-unsaturated product 36 in 60% yield as 
1:1 mixture of olefin isomers (entry 6).  

 
 
 
 
 

 
Table 3. Electrophotocatalytic C–H functionalization of ethers 
with alkenes and alkyne.a 

 

 
 a 2 mL ether used. Yields determined for purified products. b  1H 
NMR yields c E/Z = 1:1. 
 

In addition to the C-C bond coupling reactions shown above 
we also found that C-N bond formation was possible (Table 
4). The conditions employed were similar to those previously 
described, but with acetic acid instead of trifluoroacetic acid 
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and a cell potential of 2.0 V.16 First, 4-formylpyrazole (entry 
1) and a halogenated purine (entry 2) reacted with THF to 
deliver adducts 37 and 38 in high yields. Tetrahydropyran 
could also be functionalized in good yield (entry 3). In the 
case of 2-methyltetrahydrofuran, we again observed the 
selective coupling at the less-hindered position, leading to 
adduct 40 in 80% yield as a 5:1 mixture of regioisomers. 
Notably, a related photocatalytic method was reported to 
produce only the C1 isomer for a similar reaction of this 
substrate.16a Meanwhile, we found other substrates also 
reacted with complete selectivity for the less-hindered C–H 
bonds (entries 5-9). 
 
Table 4. Electrophotocatalytic C–H functionalization of ethers 
with azoles.a 

 

 
 a 2 mL ether employed. Yields determined for purified products.  

 
A mechanistic rationale for these electrophotocatalytic 

reactions is shown in Figure 2A. The TAC cation 1 undergoes 
electrochemical oxidization (EOX = 1.26 V vs. SCE) to 
generate radical dication 2. Photoexcitation then leads to 
intermediate 3 bearing aminyl radical cation character. 
Hydrogen atom transfer from the ether substrate 7 to 3 
generates the corresponding radical 46 along with the 
protonated TAC dication 47. In support of the HAT step, we 
observed a kinetic isotopic effect (KIE) of kH/D = 3.0.8f We 
propose that steric encumbrance arising from the intermediate 
3, which is effectively locked in the conformation with all 
methyls in the axial position,13 dictates the regioselective 
abstraction of the less hindered hydrogen atom. Once formed, 
46 can react with isoquinoline 5 to produce intermediate 
radical 48, which is followed by a second oxidation (likely via 
3) and loss of proton to furnish the product 12. Meanwhile, 
deprotonation of dication 47 regenerates the TAC catalyst 1 
to close the catalytic cycle. It should be emphasized that 
controlled ether functionalizations of this type by direct 
electrolysis can be challenging because the radical 
intermediates (e.g. 46) are more easily oxidized than the 

substrates, yet the anode provides the capacity for multiple 
sequential oxidation events. In contrast, the 
electrophotocatalytic approach maintains only a low 
concentration of active oxidant, which presumably increases 
the lifetime of the radical enough that it can undergo 
productive one-electron chemistry. 

As a final note, we recognize that, while the C–C coupling 
reactions shown in Tables 2 and 3 surely occur via ether 
radical intermediates (e.g. 46), the azole couplings shown in 
Table 4 are mechanistically ambiguous. While they might also 
proceed via somophilic addition of the azole 50 to the same 
type of radical intermediate 49 followed by oxidation (Figure 
2B, path a), it is conceivable that oxidation to the 
corresponding oxocarbenium ion 52 followed by nucleophile 
addition of the azole 50 is the operative pathway (path b). As 
evidence that this latter pathway is plausible, we found that 
the use of benzyl alcohol (53) led to acetal 54 (Figure 2C), the 
formation of which must have proceeded via oxocarbenium 
ion 52. Thus, it appears that this electrophotocatalytic strategy 
enables the functionalization of ethers via both one and two 
electron pathways using closely related conditions. 

 
 

 
 
Figure 2. A. Mechanistic rationale for electrophotocatalytic 
Minisci reaction. B. Alternative pathways for azole coupling. 
C. Formation of acetal 54. 
 

In summary, an electrophotocatalytic C–H 
functionalization of ethers with high regioselectivity has been 
developed. The TAC 1 was shown to operate as a single-
component HAT electrophotocatalyst. Through the 
combination of electrical and photochemical energy, this 
system obviates the need for an external oxidizing agent, 
while the catalyst structure enables high regioselectivities 
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based on steric differentiation of chemical similar bonds. This 
study thus realizes catalysis and high regioselectivity in the 
same system for these useful reactions. 
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