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Introduction

Imides are well represented as valuable intermediates in 
synthetic organic chemistry, and these structural motifs also 
occur in natural products and pharmaceuticals such as the 
antibiotic fumaramidmycin,1,2 palauimide,3 thalidomide,4 
the antifeedant ypaoamide,5 and the platelet-activating fac-
tor (PAF) antagonist CV-62096,7 (Figure 1). To date, vari-
ous methods for imides have been developed. Imides can 
be prepared by the palladium-catalyzed three-component 
reaction between terminal alkynes, isonitriles, and sodium 
carboxylates.8 Yamaguchi reported a copper-catalyzed aer-
obic oxidative acylation of amides with alcohols for the 
synthesis of imides.9 Also, Nicolaou reported the oxidation 
of secondary amides to the corresponding imides using 
Dess–Martin periodinane.10

In spite of the above-mentioned methods, imides are 
usually prepared between amides and an excess of acti-
vated forms of carboxylic acids, such as acyl chlorides, 
anhydrides, and esters, under strong basic or acidic condi-
tions (Scheme 1(a)).11–14 However, for some acid- or base-
sensitive or biologically related compounds, metal-free and 
versatile conditions are in demand. Although there are sev-
eral examples described using mild conditions with a weak 
base,15–19 for instance, the conversion of NHBoc to N(Boc)2 
with 4-dimethylaminopyridine (DMAP),20 the develop-
ment of versatile and efficient methods for the preparation 
of imides is still challenging.
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Figure 1. Compounds containing an imide core.
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Using an internal nucleophilic catalyst may be the solution 
to this problem. Acylation is one type of basic organic trans-
formation to form amides or esters, which can be accelerated 
using a nucleophilic catalyst. Pyridine can act as a nucleo-
phile for activated carboxylic acids and is often used as a cata-
lyst in acylation reactions. Recently, Unsworth demonstrated 
a strategy for the synthesis of medium-sized rings readily 
from linear precursors mediated by an internal nucleophilic 
catalyst, a pyridine ring, which can capture the carboxylic 
acid to provide a reactive intermediate (Scheme 1(b)).21–23 
Inspired by this work, we have taken advantage of internal 
catalysis to achieve mild N-acylation reactions of amides. 
Herein, we used the amides possessing a pyridine ring as sub-
strates, the pyridine ring can form an active acylammonium 
salt with an acyl chloride. Thus, the original intermolecular 
reaction will be transformed into an intramolecular reaction. 
The imide will be obtained following a Mumm rearrange-
ment of the intermediate isoimide (Scheme 1(c)).

Results and discussion

With N-(pyridin-2-ylmethyl)acetamide (1a) as the acyl 
acceptor and benzoyl chloride (2a) as the acyl donor, an 
initial study was performed with N,N-diisopropylethylamine 
(DIPEA) as the base in CH2Cl2 at room temperature for 3 h 
(Table 1, entry 1). To our delight, the desired product 3a 
was obtained in 51% yield. It was found that a higher yield 
(83%) was achieved when using 1.5 equiv. of DIPEA 
(entries 2 and 3). Furthermore, the yield was improved to 
94% when screening the amount of acyl chloride (entries 4 
and 5). Three other bases were also tested (entries 6–8) but 
all led to a reduction in the yield of 3a.

Next, other aromatic substrates as internal nucleophilic 
catalysts were examined (Scheme 2). Thiophene and furan 
were less efficient leading to 3b and 3c in moderate yields. 
The 2-methylpyridine was found to be optimal when alter-
ing the carbon chain number between the pyridine ring and 
the amide (3d and 3e). Moreover, replacing the pyridine 
ring with a phenyl ring did not give any product 3f. Thus, 
the optimized reaction conditions with a pyridine ring as 

the internal nucleophilic catalyst were found to be 1.5 equiv. 
of DIPEA and 1.3 equiv. of 2a in CH2Cl2 at room tempera-
ture for 3 h, from which compound 3a was isolated in 94% 
yield (entry 4).

After determining the optimized reaction conditions, we 
then set out to investigate the substrate scope of the amides and 
the acid chlorides. The results are summarized in Scheme 3.

Aliphatic and α,β-unsaturated amides, especially hin-
dered t-butyryl amide, reacted smoothly to produce the tar-
get imides 5a–5d in moderate to excellent yields. Amides 
bearing either electron-donating or electron-withdrawing 
groups on the phenyl ring successfully delivered the desired 
products 5ea–5ej in good to excellent yields. Combined 
with the above results, the transformation still ran smoothly 
regardless of the presence of substituents at ortho, meta, or 
para positions on the phenyl ring (5f–5j). This transforma-
tion was also applicable to heteroaryl amides (5k and 5l). 
Next, the scope of the acyl chlorides was examined. Acetyl 
chloride and 2-methoxyacetyl chloride reacted with cin-
namamide to deliver the products 5m and 5n in 90% and 
82% yields, respectively. As in the case of benzamide and 
isobutyramide, conjugated acyl chlorides and various func-
tional-group-substituted alkyl acyl chlorides also reacted 
smoothly to provide the corresponding imides 5o–5u. It 
was noteworthy that when a diamide was used as the sub-
strate, product 5v was obtained as the sole product.

Table 1. Optimization of the reaction conditions.a
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O
Base
CH2Cl2

1a 2a 3a

Entry Base (equiv.) 2a (equiv.) Yieldb (%)

1 DIPEA (1.0) 1.0 51
2 DIPEA (1.5) 1.0 83
3 DIPEA (2.0) 1.0 82
4 DIPEA (1.5) 1.3 94
5 DIPEA (1.5) 1.5 93
6 Et3N (1.5) 1.3 48
7 Na2CO3 (1.5) 1.3 23
8 CH3COOK (1.5) 1.3 35

DIPEA: N,N-diisopropylethylamine.
aConditions: 1a (0.2 mmol), CH2Cl2 (2.0 mL), room temperature, 3 h.
bIsolated yields.
Significance for bold value in table 1 was illustrated as the highlighted 
sentence.
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traditional work, (b) Unsworth’s work, and (c) this work.
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Conclusion

In conclusion, we have developed a mild and robust 
N-acylation tactic for the preparation of imides from simple 
amides with acyl chlorides via internal nucleophilic cataly-
sis. The method employs a mild readily available DIPEA as 
the base and thus provides an inexpensive, environmentally 
friendly, and easy to operate route toward diverse imide 
derivatives with good substrate scope. Regarding the wide-
spread distribution of imide fragments, the utility of this 
method in synthetic chemistry is being explored in our 
laboratory.

Experimental analysis

Reagents and solvents were purchased from commercial 
suppliers unless otherwise specified. All reactions were car-
ried out under an air atmosphere. Anhydrous solvents were 
purified and dried following standard procedures. 
Purification was generally done by flash column chroma-
tography on brand silica gel (200–300 mesh size). Thin-
layer chromatography (TLC) analysis was performed on 
brand precoated, glass-backed silica gel plates. Nuclear 
magnetic resonance (NMR) spectra were recorded on a 400-
MHz Bruker spectrometer (400 MHz for 1H NMR, 100 MHz 
for 13C NMR). Chemical shifts (1H and 13C) are given in 
ppm relative to the residual solvent peak (CDCl3, 7.26 ppm, 
77.0 ppm, respectively). High-resolution mass spectra 

(HRMS) were obtained on a Thermo Fisher LC-LTQ-
Orbitrap XL spectrometer. For more information about 
chemical spectra, please see the supplemental material.

General procedure for the synthesis of imides 5. To a 
mixture of amide 4 (0.2 mmol) and DIPEA (0.3 mmol) in 
CH2Cl2 (2 mL) was added acyl chloride 2 (0.26 mmol) drop-
wise at 0 °C. The reaction mixture was stirred at room tem-
perature for 3 h. After completion of the reaction, the mixture 
was poured into water (20 mL) and extracted with CH2Cl2 
(3 × 20 mL). The combined organic layers were dried with 
anhydrous Na2SO4. After removal of the solvents in vacuo, 
the obtained crude product was further purified by column 
chromatography on silica gel, eluting with a mixture of petro-
leum and ethyl acetate (5:1) to give the desired products.

N-Acetyl-N-(pyridin-2-ylmethyl)benzamide (3a): color-
less oil; yield: 47.8 mg, (94%). 1H NMR (400 MHz, CDCl3): 
δ 8.51 (d, J = 4.7 Hz, 1H), 7.70 (d, J = 8.1 Hz, 2H), 7.62 (t, 
J = 7.1 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 
2H), 7.22 (d, J = 7.8 Hz, 1H), 7.17–7.11 (m, 1H), 5.09 (s, 
2H), 2.26 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 174.3, 
173.5, 156.5, 149.2, 136.6, 135.7, 132.2, 128.6, 128.5, 
122.1, 121.4, 50.8, 26.2; HRMS (ESI+): m/z [M + Na]+ 
calcd for C15H14N2O2Na: 277.0947; found: 277.0944.

N-Acetyl-N-(thiophen-2-ylmethyl)benzamide (3b): 
colorless oil; yield: 33.7 mg, (65%). 1H NMR (400 MHz, 
CDCl3): δ 7.60–7.53 (m, 3H), 7.45 (t, J = 7.6 Hz, 2H), 7.21 
(dd, J = 5.0, 1.4 Hz, 1H), 6.93–6.87 (m, 2H), 5.15 (s, 2H), 
2.10 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 173.9, 173.0, 
139.3, 135.7, 132.6, 128.9, 128.5, 127.3, 126.5, 125.8, 
44.0, 26.5; HRMS (ESI+): m/z [M + Na]+ calcd for 
C14H13NO2SNa: 282.0559; found: 282.0569.

N-Acetyl-N-(furan-2-ylmethyl)benzamide (3c): colorless 
oil; yield: 33.5 mg, (69%). 1H NMR (400 MHz, CDCl3): δ 
7.59 (d, J = 8.0 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.44 (t, 
J = 7.6 Hz, 2H), 7.29 (s, 1H), 6.27 (s, 1H), 6.20 (d, J = 3.1 Hz, 
1H), 4.96 (s, 2H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl3): 
δ 174.0, 172.8, 150.4, 142.1, 135.5, 132.5, 128.8, 128.4, 
110.4, 108.4, 42.3, 26.1; HRMS (ESI+): m/z [M + Na]+ 
calcd for C14H13NO3Na: 266.0788; found: 266.0782.

N-Acetyl-N-(2-(pyridin-2-yl)ethyl)benzamide (3d): 
colorless oil; yield: 36.5 mg, (68%). 1H NMR (400 MHz, 
CDCl3): δ 8.43 (d, J = 4.2 Hz, 1H), 7.57 (td, J = 7.65,1.32 Hz, 
1H), 7.51–7.47 (m, 3H), 7.40 (t, J = 7.6 Hz, 2H), 7.15–7.07 
(m, 2H), 4.19 (t, J = 6.9 Hz, 2H), 3.11 (t, J = 6.9 Hz, 2H), 
2.15 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 174.4, 173.3, 
158.5, 149.1, 136.6, 135.4, 132.3, 128.7, 128.5, 123.8, 
121.6, 46.3, 37.1, 25.9; HRMS (ESI+): m/z [M + Na]+ 
calcd for C16H16N2O2Na: 291.1104; found: 291.1121.

N-Pivaloyl-N-(pyridin-2-ylmethyl)benzamide (5a): 
colorless oil; yield: 44.4 mg, (75%). 1H NMR (400 MHz, 
CDCl3): δ 8.54 (d, J = 4.7 Hz, 1H), 7.80 (d, J = 7.1 Hz, 2H), 
7.62 (t, J = 6.9 Hz, 1H), 7.51 (t, J = 6.7 Hz, 1H), 7.41 (t, 
J = 7.4 Hz, 2H), 7.22–7.12 (m, 2H), 4.92 (s, 2H), 1.31 (s, 
9H); 13C NMR (100 MHz, CDCl3): δ 187.4, 174.8, 156.5, 
149.2, 136.6, 134.6, 132.3, 129.0, 128.6, 122.2, 121.6, 
52.6, 43.4, 28.5; HRMS (ESI+): m/z [M + Na]+ calcd for 
C18H20N2O2Na: 319.1417; found: 319.1424.

N-(Cyclopropanecarbonyl)-N-(pyridin-2-ylmethyl)ben-
zamide (5b): colorless oil; yield: 42.6 mg, (76%). 1H NMR 
(400 MHz, CDCl3): δ 8.53 (d, J = 4.4 Hz, 1H), 7.80–7.75 
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(m, 2H), 7.64 (td, J = 7.7, 1.7 Hz, 1H), 7.52 (t, J = 7.4 Hz, 
1H), 7.43 (t, J = 7.5 Hz, 2H), 7.28 (d, J = 7.85, 1H), 7.15 (dd, 
J = 7.2, 5.2 Hz, 1H), 5.21 (s, 2H), 1.59 (ddd, J = 12.4, 7.8, 
4.6 Hz, 1H), 1.07–1.00 (m, 2H), 0.65 (m, 2H); 13C NMR 
(100 MHz, CDCl3): δ 177.9, 173.9, 156.9, 149.3, 136.6, 
136.2, 132.2, 129.0, 128.5, 122.1, 121.4, 50.7, 18.3, 11.7; 
HRMS (ESI+): m/z [M + Na]+ calcd for C17H16N2O2Na: 
303.1104; found: 303.1115.

N-Acryloyl-N-(pyridin-2-ylmethyl)benzamide (5c): 
colorless oil; yield: 47.9 mg, (90%). 1H NMR (400 MHz, 
CDCl3): δ 8.52 (d, J = 4.7 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H), 
7.64 (t, J = 7.7 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.41 (t, 
J = 7.6 Hz, 2H), 7.29 (d, J = 7.8 Hz, 1H), 7.18–7.12 (m, 1H), 
6.31–6.17 (m, 2H), 5.51 (dd, J = 9.1, 2.7 Hz, 1H), 5.21 (s, 
2H); 13C NMR (100 MHz, CDCl3): δ 173.7, 169.2, 156.4, 
149.3, 136.6, 135.8, 132.5, 130.8, 129.1, 128.8, 128.6, 
122.2, 121.5, 50.6; HRMS (ESI+): m/z [M + Na]+ calcd for 
C16H14N2O2Na: 289.0947; found: 289.0951.

N-(3-Phenylpropioloyl)-N-(pyridin-2-ylmethyl)benza-
mide (5d): colorless oil; yield: 60.5 mg, (89%). 1H NMR 
(400 MHz, CDCl3): δ 8.55 (d, J = 4.9 Hz, 1H), 7.88 (d, 
J = 7.5 Hz, 2H), 7.67 (t, J = 7.7 Hz, 1H), 7.53 (t, J = 7.4 Hz, 
1H), 7.45 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.24 
(m, 2H), 7.21–7.13 (m, 1H), 7.09 (d, J = 7.7 Hz, 2H), 5.34 
(s, 2H); 13C NMR (100 MHz, CDCl3): δ 173.4, 156.1, 
155.0, 149.5, 136.6, 136.0, 132.7, 132.6, 130.6, 129.7, 
128.5, 128.3, 122.3, 121.5, 119.5, 95.9, 82.7, 49.9; HRMS 
(ESI+): m/z [M + Na]+ calcd for C22H16N2O2Na: 363.1104; 
found: 363.1113.

N-Benzoyl-N-(pyridin-2-ylmethyl)benzamide (5ea): 
colorless oil; yield: 55.6 mg, (88%). 1H NMR (400 MHz, 
CDCl3): δ 8.52 (d, J = 4.7 Hz, 1H), 7.66 (td, J = 7.7, 1.4 Hz, 
1H), 7.54 (d, J = 7.3 Hz, 4H), 7.39 (d, J = 7.8 Hz, 1H), 7.25 
(t, J = 7.20, 3H), 7.14 (t, J = 7.5 Hz, 5H), 5.34 (s, 2H); 13C 
NMR (100 MHz, CDCl3): δ 174.2, 156.6, 149.3, 136.6, 
136.5, 131.7, 129.1, 128.1, 122.3, 121.8, 51.4; HRMS 
(ESI+): m/z [M + Na]+ calcd for C20H16N2O2Na: 339.1104; 
found: 311.1111.

N-Benzoyl-4-methyl-N-(pyridin-2-ylmethyl)benzamide 
(5eb): colorless oil; yield: 59.3 mg, (90%). 1H NMR 
(400 MHz, CDCl3): δ 8.53 (d, J = 4.9 Hz, 1H), 7.67 (t, 
J = 7.7 Hz, 1H), 7.56 (d, J = 7.4 Hz, 2H), 7.47 (d, J = 7.9 Hz, 
2H), 7.40 (d, J = 7.8 Hz, 1H), 7.25 (d, J = 7.0 Hz, 1H), 7.17 
(t, J = 7.9 Hz, 3H), 6.96 (d, J = 7.9 Hz, 2H), 5.34 (s, 2H), 
2.23 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 174.3, 174.2, 
156.7, 149.3, 142.5, 136.6, 136.5, 133.6, 131.6, 129.3, 
129.0, 128.8, 128.0, 122.2, 121.8, 51.6, 21.4; HRMS 
(ESI+): m/z [M + Na]+ calcd for C21H18N2O2Na: 353.1260; 
found: 353.1262.

N-Benzoyl-4-(tert-butyl)-N-(pyridin-2-ylmethyl)benza-
mide (5ec): colorless oil; yield: 63.3 mg, (85%). 1H NMR 
(400 MHz, CDCl3): δ 8.54 (d, J = 4.4 Hz, 1H), 7.67 (t, 
J = 7.7 Hz, 1H), 7.53 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 8.2 Hz, 
2H), 7.40 (d, J = 7.8 Hz, 1H), 7.22 (t, J = 7.2 Hz, 1H), 7.17–
7.12 (m, 5H), 5.35 (s, 2H), 1.19 (s, 9H); 13C NMR (100 MHz, 
CDCl3): δ 174.4, 174.2, 156.7, 155.3, 149.4, 136.6, 133.5, 
131.4, 129.1, 129.0, 128.0, 125.0, 122.2, 121.8, 51.4, 34.9, 
30.9; HRMS (ESI+): m/z [M + Na]+ calcd for 
C24H24N2O2Na: 395.1730; found: 395.1725.

N-Benzoyl-4-methoxy-N-(pyridin-2-ylmethyl)benza-
mide (5ed): colorless oil; yield: 55.4 mg, (80%). 1H NMR 
(400 MHz, CDCl3): δ 8.59 (d, J = 4.9 Hz, 1H), 7.72 (t, 
J = 7.6 Hz, 1H), 7.63 (dd, J = 8.4, 2.5 Hz, 4H), 7.46 (d, 
J = 7.8 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.23 (q, J = 7.7 Hz, 
3H), 6.73 (d, J = 8.6 Hz, 2H), 5.40 (s, 2H), 3.79 (s, 3H); 13C 
NMR (100 MHz, CDCl3): δ 174.1, 173.7, 162.4, 156.7, 
149.3, 136.5, 131.5, 131.4, 128.9, 128.6, 128.1, 122.1, 
121.7, 113.4, 55.3, 51.6; HRMS (ESI+): m/z [M + Na]+ 
calcd for C21H18N2O3Na: 369.1210; found: 369.1218.

N-Benzoyl-4-chloro-N-(pyridin-2-ylmethyl)benzamide 
(5ee): colorless oil; yield: 63.0 mg, (90%). 1H NMR 
(400 MHz, CDCl3): δ 8.51 (d, J = 4.9 Hz, 1H), 7.67 (t, 
J = 7.7 Hz, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 8.3 Hz, 
2H), 7.37 (d, J = 7.9 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.22–
7.11 (m, 5H), 5.33 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 
174.0, 173.3, 156.3, 149.4, 137.8, 136.6, 136.3, 135.0, 
132.0, 130.4, 129.1, 128.4, 128.3, 122.3, 121.8, 51.4; 
HRMS (ESI+): m/z [M + Na]+ calcd for C20H15ClN2O2Na: 
373.0714; found: 373.0712.

N-Benzoyl-4-bromo-N-(pyridin-2-ylmethyl)benzamide 
(5ef): colorless oil; yield: 71.7 mg, (91%). 1H NMR (400 MHz, 
CDCl3): δ 8.51 (d, J = 4.4 Hz, 1H), 7.67 (td, J = 7.7, 1.8 Hz, 
1H), 7.58–7.53 (m, 2H), 7.47–7.42 (m, 2H), 7.37 (d, J = 7.8 Hz, 
1H), 7.30 (m, 3H), 7.23–7.14 (m, 3H), 5.33 (s, 2H); 13C NMR 
(100 MHz, CDCl3): δ 174.0, 173.4, 156.2, 149.4, 136.5, 
136.2, 135.4, 132.0, 131.3, 130.5, 129.1, 128.3, 126.4, 122.3, 
121.7, 51.4; HRMS (ESI+): m/z [M + Na]+ calcd for 
C20H15BrN2O2Na: 417.0209; found: 417.0208.

N-Benzoyl-N-(pyridin-2-ylmethyl)-4-(trifluoromethyl)
benzamide (5eg): colorless oil; yield: 63.0 mg, (82%). 1H 
NMR (400 MHz, CDCl3): δ 8.52 (d, J = 4.9 Hz, 1H), 7.69 
(d, J = 7.8 Hz, 3H), 7.56 (d, J = 7.5 Hz, 2H), 7.43 (d, 
J = 7.7 Hz, 2H), 7.38 (d, J = 7.6 Hz, 1H), 7.33–7.25 (m, 1H), 
7.19 (t, J = 6.9 Hz, 3H), 5.35 (s, 2H); 13C NMR (100 MHz, 
CDCl3): δ 174.0, 173.0, 156.0, 149.4, 139.9, 136.6, 136.0, 
132.8 (q, J = 32.0 Hz), 132.09, 129.2, 129.1, 128.3, 125.3 
(q, J = 4.0 Hz), 123.4 (d, J = 271.0 Hz), 122.4, 121.8, 51.2; 
HRMS (ESI+): m/z [M + Na]+ calcd for C21H15F3N2O2Na: 
407.0978; found: 407.0970.

N-Benzoyl-4-cyano-N-(pyridin-2-ylmethyl)benzamide 
(5eh): colorless oil; yield: 53.2 mg, (78%). 1H NMR 
(400 MHz, CDCl3): δ 8.52 (d, J = 4.7 Hz, 1H), 7.72–7.65 
(m, 3H), 7.58–7.53 (m, 2H), 7.46 (d, J = 8.3 Hz, 2H), 7.37 
(d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.23–7.17 (m, 
3H), 5.35 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 173.7, 
172.5, 155.7, 149.3, 140.6, 136.8, 135.8, 132.3, 131.8, 
129.3, 129.1, 128.5, 122.5, 121.8, 117.8, 114.6, 51.1; 
HRMS (ESI+): m/z [M + Na]+ calcd for C21H15N3O2Na: 
364.1056; found: 364.1060.

N-Benzoyl-4-(methylsulfonyl)-N-(pyridin-2-ylmethyl)ben-
zamide (5ei): colorless oil; yield: 63.1 mg, (80%). 1H NMR 
(400 MHz, CDCl3): δ 8.53 (d, J = 4.7 Hz, 1H), 7.79–7.67 (m, 
5H), 7.57 (d, J = 7.3 Hz, 2H), 7.38 (d, J = 7.8 Hz, 1H), 7.31 (t, 
J = 7.4 Hz, 1H), 7.20 (t, J = 7.8 Hz, 3H), 5.36 (s, 2H), 2.93 (s, 
3H); 13C NMR (100 MHz, CDCl3): δ 173.8, 172.5, 155.7, 
149.3, 142.4, 141.5, 136.8, 135.9, 132.3, 129.7, 129.2, 128.4, 
127.2, 122.5, 121.8, 51.1, 44.2; HRMS (ESI+): m/z [M + Na]+ 
calcd for C21H18N2O4SNa: 417.0879; found: 417.0881.
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N-Benzoyl-4-nitro-N-(pyridin-2-ylmethyl)benzamide 
(5ej): colorless oil; yield: 65.7 mg, (91%). 1H NMR 
(400 MHz, CDCl3): δ 8.52 (d, J = 4.5 Hz, 1H), 8.02 (d, 
J = 8.6 Hz, 2H), 7.74 (d, J = 8.6 Hz, 2H), 7.69 (t, J = 7.7 Hz, 
1H), 7.58 (d, J = 7.8 Hz, 2H), 7.37 (d, J = 7.8 Hz, 1H), 7.31 
(t, J = 7.4 Hz, 1H), 7.20 (t, J = 7.7 Hz, 3H), 5.36 (s, 2H); 13C 
NMR (100 MHz, CDCl3): δ 173.7, 172.3, 155.7, 149.4, 
148.9, 142.3, 136.7, 135.8, 132.4, 129.8, 129.2, 128.5, 
123.2, 122.5, 121.8, 51.2; HRMS (ESI+): m/z [M + Na]+ 
calcd for C20H15N3O4Na: 384.0955; found: 384.0956.

N-Benzoyl-N-(pyridin-2-ylmethyl)-[1,1′-biphenyl]-2-
carboxamide (5f): colorless oil; yield: 40.5 mg, (80%). 1H 
NMR (400 MHz, CDCl3): δ 8.47 (d, J = 4.5 Hz, 1H), 7.56 
(td, J = 7.7, 1.7 Hz, 1H), 7.43–7.40 (m, 3H), 7.39–7.33 (m, 
3H), 7.27–7.22 (m, 4H), 7.21 (d, J = 11.7 Hz, 1H), 7.18–
7.16 (m, 1H), 7.15–7.12 (m, 1H), 7.12–7.07 (m, 3H), 4.87 
(s, 2H); 13C NMR (100 MHz, CDCl3): δ 174.4, 172.9, 
156.4, 149.3, 139.7, 139.4, 136.6, 136.0, 135.8, 131.6, 
130.3, 129.8, 129.8, 128.7, 128.6, 128.5, 127.9, 127.2, 
122.2, 121.7, 51.0; HRMS (ESI+): m/z [M + Na]+ calcd for 
C26H20N2O2Na: 415.1417; found: 415.1429.

N-Benzoyl-2-bromo-N-(pyridin-2-ylmethyl)benzamide 
(5g): colorless oil; yield: 63.9 mg, (81%). 1H NMR 
(400 MHz, CDCl3): δ 8.55 (d, J = 4.8 Hz, 1H), 7.67 (t, 
J = 7.8 Hz, 1H), 7.57 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 7.6 Hz, 
1H), 7.39 (d, J = 7.9 Hz, 1H), 7.28 (t, J = 8.45, 2H), 7.23–
7.16 (m, 3H), 7.10 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 7.8 Hz, 
1H), 5.35 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 174.0, 
171.1, 156.2, 149.4, 137.8, 136.5, 136.4, 133.3, 131.6, 
131.3, 130.3, 128.6, 128.1, 126.8, 122.3, 121.9, 120.8, 
50.5; HRMS (ESI+): m/z [M + Na]+ calcd for 
C20H15BrN2O2Na: 417.0209; found: 417.0205.

N-Benzoyl-3-methyl-N-(pyridin-2-ylmethyl)benzamide 
(5h): colorless oil; yield: 59.4 mg, (90%). 1H NMR 
(400 MHz, CDCl3): δ 8.53 (d, J = 4.7 Hz, 1H), 7.67 (t, 
J = 7.6 Hz, 1H), 7.54 (d, J = 7.7 Hz, 2H), 7.40 (d, J = 7.8 Hz, 
1H), 7.35 (d, J = 4.5 Hz, 1H), 7.33 (s, 1H), 7.24 (d, J = 7.3 Hz, 
1H), 7.16 (t, J = 7.6 Hz, 3H), 7.04 (d, J = 4.9 Hz, 2H), 5.35 
(s, 2H), 2.21 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 174.4, 
174.3, 156.7, 149.4, 137.9, 136.6, 136.6, 136.3, 132.4, 
131.6, 129.7, 129.0, 128.1, 128.0, 126.3, 122.3, 121.8, 
51.5, 21.1; HRMS (ESI+): m/z [M + Na]+ calcd for 
C21H18N2O2Na: 353.1260; found: 353.1257.

N-Benzoyl-3-methoxy-N-(pyridin-2-ylmethyl)benzamide 
(5i): colorless oil; yield: 54.7 mg, (79%). 1H NMR (400 MHz, 
CDCl3): δ 8.54 (d, J = 4.6 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 
7.56 (d, J = 7.7 Hz, 2H), 7.40 (d, J = 7.9 Hz, 1H), 7.30–7.24 
(m, 1H), 7.21–7.13 (m, 4H), 7.07 (dd, J = 14.7, 6.7 Hz, 2H), 
6.79 (d, J = 8.1 Hz, 1H), 5.35 (s, 2H), 3.70 (s, 3H); 13C NMR 
(100 MHz, CDCl3): δ 174.2, 174.1, 159.2, 156.6, 149.3, 
137.7, 136.7, 136.5, 131.7, 129.2, 129.1, 128.1, 122.3, 121.8, 
121.6, 118.4, 113.7, 55.4, 51.4; HRMS (ESI+): m/z [M + Na]+ 
calcd for C21H18N2O3Na: 369.1210; found: 269.1214.

N-Benzoyl-3-bromo-N-(pyridin-2-ylmethyl)benzamide 
(5j): colorless oil; yield: 67.0 mg, (85%). 1H NMR 
(400 MHz, CDCl3): δ 8.53 (d, J = 4.5Hz, 1H), 7.69 (m, 2H), 
7.55 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 7.4 Hz, 1H), 7.36 (t, 
J = 8.3 Hz, 2H), 7.29 (t, J = 7.29, 1H), 7.23–7.15 (m, 3H), 
7.02 (t, J = 7.8 Hz, 1H), 5.34 (s, 2H); 13C NMR (100 MHz, 
CDCl3): δ 174.0, 172.7, 156.2, 149.4, 138.4, 136.6, 136.3, 

134.3, 132.0, 131.9, 129.6, 129.0, 128.3, 127.5, 122.3, 
122.1, 121.7, 51.3; HRMS (ESI+): m/z [M + Na]+ calcd for 
C20H15BrN2O2 417.0209; found: 417.0214.

N-Benzoyl-N-(pyridin-2-ylmethyl)thiophene-2-carboxa-
mide (5k): colorless oil; yield: 57.3 mg, (89%). 1H NMR 
(400 MHz, CDCl3): δ 8.52 (d, J = 4.7 Hz, 1H), 7.71–7.61 (m, 
3H), 7.44–7.36 (m, 3H), 7.32 (t, J = 7.3 Hz, 1H), 7.24 (t, 
J = 7.32, 2H), 7.20–7.14 (m, 1H), 6.81 (t, J = 4.4 Hz, 1H), 
5.35(s, 2H), 13C NMR (100 MHz, CDCl3): δ 173.5, 167.5, 
156.5, 149.1, 139.5, 136.8, 136.2, 133.3, 133.0, 131.8, 
129.0, 128.3, 127.2, 122.3, 121.8, 51.8; HRMS (ESI+): m/z 
[M + Na]+ calcd for C18H14N2O2SNa: 345.0668; found: 
345.0678.

N-Benzoyl-N-(pyridin-2-ylmethyl)furan-2-carboxamide 
(5l): colorless oil; yield: 53.3 mg, (87%). 1H NMR 
(400 MHz, CDCl3): δ 8.51 (d, J = 4.7 Hz, 1H), 7.66 (dd, 
J = 15.9, 7.7 Hz, 3H), 7.40 (d, J = 7.7 Hz, 1H), 7.33 (t, 
J = 6.1 Hz, 1H), 7.29–7.19 (m, 3H), 7.17–7.11 (m, 1H), 6.95 
(s, 1H), 6.22 (s, 1H), 5.32 (s, 2H); 13C NMR (100 MHz, 
CDCl3): δ 173.3, 162.9, 156.6, 149.4, 147.9, 145.3, 136.6, 
136.0, 131.8, 128.7, 128.1, 122.2, 121.4, 118.8, 112.3, 51.3; 
HRMS (ESI+): m/z [M + Na]+ calcd for C18H14N2O3Na: 
329.0897; found: 329.0902.

N-Acetyl-N-(pyridin-2-ylmethyl)cinnamamide (5m): 
colorless oil; yield: 50.4 mg, (90%). 1H NMR (400 MHz, 
CDCl3): δ 8.56 (d, J = 4.9 Hz, 1H), 7.76 (d, J = 15.5 Hz, 1H), 
7.67 (d, J = 6.36 Hz, 1H), 7.52 (s, 2H), 7.37 (s, 3H), 7.28 (d, 
J = 13.6 Hz, 2H), 7.20 (s, 1H), 5.14 (s, 2H), 2.53 (s, 3H); 13C 
NMR (100 MHz, CDCl3): δ 173.8, 169.4, 156.7, 149.4, 
145.2, 136.9, 134.7, 130.4, 128.8, 128.3, 122.5, 121.7, 
120.5, 49.5, 26.3; HRMS (ESI+): m/z [M + Na]+ calcd for 
C17H16N2O2Na: 303.1104; found: 303.1115.

N-(2-Methoxyacetyl)-N-(pyridin-2-ylmethyl)cinnama-
mide (5n): colorless oil; yield: 50.9 mg, (82%). 1H NMR 
(400 MHz, CDCl3): δ 8.57 (d, J = 4.7 Hz, 1H), 7.76 (d, 
J = 15.5 Hz, 1H), 7.67 (td, J = 1.9, 7.6 Hz, 1H), 7.51 (dd, 
J = 6.6, 2.9 Hz, 2H), 7.37 (dd, J = 5.1, 1.8 Hz, 3H), 7.32 (d, 
J = 7.9 Hz, 1H), 7.26 (d, J = 15.5 Hz, 2H), 7.21 (dd, J = 7.1, 
5.3 Hz, 1H), 5.18 (s, 2H), 4.66 (s, 2H), 3.49 (s, 3H); 13C 
NMR (100 MHz, CDCl3): δ 174.0, 169.1, 156.3, 149.4, 
146.3, 137.0, 134.4, 130.6, 128.9, 128.4, 122.7, 122.2, 
119.3, 74.6, 59.3, 48.8; HRMS (ESI+): m/z [M + Na]+ 
calcd for C18H18N2O3Na: 333.1210; found: 333.1214.

N-(Pyridin-2-ylmethyl)-N-(3,3,3-trifluoropropanoyl)
benzamide (5o): colorless oil; yield: 55.4 mg, (86%). 1H 
NMR (400 MHz, CDCl3): δ 8.52 (d, J = 4.6 Hz, 1H), 7.71–
7.67 (m, 2H), 7.64 (td, J = 7.7, 1.6 Hz, 1H), 7.54 (t, 
J = 7.5 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 6.4 Hz, 
2H), 5.05 (s, 2H), 3.74 (q, J = 9.9 Hz, 2H); 13C NMR 
(100 MHz, CDCl3): δ 174.1, 166.9 (t, J = 3.0 Hz), 155.3, 
149.2, 136.8, 134.4, 132.5, 128.8, 128.4, 123.7 (d, 
J = 276.0 Hz), 122.5, 121.6, 51.3, 41.9 (q, J = 30.0 Hz); 
HRMS (ESI+): m/z [M + Na]+ calcd for C16H13F3N2O2Na: 
345.0821; found: 345.0825.

Propyl Benzoyl(pyridin-2-ylmethyl)carbamate (5p): 
colorless oil; yield: 48.8 mg, (82%). 1H NMR (400 MHz, 
CDCl3): δ 8.56 (d, J = 4.2 Hz, 1H), 7.70–7.62 (m, 3H), 7.48 
(t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 7.8 Hz, 
1H), 7.20–7.13 (m, 1H), 5.18 (s, 2H), 3.92 (t, J = 6.6 Hz, 
2H), 1.27 (h, J = 7.1 Hz, 2H), 0.58 (t, J = 7.4 Hz, 3H); 13C 
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NMR (100 MHz, CDCl3): δ 173.0, 156.9, 155.1, 149.4, 
136.9, 136.6, 131.3, 128.1, 127.8, 122.2, 121.0, 68.7, 50.4, 
21.5, 10.0; HRMS (ESI+): m/z [M + Na]+ calcd for 
C17H18N2O3Na: 321.1210; found: 321.1225.

(E)-N-Isobutyryl-N-(pyridin-2-ylmethyl)but-2-enamide 
(5q): colorless oil; yield: 48.3 mg, (98%). 1H NMR 
(400 MHz, CDCl3): δ 8.52(d, J = 4.8 Hz, 1H), 7.63 (t, 
J = 7.6 Hz, 1H), 7.17 (d, J = 7.3 Hz, 2H), 7.07–6.98 (m, 1H), 
6.48 (d, J = 14.9, 1H), 5.04 (s, 2H), 3.32 (p, J = 6.1, 5.6 Hz, 
1H), 1.89 (d, J = 6.9 Hz, 3H), 1.15 (d, J = 6.6 Hz, 6H); 13C 
NMR (100 MHz, CDCl3): δ 181.5, 169.5, 156.9, 149.3, 
144.9, 136.8, 125.2, 122.3, 121.2, 49.2, 34.8, 19.5, 18.3; 
HRMS (ESI+): m/z [M + Na]+ calcd for C14H18N2O2Na: 
269.1260; found: 269.1256.

Methyl 3-Oxo-3-(N-(pyridin-2-ylmethyl)isobutyramido)
propanoate (5r): colorless oil; yield: 51.7 mg, (93%). 1H 
NMR (400 MHz, CDCl3): δ 8.52 (d, J = 4.8 Hz, 1H), 7.67 (t, 
J = 7.6 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 5.0 Hz, 
1H), 5.12 (s, 2H), 3.93 (s, 2H), 3.73 (s, 3H), 3.05 (p, J = 6.6 Hz, 
1H), 1.10 (d, J = 6.6 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 
181.1, 169.2, 168.0, 156.3, 149.3, 137.1, 122.5, 121.2, 52.3, 
48.7, 46.0, 34.2, 19.2; HRMS (ESI+): m/z [M + Na]+ calcd 
for C14H18N2O4Na: 301.1159; found: 301.1158.

N-(2-Methoxyacetyl)-N-(pyridin-2-ylmethyl)isobutyra-
mide (5s): colorless oil; yield: 45.0 mg, (90%). 1H NMR 
(400 MHz, CDCl3): δ 8.50 (d, J = 4.7 Hz, 1H), 7.64 (td, 
J = 7.7, 1.7 Hz, 1H), 7.23–7.15 (m, 2H), 5.08 (s, 2H), 4.56 
(s, 2H), 3.45 (s, 3H), 3.13 (hept, J = 6.7 Hz, 1H), 1.12 (d, 
J = 6.7 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 181.0, 
174.1, 156.2, 149.3, 136.9, 122.5, 121.5, 74.7, 59.2, 48.2, 
34.2, 19.3; HRMS (ESI+): m/z [M + Na]+ calcd for 
C13H18N2O3Na: 273.1210; found: 273.1218.

N-Isobutyryl-N-(pyridin-2-ylmethyl)cyclopropanecar-
boxamide (5t): colorless oil; yield: 41.8 mg, (85%). 1H 
NMR (400 MHz, CDCl3): δ 8.53 (d, J = 3.8 Hz, 1H), 7.66 
(td, J = 7.7, 1.7 Hz, 1H), 7.18 (dd, J = 7.6, 4.0 Hz, 2H), 5.16 
(s, 2H), 3.41 (p, J = 6.7 Hz, 1H), 2.21–2.15 (m, 1H), 1.17 (d, 
J = 6.7 Hz, 6H), 1.10–1.06 (m, 2H), 0.92–0.87 (m, 2H); 13C 
NMR (100 MHz, CDCl3): δ 181.5, 177.8, 157.1, 149.2, 
137.0, 122.4, 121.1, 49.2, 35.1, 19.6, 15.8, 10.5; HRMS 
(ESI+): m/z [M + Na]+ calcd for C14H18N2O2Na: 269.1260; 
found: 269.1259.

4-Chloro-N-isobutyryl-N-(pyridin-2-ylmethyl)butana-
mide (5u): colorless oil; yield: 54.2 mg, (96%). 1H NMR 
(400 MHz, CDCl3): δ 8.52 (d, J = 33.8 Hz, 1H), 7.65 (t, 
J = 7.6 Hz, 1H), 7.17 (d, J = 7.3 Hz, 2H), 5.06 (s, 2H), 3.60 
(t, J = 6.2 Hz, 2H), 3.27 (p, J = 6.6 Hz, 1H), 2.98 (t, J = 6.8 Hz, 
2H), 2.13 (p, J = 6.56 Hz, 2H), 1.15 (d, J = 6.6 Hz, 6H); 13C 
NMR (100 MHz, CDCl3): δ 181.3, 175.7, 156.6, 149.3, 
136.9, 122.5, 121.2, 48.8, 44.2, 35.1, 34.9, 27.7, 19.4; 
HRMS (ESI+): m/z [M + Na]+ calcd for C14H19ClN2O2Na: 
307.0998; found: 307.0997.

Benzyl (2-(Benzoyl(pyridin-2-ylmethyl)carbamoyl)-6-methyl- 
phenyl)carbamate (5v): colorless oil; yield: 92.0 mg (96%). 
1H NMR (400 MHz, CDCl3): δ 8.28 (d, J = 4.9 Hz, 1H), 7.72 
(dd, J = 8.2, 1.3 Hz, 2H), 7.43 (td, J = 7.7, 1.6 Hz, 1H), 7.34 
(d, J = 7.4 Hz, 1H), 7.29–7.21 (m, 5H), 7.16–7.07 (m, 4H), 
7.04–6.96 (m, 2H), 6.86 (d, J = 6.6 Hz, 2H), 5.06 (s, 2H), 4.91 
(s, 2H), 2.24 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 171.2, 
166.2, 155.8, 154.2, 148.7, 137.0, 135.7, 134.8, 134.5, 133.3, 

133.2, 131.5, 128.5, 128.4, 128.2, 128.2, 127.7, 126.0, 122.1, 
121.6, 69.2, 49.8, 19.0; HRMS (ESI+): m/z [M + Na]+ calcd 
for C29H25N3O4Na: 502.1737; found: 502.1746.
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