



Journal of Coordination Chemistry



ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gcoo20

# Anthracene possessing amide functionality as a *turn-on* fluorescent probe for Cu<sup>2+</sup> and Zn<sup>2+</sup> ions

Navneet Kaur & Baljeet Kaur

To cite this article: Navneet Kaur & Baljeet Kaur (2021) Anthracene possessing amide functionality as a *turn-on* fluorescent probe for  $Cu^{2+}$  and  $Zn^{2+}$  ions, Journal of Coordination Chemistry, 74:4-6, 575-583, DOI: <u>10.1080/00958972.2021.1878160</u>

To link to this article: <u>https://doi.org/10.1080/00958972.2021.1878160</u>

| + |
|---|

View supplementary material 🖸



Published online: 01 Feb 2021.

|--|

Submit your article to this journal  $\square$ 





View related articles 🗹



View Crossmark data 🗹



# Anthracene possessing amide functionality as a *turn-on* fluorescent probe for $Cu^{2+}$ and $Zn^{2+}$ ions

Navneet Kaur and Baljeet Kaur

Department of Chemistry, Panjab University, Chandigarh, Punjab, India

#### ABSTRACT

An anthracene appended PET chemosensor, anthracene-9-carboxylic acid (3,4-dimethoxy-phenyl)-amide (**A**<sub>1</sub>), has been synthesized through condensation of corresponding acyl chloride and 3,4-dimethoxyaniline containing C=O and NH as receptors. The sensor **A**<sub>1</sub> exhibited selective fluorescence *turn-on* behavior towards Cu<sup>2+</sup> and Zn<sup>2+</sup> ions in CH<sub>3</sub>CN. Cu<sup>2+</sup> ions displayed 18-fold enhancement ( $\Phi = 0.006 \rightarrow 0.071$ ) in the fluorescence spectrum of **A**<sub>1</sub>, which are otherwise well known for fluorescence quenching phenomenon. Moreover, **A**<sub>1</sub> could easily discriminate between Zn<sup>2+</sup> and Cd<sup>2+</sup> ions, the two metal ions of similar nature. The Job's plots analysis determined 2:1 (**A**<sub>1</sub>:Cu<sup>2+</sup>/Zn<sup>2+</sup>) stoichiometry between the sensor **A**<sub>1</sub> and Cu<sup>2+</sup>/Zn<sup>2+</sup> ions. The LOD values were calculated to be 1.75 and 3.08  $\mu$ M for Cu<sup>2+</sup> and Zn<sup>2+</sup>, respectively.

#### **ARTICLE HISTORY**

Received 27 July 2020 Accepted 18 November 2020

#### **KEYWORDS**

Chemosensor; turn on; amide sensor; PET



## **1. Introduction**

Metal ion recognition is an important area of research in supramolecular chemistry on account of relevance in biological, environmental and clinical areas [1]. Of various metal ions,  $Zn^{2+}$  ion is of immense importance for processes occurring in the human body and is the second most abundant transition metal ion after iron [2]. It plays

 $\ensuremath{\mathbb{C}}$  2021 Informa UK Limited, trading as Taylor & Francis Group

CONTACT Navneet Kaur 🔯 neet\_chem@yahoo.co.in; neet\_chem@pu.ac.in 🗈 Department of Chemistry, Panjab University, Chandigarh, Punjab, India

Supplemental data for this article is available online at https://doi.org/10.1080/00958972.2021.1878160.

significant roles in various pathological and physiological processes such as apoptosis, catalytic co-factor in enzymatic reactions, regulation of gene expression and neurological signal transmission making it an essential trace element [3–6]. Abnormal levels of  $Zn^{2+}$  ions in a human body is associated with disruption of the ongoing metabolic processes responsible for various neurological disorders, Parkinson's disease and Alzheimer's disease, hypoxia ischemia, epilepsy, *etc.* [7–11]. Numerous fluorescence based chemosensors for  $Zn^{2+}$  ion have been reported. However, it is still a challenge for detecting  $Zn^{2+}$  ions without interference of similar transition metal ions such as  $Cd^{2+}$  [12, 13]. Similarly,  $Cu^{2+}$  is the third essential metal ion in the human body after  $Zn^{2+}$  ions, playing roles of cofactor in various enzymes, cytochrome c oxidase, superoxide dismutase, tyrosinase, galactose oxidase and many more [14, 15]. Abnormal amounts of  $Cu^{2+}$  disrupt the normal functioning of enzymes, affecting kidney, liver and neurological disorders [16].

Anthracene fluorophore has been extensively used as a signaling unit in the fluorescence based chemosensors mainly for detection of metal ions and anions because of its high emission properties. Absorbance and colorimetric based recognition in this case are less, which might be because of difficult perturbations of the ground state of the anthracene  $\pi$ -electron cloud [17–22].

In this work we have synthesized an amide ( $A_1$ ) incorporating anthracene fluorophore with oxygen-rich dimethoxybenzyl moiety through semi-rigid amide functional groups acting as a conjugating spacer. The sensor displayed efficient sensing ability in detecting Cu<sup>2+</sup> and Zn<sup>2+</sup> ions. This is a rare example, where addition of paramagnetic Cu<sup>2+</sup> ions result in fluorescence enhancement by 18-fold.

## 2. Experimental

#### 2.1. Materials and instrumentation

All chemicals and solvents were procured from Aldrich and used without purification. Solvents were purchased from Avra synthesis and dry-distilled following the standard purification methods. Stock solutions of metal perchlorates (Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Al<sup>3+</sup>, Mn<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup> and Hg<sup>2+</sup>) were prepared in double distilled water. For carrying out UV-vis. and fluorescence experiments, distilled CH<sub>3</sub>CN was used as solvent. All experiments were carried out at room temperature (298 K). UV-vis spectra were recorded on a Shimadzu UV-240 spectrophotometer. Fluorescence spectra were scanned on a Hitachi F–7000 equipped with 220–240 V Xe-lamp with a quartz cuvette of 1.0 cm path length. FT-IR spectra were recorded on a Slico FT-IR spectrophotometer from 4000-500 cm<sup>-1</sup>. <sup>1</sup>H NMR spectra were recorded on a Bruker Advance II spectrometer operating at 400 MHz in CDCl<sub>3</sub> using trimethylsilane as internal reference and 13C NMR were collected at 100 MHz.

#### 2.2. General procedure for spectroscopic measurements

Stock solutions of  $A_1$  (10<sup>-2</sup> M) and metal ions (10<sup>-1</sup> M) were prepared in DMSO and de-ionized water, respectively. All metals were added as their perchlorate salts for the UV-vis. and fluorescence experiments. The solutions were allowed to stand



Scheme 1. Synthetic protocol for preparation of sensor A1.

undisturbed for two hours before carrying out optical studies. In fluorescence, the excitation wavelength ( $\lambda_{ex}$ ) was 370 nm along with 5.0 nm of excitation and emission slit widths. The association constants were calculated using the Benesi-Hildebrand equation and LOD values were calculated using formula  $3\sigma/s$ , where  $\sigma$  is standard deviation and s is slope of titration curve between absorption/fluorescence intensity and concentration of ion [23, 24].

#### **2.3.** Synthesis of anthracene-9-carboxylic acid (3,4-dimethoxy-phenyl)-amide (A<sub>1</sub>)

The procedure for synthesis of  $A_1$  is outlined in Scheme 1. Initially acyl chloride 1 was synthesized by taking 9-anthracene carboxylic acid (0.8 gm, 3.8 mmol) and one drop of N,N-dimethylformamide in 3 ml of thionyl chloride in a vacuum dried two neck round bottom flask. After the reaction was complete (4-5 h), the *in situ* generated HCl was removed with a gas trap apparatus containing KOH pallets and excess of N,N-dimethylformamide was removed by vacuum. This formed acyl chloride (1) was further used without purification.

To a stirring solution of **1** (0.5 g, 2.07 mmol) in dry distilled  $CH_3CN$  in a round bottom flask, 3,4-dimethoxyaniline (0.317 g, 2.07 mmol) and  $K_2CO_3$  (0.343 g, 2.48 mmol) were added along with a catalytic amount of TBAHSO<sub>4</sub> (tetrabutylammonium hydrogensulphate). The reaction was monitored via thin layer chromatography and took approx. 6 h to complete. After completion of reaction, the contents of the flask were cooled and filtered. The filtrate was then concentrated and left undisturbed. Light brown crystals of pure **A**<sub>1</sub> were obtained on slow evaporation.

#### 2.4. Characterization of chemosensor A<sub>1</sub>

Light brown solid, yield 60%; m.p.: 214-216 °C; **FT-IR** (cm<sup>-1</sup>) 1656.22 ( $v_{C=O}$ ), 3301.25 ( $v_{N-H}$ ); <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 400 MHz)  $\delta$  (ppm): 8.44 (s, 1H, Ar-H) (e), 8.09 (d, 2H, Ar-H, J=8.52 Hz) (c), 7.96 (d, 2H, Ar-H, J=7.64 Hz) (d), 7.6 (s, 1H, amide NH), 7.55 (s, 1H, Ar-H) (e)



**Figure 1.** Preliminary fluorescence spectral responses in sensor  $A_1$  (20  $\mu$ M) in the presence of 100 equiv. of various metal ions in CH<sub>3</sub>CN on excitation at 360 and 350 nm, respectively.

H) (f), 7.48-7.40 (m, 4H, Ar-H) (a,b), 7.01 (dd, 1H, Ar-H,  $J_1 = 2.24$  Hz,  $J_2 = 6.16$  Hz) (g), 6.79 (d, 1H, Ar-H, J = 8.61 Hz) (h), 3.87 (s, 3H, -OCH<sub>3</sub>), 3.82 (s, 3H, -OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  (ppm): 167.50, 149.27, 146.21, 131.76, 131.64, 131.10, 128.68, 128.63, 128.09, 127.01, 125.64, 124.97, 111.61, 111.46, 104.64, 56.21, 56.07; **ESI-MS**: m/z (relative abundance (%), assignment) = 358.32 [100, (M + 1)<sup>+</sup>]. <sup>1</sup>H NMR, <sup>13</sup>C NMR and ESI-MS spectra of **A**<sub>1</sub> are shown in Figures S1–S3.

#### 3. Results and discussion

#### 3.1. UV-vis spectral properties of sensor A<sub>1</sub>

The UV-vis. preliminary studies of  $A_1$  (20 µM) towards various metal ions such as Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Al<sup>3+</sup>, Mn<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup> and Hg<sup>2+</sup> were performed in CH<sub>3</sub>CN. The absorption spectrum of  $A_1$  exhibited three bands at 345 nm, 362 nm and 382 nm characteristics of anthracene moiety along with a shoulder band at 327 nm, which may be ascribed to n- $\pi^*$  transitions in the molecule [25]. The addition of 100 equiv. of various metal ions and anions did not show any noticeable changes in the spectrum of  $A_1$ , as shown in Figure S4. This behavior can be attributed to the negligible electronic changes in the ground state of sensor  $A_1$ .

#### 3.2. Fluorescence spectral properties of sensor A<sub>1</sub>

The preliminary investigation of fluorescence properties of **A**<sub>1</sub> (20  $\mu$ M) towards metal ions were performed in CH<sub>3</sub>CN on excitation at 360 nm. The sensor displayed a nonfluorescent behavior ( $\Phi = 0.006$ ) in CH<sub>3</sub>CN, probably due to effective PET between anthracene and phenyl ring [26–28]. On addition of 100 equiv. of various metal ions, only Cu<sup>2+</sup> and Zn<sup>2+</sup> ions exhibited significant enhancement of fluorescence intensity. All other metal ions resulted in negligible changes in fluorescence spectrum of **A**<sub>1</sub>. In the presence of 100 equiv. of Cu<sup>2+</sup> and Zn<sup>2+</sup> ions, the fluorescence intensity underwent an increase of 18-fold ( $\Phi = 0.071$ ) and 11-fold ( $\Phi = 0.047$ ), respectively, with emergence of three peaks at 390, 410 and 430 nm corresponding to anthracene



Figure 2. Fluorescence spectra taken in the course of the titration of  $A_1$  (20  $\mu$ M) in CH<sub>3</sub>CN with (a) Cu<sup>2+</sup> ions and (b) Zn<sup>2+</sup> ions; Inset: plot of fluorescence intensity at 390, 410 and 430 nm vs. the concentration of Zn<sup>2+</sup>/Cu<sup>2+</sup> ions ( $\lambda_{ex} = 360$  nm).



Figure 3. Job's plot of  $A_1$  at 410 nm with (a)  $Cu^{2+}$  and (b)  $Zn^{2+}$  ( $\lambda_{ex}$  360 nm).

emission spectrum (Figure 1) [29]. Here, addition of  $Cd^{2+}$  ions did not display any changes in the spectrum, signifying the discriminating nature of **A**<sub>1</sub> between  $Zn^{2+}$  and  $Cd^{2+}$  ions, which otherwise share quite similar chemical properties and binding efficiencies [12, 13].

The emission properties of sensor  $A_1$  were evaluated quantitatively by performing its titration with Cu<sup>2+</sup> and Zn<sup>2+</sup> ions in CH<sub>3</sub>CN. With progressive addition of Cu<sup>2+</sup> ions (0-5.8 equiv.) to 20  $\mu$ M solution of  $A_1$ , the fluorescence intensity increased continuously until the concentration of Cu<sup>2+</sup> ions reached saturation at ~5 equiv. (Figure 2a). Likewise, the progressive addition of Zn<sup>2+</sup> ions from 0 to 9.1 equiv. to  $A_1$  resulted in a similar kind of fluorescence *turn-on* response (Figure 2b). The saturation in the titration was attained at ~8 equiv. of Zn<sup>2+</sup> ions.

The Job's plots revealed 2:1 stoichiometry between  $A_1$  and  $Cu^{2+}/Zn^{2+}$  ions as depicted in Figure 3. Based on the Benesi-Hildebrand equation, the association constants were calculated to be  $6.32 \times 10^5$  and  $4.90 \times 10^5$  M<sup>-2</sup> for  $Cu^{2+}$  and  $Zn^{2+}$  ions, respectively (Figures S5a and S6a). The limit of detection values were calculated to be 1.71 and  $3.08 \,\mu$ M for  $Cu^{2+}$  and  $Zn^{2+}$  ions, respectively (Figures S5b and S6b).

#### 3.3. Interference studies of sensor A<sub>1</sub>

To investigate the selective nature of sensor  $A_1$ , the interference studies were performed. For this purpose, an array of 10 ml solutions of  $A_1$  (20  $\mu$ M) were prepared containing 5/8 equiv. (or 100/160  $\mu$ M) of Cu<sup>2+</sup>/Zn<sup>2+</sup> ions. To each solution, 50/80 equiv.



Figure 4. Interference profile of various metal ions on the fluorescence intensity of (a)  $A_1 + Cu^{2+}$  and (b)  $A_1 + Zn^{2+}$  ( $\lambda_{ex}$  360 nm) in CH<sub>3</sub>CN.



**Figure 5.** FT-IR spectra of  $A_1$  and its complexes,  $A_1$ +Cu<sup>2+</sup> and  $A_1$ +Zn<sup>2+</sup>.

(or 1000/1600  $\mu$ M) of each of the different metal ions were added to the solutions separately and kept undisturbed for 15 min before recording the fluorescence spectra. Selective recognition of Cu<sup>2+</sup>/Zn<sup>2+</sup> by **A**<sub>1</sub> was affected only by the presence of Fe<sup>3+</sup> ions, which caused ~29% decrease in the fluorescence intensity of solution of **A**<sub>1</sub>+Cu<sup>2+</sup> complex (Figure 4a). In the case of Zn<sup>2+</sup> recognition, only Fe<sup>3+</sup> and Cu<sup>2+</sup> ions perturbed the fluorescence intensity of **A**<sub>1</sub>+Zn<sup>2+</sup> solution by causing 36.9% of decrease and 63% of increase in the fluorescence intensity, respectively, among the various added metal ions, as shown in Figure 4b. The fluorescence quenching caused by Fe<sup>3+</sup> ions could be considered to result from paramagnetism of Fe<sup>3+</sup> ions. Number of literature reports points to the deactivation of the excited state by paramagnetic metal ions via a non-radiative quenching process [30, 31].



Scheme 2. Plausible sensing mechanism of  $Cu^{2+}/Zn^{2+}$  ions by sensor A<sub>1</sub>.

#### 3.4. FT-IR studies

FT-IR spectra were recorded for  $A_1$  and its  $Cu^{2+}/Zn^{2+}$  complexes as depicted in Figure 5. The C=O and N-H stretching peaks of  $A_1$  initially present at 1656 and 3301 cm<sup>-1</sup> shifted to 1639 and 3038 cm<sup>-1</sup>, respectively, in the presence of Cu<sup>2+</sup> ions, while in the presence of Zn<sup>2+</sup> ions the corresponding peaks shifted to 1638 and 3238 cm<sup>-1</sup>. These shifts clearly indicated binding of both ions occurred through interaction with C=O group which also affected the strength of the N-H bond of  $A_1$ . Similar interaction can be expected between sensor  $A_2$  and Cu<sup>2+</sup> owing to structural similarities with  $A_1$ .

#### 3.5. Plausible sensing mechanism

The binding mechanism was investigated via fluorescence titration studies and observing the changes in FT-IR spectrum of  $A_1$  and its complexes with  $Cu^{2+}$  and  $Zn^{2+}$  ions (Scheme 2). The PET process occurring from 3,4-dimethoxybenzyl group to the excited state of anthracene core in the amide ( $A_1$ ) was responsible for the fluorescence *turnoff* response. As confirmed from FT-IR data, the  $Cu^{2+}$  and  $Zn^{2+}$  ions bind through carbonyl O atoms of amide receptors  $A_1$  which might hamper the ongoing PET process and thereby releasing the fluorescence, by which anthracene type fluorescence spectrum was observed in  $A_1$ - $Cu^{2+}$  and  $A_1$ - $Zn^{2+}$  complexes.

#### 4. Conclusion

We have synthesized a new anthracene amide chemosensor  $A_1$  with high binding affinities for  $Cu^{2+}/Zn^{2+}$  ions in  $CH_3CN$ . The amide sensor was non-fluorescent owing to PET from di-methoxybenzyl ring to anthracene acceptor. However, enhancement in fluorescence intensity was observed after metal ion binding due

to the inhibition of PET occurring in bare sensors. Here, 18-fold fluorescence enhancement was observed with paramagnetic  $Cu^{2+}$  ions, which are known for fluorescence quenching. Also, sensor **A**<sub>1</sub> could discriminate two chemically similar  $Zn^{2+}$  and  $Cd^{2+}$  metal ions.

#### Acknowledgements

The authors are thankful to the UGC – New Delhi (Grant no. 23/12/2012 (ii) EU-V) for the scholarship, DST PURSE-II (Grant # 48/RPC) New Delhi, India, for financial assistance and Sophisticated Instrumentation Analytical Laboratory, Panjab University, Chandigarh, for providing the instrumentation facility.

#### **Disclosure statement**

No potential conflict of interest was reported by the author(s).

# Funding

This study was funded by DST PURSE II; University Grants Commission.

#### References

- [1] E.L. Que, D.W. Domaille, C.J. Chang. Chem. Rev. , 108, 1517 (2008).
- [2] K.H. Falchuk. Mol. Cell. Biochem. , 188, 41 (1998).
- [3] B.L. Vallee, K.H. Falchuk. Physiol. Rev. , 73, 79 (1993).
- [4] J.M. Berg, Y. Shi. Science , 271, 1081 (1996).
- [5] X. Xie, T.G. Smart. Nature, **349**, 521 (1991).
- [6] J.J.R.F. Da Silva, R.J.P. Williams. *The Biological Chemistry of Elements: The Inorganic Chemistry of Life*, 2nd edn., Oxford University Press, New York 2001
- [7] A. Takeda. Biometals , 14, 343 (2001).
- [8] A.I. Bush. Curr. Opin. Chem. Biol., 4, 184 (2000).
- [9] M.P. Cuajungco, G.J. Lees. Brain Res. Brain Res. Rev. , 23, 219 (1997).
- [10] A.I. Bush. Trends Neurosci, 26, 207 (2003).
- [11] C.F. Walker, R.E. Black. Annu. Rev. Nutr. , 24, 255 (2004).
- [12] P.S. Hariharan, S.P. Anthony. Anal. Chim. Acta., 848, 74 (2014).
- [13] J. Sun, B. Ye, G. Xia, H. Wang. Sens. Actuators B-Chem, 249, 386 (2017).
- [14] H. Tapiero, D.M. Townsend, K.D. Tew. Biomed. Pharmacother. , 57, 386 (2003).
- [15] J. Tkac, I. Vostiar, P. Gemeiner, E. Sturdik. Bioelectrochemistry , 56, 23 (2002).
- [16] L.M. Gaetke, C.K. Chow. *Toxicology*, **189**, 147 (2003).
- [17] T. Gunnlaugsson, A.P. Davis, J.E. O'Brien, M. Glynn. Org. Biomol. Chem., 3, 48 (2005).
- [18] G.Y. Xie, L. Jiang, T.B. Lu. *RSC Adv.*, **2**, 12728 (2012).
- [19] K. Ghosh, A.R. Sarkar. *Tetrahedron Lett*, **50**, 85 (2009).
- [20] G. Zong, G.G. Lu. J. Phys. Chem. C., 113, 2541 (2009).
- [21] J. Prabhu, K. Velmurugan, R. Nandhakumar. J. Anal. Chem. , 70, 943 (2015).
- [22] N. Kaur, G. Dhaka, J. Singh. New J. Chem. , 39, 6125 (2015).
- [23] H.A. Benesi, J.H. Hildebrand. J. Am. Chem. Soc. , 71, 2703 (1949).
- [24] J.D. Winefordner, G.L. Long. Anal. Chem. , 55, 712A (1983).
- [25] A.E. Lee, M.R. Grace, A.G. Meyer, K.L. Tuck. Tetrahedron Lett, 51, 1161 (2010).
- [26] K. Velmurugan, S. Suresh, S. Santhoshkumar, M. Saranya, R. Nandhakumar. Luminescence, 31, 722 (2016).
- [27] W. Gong, K. Hiratani. Tetrahedron Lett, 49, 5655 (2008).

- [28] Z.Q. Hu, C.L. Cui, H.Y. Lu, L. Ding, X.D. Yang. Sens. Actuators B-Chem, 141, 200 (2009).
- [29] S. Mashraqui, T. Khan, M. Chandiramani, R. Betkar, K. Poonia. J. Incl. Phenom. Macrocycl. Chem. , **67**, 361 (2010).
- [30] L. Fu, J. Mei, J.-T. Zhang, Y. Liu, F.-L. Jiang. Luminescence, 28, 602 (2013).
- [31] K. Szaciłowski, W. Macyk, A. Drzewiecka-Matuszek, M. Brindell, G. Stochel. Chem. Rev., 105, 2647(2005).