

Published on Web 09/25/2003

Distinguishing Rate-Limiting Electron versus H-Atom Transfers in Cu₂(O₂)-Mediated Oxidative *N*-Dealkylations: Application of Inter- versus Intramolecular Kinetic Isotope Effects

Jason Shearer, Christiana Xin Zhang, Lanying Q. Hatcher, and Kenneth D. Karlin*

Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218

Received May 4, 2003; E-mail: karlin@jhu.edu

Hydroxylation reactions performed by Cu(I)-dioxygen adducts are biologically important; yet the diverse nature of active site structures and substrate types leaves many mechanistic questions unresolved.^{1–3} For example, tyrosinase *o*-phenol hydoxylations (proceeding from a Cu^{II}₂- μ - η^2 - η^2 -peroxo species) appear to occur via an electrophilic mechanism.^{1,4} However, recent model studies by Tolman and Itoh suggest that Cu^{II}₂-peroxo/Cu^{III}₂-bis- μ -oxo complexes are capable of oxidizing substrates through rate-limiting hydrogen atom transfer (HAT) pathways.^{2a,5,6} Studies on dopamine- β -hydroxylase (D β H) and for peptide oxidative *N*-dealkyation by peptidylglycine α -hydroxylating monooxygenase (PHM) previously implicated Cu-hydroperoxo or Cu-superoxo species facilitating observed HAT reactions; however, recent insights suggest that alternative copper-dioxygen derived active species need to be considered.³

To better understand how Cu^{II}-peroxo species oxidize substrates, we recently reported on the preparation of a series of Cu^I complexes, $[Cu^{I}(MePY2)^{R'}]^{+}$, where Cu is contained within bis[2-(2-(4-R'pyridyl)ethyl]methylamine tridentate ligands (MePY2^{R'}, R' = H, MeO, Me₂N; Scheme 1).⁷ These complexes readily react with dioxygen, forming the corresponding Cu2^{II}-O2 adducts [(Cu2^{II}- $(MePY2)^{R'}_{2}(O_{2})]^{2+}$ (1^{R'}, R' = H, MeO, Me₂N), where the Cu₂^{II}peroxo complex is in equilibrium with the corresponding Cu2IIIbis- μ -oxo adduct.⁷⁻⁹ Also, $\mathbf{1}^{\mathbf{R}'}$ readily oxidize substrates such as tetrahydrofuran (THF), alcohols, and N,N-dimethylaniline (DMA).9 para-Substituted DMAs (R-DMAs) have been used as mechanistic probes, distinguishing between rate-limiting HAT or electrontransfer (ET) pathways, for example in cytochrome P450 (P450) chemistry (Scheme 2).¹⁰ Here, we wish to communicate that the use of R-DMAs has yielded rich new insight into the nature of oxidations induced by Cu(I)-dioxygen adducts. In fact, oxidations by $1^{\mathbf{R}'}$ can occur through both a rate-limiting ET or a HAT pathway, as has been suggested for high valent Fe-oxo porphyrinates.^{10,11}

Dichloromethane solutions of dioxygen adducts $\mathbf{1}^{\mathbf{R}'}$ under argon (with excess O₂ removed) at -80 °C readily react with R-DMA (R = MeO, Me, H, CN), affording the corresponding *para*substituted *N*-methylaniline (R-MA) and formaldehyde in good yields.^{7,12,13} With *N*,*N*-dibenzylaniline as substrate, isolation of the benzaldehyde product from O₂ versus ¹⁸O₂ reactions¹⁴ suggests a "rebound" type mechanism analogous to P450 chemistry. This indicates an overall C-H bond homolysis proceeding through either an ET followed by a proton transfer (PT), *or* a HAT pathway (Scheme 2a and b, respectively).

Because the oxidative *N*-dealkylation yields of R-MA closely compare for a given $1^{R'}$ (Table S1),¹³ we can determine the relative rates of these reactions using competition studies and measured R-MA yields. Oxidative competition reactions induced by 1^{H} run in a 1:1 mixture of R-DMA:H-DMA demonstrate a strong R-group dependence on the relative rates (k_{rel}). As R is made more electron-donating, k_{rel} increases (Table 1). A linear free-energy correlation gives a large negative ρ value ($\rho = -2.1$, $r^2 = 0.99$).¹⁴ Scheme 1

Scheme 2

Table 1. krel: R-DMA Competition Studies (CH₂Cl₂, -80 °C)¹⁶

	1 ^н	1 ^{Me2N}	1 ^{MeO}	σ^+
MeO-DMA	11.4 (3)	2.3 (2)	12.4 (2)	-0.65
Me-DMA	2.5 (1)	1.2 (1)	2.2 (1)	-0.26
H-DMA	1.0	1.0	1.0	0.00
CN-DMA	0.02(1)	0.53 (3)	0.48(1)	0.67
$\rho(r^2)$	-2.1 (0.99)	-0.47 (0.98)	-0.99 (0.92)	

Table 2. KIE_{intra} versus KIE_{inter} for the N-Dealkylation of R-DMA in CH_2Cl_2 at - 80 $^\circ C^{17}$

	1 ^{H a}	1 ^{Me2N} a	1 ^{MeO a}	E _{1/2} ^b
MeO-DMA	4.7 (8)/	7.3 (4)/	7.5 (2)/	0.53
	1.7 (6)	2.7 (2)	2.3 (4)	
Me-DMA	4.6 (6)/	5.8 (8)/	5.0 (7)/	0.72
	2.3 (3)	3.8 (2)	3.0 (2)	
H-DMA	4.1 (6)/	12.0 (9)/	6.1 (7)/	0.92
	2.4 (6)	11.4 (15)	2.7 (6)	
CN-DMA	2.6 (8)/	14.9 (7)/	13.9 (11)/	1.21
	2.1 (8)	15.0 (4)	13.1 (19)	

^a KIE_{intra}/KIE_{inter}. ^b CH₂Cl₂ at room temperature (V vs SCE).^{10b}

Scheme 3

Such a situation is suggestive of a rate-limiting ET process,¹⁵ followed by a PT from the DMA radical cation to the Cu-oxo core.

This rate-limiting ET mechanism is also supported by the intraand intermolecular deuterium kinetic isotope effect profiles (KIE_{intra} and KIE_{inter}, see Table 2 and Scheme 3).^{10a,b,13} In the case of the intramolecular *N*-dealkylation reactions, the KIE_{inter} profile for 1^H shows a sharp increase as σ^+ (and $E_{1/2}$) for R–DMAs become more negative, eventually reaching an asymptote (Table 2, Figure S4). Better H versus D differentiation occurs because the proton-transfer step becomes slower with DMA radical-cation stabilization by the electron-donating group. This translates into a larger KIE_{intra}. In the case of the intermolecular reaction, there is a negligible difference in the isotope effect (KIE_{inter}) as σ^+ becomes more negative (Table 2), indicating that the ET event is mostly irreversible. If there was a reversible preequilibrium ET followed by a rate-limiting PT (peET/PT), one would expect to observe a KIE_{inter} profile that increases as σ^+ becomes more positive.^{10g} The flat KIE_{inter} profile indicates that the PT step has little influence on the overall oxidation of R–DMA by **1^H**. In other words, the product is determined by the (mostly irreversible) ET in the intermolecular reaction, and not the PT step.

A rate-limiting ET is also supported by comparison of the absolute values obtained for KIE_{intra} versus KIE_{inter} (see Scheme 3). This is a powerful mechanistic probe for distinguishing between an ET or a HAT process.^{10e} For a HAT mechanism, the KIE_{intra} should be nearly identical to the KIE_{inter}.^{10e} This is because the rate of HAT versus deuterium atom transfer will be proportional to the C-H versus C-D bond dissociation enthalpies (BDEs). The difference in BDEs should be approximately the same in the intraversus the intermolecular reaction. In the case of the ET process, the expectation is that $KIE_{inter} \leq KIE_{intra}$.^{10e} This is because in the intermolecular reaction the product will be determined by the ET event, while in the intramolecular reaction the PT event can potentially determine the product. For 1^H, the values obtained for KIE_{inter} are all less than those obtained for KIE_{intra}, which fully supports a rate-limiting ET pathway for the oxidative N-dealkylation of R-DMA (Table 2, Scheme 2a). Also, both KIE_{intra} and KIE_{inter} values are relatively small in magnitude, in line with a rate-limiting ET mechanism.¹⁷

The situation is different in the case of 1^{Me2N} . Competition reactions do not show a strong R-group dependence, with k_{rel} increasing only slightly as R is made more electron donating, Table 1. This is reflected in the linear free-energy correlation¹³ which yielded a ρ value consistent with either ET or HAT ($\rho = -0.49$, $r^2 = 0.98$).¹⁵ The KIE profiles are largely inconclusive (Table 2), showing no distinct pattern for either HAT or ET.¹³ In the case of both KIE_{inter} and KIE_{intra}, what is observed is a general increase in KIE as σ^+ becomes more positive. Furthermore, the KIEs become large in magnitude, consistent with a rate-limiting C–H bond cleavage. This could occur through a switch in mechanism from rate-limiting ET, to either a HAT or a peET/PT.^{10g}

A comparison of the magnitudes of the KIE_{inter} versus KIE_{intra} using the criterion mentioned above sheds further light on our results. For R = MeO and Me, the data suggest that 1^{Me2N} oxidizes R-DMA through a rate-limiting ET mechanism (KIE_{inter} < KIE_{intra}), while for the less reducing R-DMAs (H and CN), oxidation appears to occur through a rate-limiting HAT (KIE_{inter} \approx KIE_{intra}). This is strong evidence in favor of a HAT mechanism. In addition, we favor the HAT over a peET/PT mechanism, as follows: In the case of 1^H, we established rate-limiting ET (vide supra). However, 1^{Me2N} is a weaker one-electron oxidant,¹⁸ and the μ -oxo groups in its Cu₂O₂ moiety should be more basic (as it possesses the stronger donor ligand MePY2^{Me2N}).7 Thus, one would expect slower electron transfer and faster proton transfer in reactions of R-DMAs with 1^{Me2N} relative to 1^H; that is, ET would still be rate-limiting. Yet, the KIE values and criteria indicate this is not the case. Thus, peET/ PT is unlikely, and we conclude that HAT is operative for H- and CN-DMA in oxidations with 1^{Me2N}. Other precedent comes from (a) that P450 may operate in a similar manner (ET for easily oxidized substrates and HAT for others),¹¹ while (b) studies performed by Tolman and Itoh suggest that Cu₂O₂ complexes are capable of performing HAT reactions from alkyl- and benzylamines.^{5,6}

It therefore appears reasonable that as R–DMAs become harder to oxidize, there is a shift in mechanism for oxidative *N*-dealkylation by copper-dioxygen adduct 1^{Me2N} from ET to HAT. By similar criteria, a changeover in mechanism is also suggested for 1^{MeO} (data in Table 2) where the less easily oxidized CN–DMA reacts via a rate-limiting HAT pathway and the other substrates (R = H, Me, MeO) are oxidized though an ET pathway.

In conclusion, we have shown that both HAT and ET mechanisms occur for the oxidation of R–DMAs by dioxygen adducts $\mathbf{1}^{\mathbf{R}'}$. The reaction pathways are controlled by changes in the ease of substrate one-electron oxidation and also the reduction potentials of $\mathbf{1}^{\mathbf{R}'}$ (which are determined by ligand electronics).^{7,8} Coupled to all of this will be changes in the pK_a 's of the bis- μ -oxo-ligands in $\mathbf{1}^{\mathbf{R}'}$, with stronger donor ligands ($\mathbf{R}' = Me_2N$ and MeO) expected to produce better oxo bases (as H^+ acceptors). Further investigations are needed to sort out these details.

Acknowledgment. This work was supported by the NIH (K.D.K., GM28962; J.S., GM 067447).

Supporting Information Available: Experimental details, KIE profiles, and linear free-energy plots (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563-2605.
- (2) (a) Que, L., Jr.; Tolman, W. B. Angew. Chem., Int. Ed. 2002, 41, 1114.
 (b) Stack, T. D. P. Dalton Trans. 2003, 1881–1889.
- (3) Francisco, W. A.; Blackburn, N. J.; Klinman, J. P. Biochemistry 2003, 42, 1813–1819.
- (4) Pidcock, E.; Obias, H. V.; Zhang, C. X.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 7841–7847.
- (5) Itoh, S.; Taki, M.; Nakao, H.; Holland, P. L.; Tolman, W. B.; Que, L., Jr.; Fukuzumi, S. Angew. Chem., Int. Ed. **2000**, *39*, 398–400.
- (6) Mahapatra, S.; Halfen, J. A.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 11575-11586.
- (7) Zhang, C. X.; Liang, H.-C.; Kim, E.-i.; Shearer, J.; Helton, M. E.; Kim, E.; Kaderli, S.; Incarvito, C. D.; Zuberbühler, A. D.; Rheingold, A. L.; Karlin, K. D. J. Am Chem. Soc. 2003, 125, 634.
- (8) Henson, M. J.; Vance, M. A.; Zhang, C. X.; Liang, H.-C.; Karlin, K. D.; Solomon, E. I. J. Am Chem. Soc. 2003, 125, 5186–5192.
- (9) The R' group identity influences the peroxo/bis-µ-oxo equilibrium (more bis-µ-oxo isomer is present with more electron-donating R')⁸ and rates of THF and MeOH oxidation (>1500× increase in THF oxidation rate for R' = Me₂N vs R' = H).⁷
- (10) (a) Karki, S. B.; Dinnocenzo, J. P.; Jones, J. P.; Korzekwa, K. R. J. Am. Chem. Soc. 1995, 117, 3657–3664. (b) Goto, Y.; Watanabe, Y.; Fukuzumi, S.; Jones, J. P.; Dinnocenzo, J. P. J. Am. Chem. Soc. 1998, 120, 10762–10763. (c) Dinnocenzo, J. P.; Karki, S. B.; Jones, J. P. J. Am. Chem. Soc. 1993, 115, 7111–7116. (d) Manchester, J. I.; Dinnocenzo, J. P.; Higgins, L. A.; Jones, J. P. J. Am. Chem. Soc. 1997, 119, 5069–5070. (e) Baciocchi, E.; Lanzalunga, O.; Lapi, A.; Manduchi, L. J. Am. Chem. Soc. 1998, 120, 5783–5787. (f) Okazaki, O.; Guengerich, F. P. J. Biol. Chem. 1993, 268, 1546–1552. (g) Guengerich, F. P.; Yun, C.-H.; Macdonald, T. L. J. Biol. Chem. 1996, 271, 27321–27329.
- (11) (a) Sato, H.; Guengerich, F. P. J. Am. Chem. Soc. 2000, 122, 8099–8100. (b) Stearns, R. A.; de Monetellano, P. R. O. J. Am. Chem. Soc. 1985, 107, 4081–4082. (c) Hall, L. R.; Hanzlik, R. P. J. Biol. Chem. 1990, 265, 12349–12355.
- (12) Yields for R-MA are 1^{H} , ~60%; 1^{MeO} , ~80%; and 1^{Me2N} , ~90%.
- (13) See Supporting Information.
- (14) Yields are low, and 18-O incorporation in benzaldehyde varied from 36% to 68%. We suspect the low yields are due to unfavorable steric interactions between the dibenzyl groups and the Cu₂(O₂) core, and that the low isotope incorporation is due to exchange of the carbonyl oxygen with residual water in the solvent.¹³
- (15) Johnson, C. D. *The Hammett Equation*; Cambridge University Press: Cambridge, U.K., 1973.
- (16) Going from a 10- to 100-fold excess of substrate did not change the relative yields.
- (17) All KIE values are within the semiclassical limit for ET and HAT reactions at -80 °C ($k_{\rm H}/k_{\rm D}$ could reach a maximum of 23.1).
- (18) Shearer, J.; Karlin, K. D., unpublished results. For example, 1^H will oxidize certain ferrocene derivatives that 1^{Me2N} will not.

JA0359409