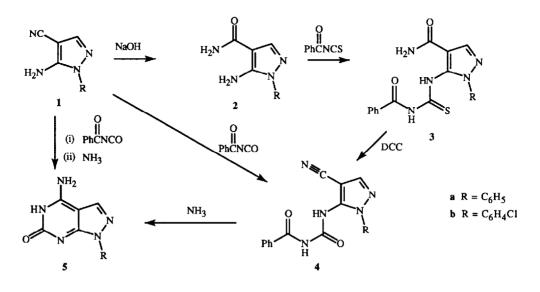
Pyrazolo[3,4-d]pyrimidine Analogues of Isoguanine

Ronald J. Quinn* and Peter J. Scammells

School of Science, Griffith University, Brisbane, 4111, Australia.

Key Words: 4-amino-1-phenyl-5H-pyrazolo[3,4-d]pyrimidin-6-one; isoguanine analogue; nucleosides; isocyanate; ring annulation

Abstract: 4-Amino-1-phenyl-511-pyrazolo[3,4-d]pyrimidin-6-one (5a) was synthesized in 68% yield in a one pot reaction involving the condensation of 5-amino-1-phenylpyrazole-4-carbonitrile with benzoyl isocyanate followed by an annulation with ammonia.


The synthesis of 1-substituted isoguanosines is readily achieved via isocyanate addition to 5-aminoimidazole-4-carbonitrile derivatives, followed by ring closure of the resultant 5-(carbamoylamino)imidazole-4-carbonitriles.¹ The synthesis of isoguanosine, the parent compound having no additional substitutents in the 6-membered pyrimidine ring, as well as the isomeric guanosine², in reasonable yield has proven more elusive. Recent syntheses of isoguanosine recognised the facile ring closure of 5-(carbamoylamino)imidazole-4-carbonitriles achieving these intermediates via desulphurisation with dicyclohexylcarbodiimide (DCC)³ or mercury salts⁴. Isoguanosine was synthesized in 68% overall yield from 5-amino-1- β -D-ribofuranosylimidazole-4-carboxamide via DCC desulphurisation.³

A similar synthetic challenge arose in the synthesis of the analogous unsubstituted 6-membered pyrimidine ring of 4-amino-1-phenyl-5*H*-pyrazolo[3,4-*d*]pyrimidin-6-one (**5a**). The substituted pyrimidine ring analogues were readily synthesized and have receptor affinity at A₁ and A₂ adenosine receptors.⁵ Following the desulphurisation strategy³ we accomplished the synthesis of **5a** in 28% yield from 5-amino-1-phenylpyrazole-4-carbonitrile (**1a**) via **2a**, **3a** and **4a**.⁶ As this pathway involved nitrile to amide to nitrile conversion we now report a synthesis that avoids this iteration. **1a** and benzoyl isocyanate (1.5 equiv) in DMF were stirred at 60°C for 12 hrs. The solvent was evaporated under reduced pressure to produce a white solid which was recrystallised from a mixture of ethyl acetate and hexane to yield $5-(N^1-benzoylcarbamoyl)amino-1$ phenylpyrazole-4-carbonitrile (**4a**).⁷**4a**was dissolved in a mixture of DMF and ammonium hydroxide (28%)and stirred at room temperature for 48 hrs. The solvent was evaporated under reduced pressure and the crudeproduct recrystallised from DMSO and water to afford pure**5a**in 50% overall yield from**1a**.⁸ 5-Amino-1-(3-chlorophenyl)pyrazole-4-carbonitrile (**1b**) was used to prepare 4-amino-1-(3-chlorophenyl)-5*H*pyrazolo[3,4-*d*]pyrimidin-6-one (**5b**) in 65% overall yield.^{9,10}

The synthesis of **5a** from **1a** in a one pot reaction could be achieved, even though the base required to effect ring closure could not be added to the initial reaction mixture as it resulted in formation of a complex mixture. **1a** and benzoyl isocyanate (1.5 equiv) in DMF were stirred at 60°C for 12 hrs, ammonium hydroxide (28 %) added, the reaction mixture stirred at 60°C for a further 24 hrs, and workup as above gave pure **5a** in 68% overall yield.

Acknowledgements

Support of this work by the National Health and Medical Research Council is gratefully acknowledged. We acknowledge the award of an Australian Postgraduate Research Award to PJS.

REFERENCES

- 1. Quinn, R. J.; Gregson, R. P.; Cook, A. F.; Bartlett, R. T. Tetrahedron Lett. 1980, 21, 567-568.
- Alhede, B.; Clausen, F. P.; Juhl-Christensen, J.; McCluskey, K. K.; Preikschat H. F. J. Org. Chem. 1991, 56, 2139-2143.
- 3. Chern, J.-W.; Lee, H.-Y.; Huang, M.; Shish, F.-J. Tetrahedron Lett. 1987, 28, 2151-2154.
- 4. Reese, C. B.; Sanghvi, Y. S.; Kuroda, R. J. Chem. Soc., Perkin Trans. I., 1987, 1527-1531.
- 5. Harden, F. A.; Quinn, R. J.; Scammells, P. J. J. Med. Chem., in press.
- 6. Quinn, R. J.; Scammells P. J. Aust. J. Chem., 1991, 44, 1001-1005.
- Compound 4a : mp 194-195.5°C. IR (KBr) : 3250, 3200, 1700, 1670 cm⁻¹. ¹H-NMR (250.12 MHz, DMSO-d₆) : δ 7.49-7.99 (m, 10H, C_{arom}H), 8.30 (s, 1H, C₃H), 10.98 (br s, 1H, NH), 11.33 (br s, 1H, NH). ¹³C-NMR (62.8 MHz, DMSO-d₆) : δ 89.2 (s, C₄), 112.9 (s, CN), 124.4 (d), 128.4 (d), 128.6 (d), 129.1 (d), 129.5 (d), 131.7 (s), 133.4 (d), 137.2 (s), 140.4 (s, C₅), 142.4 (d, C₃), 150.9 (s, C=O), 168.5 (s, C=O).
- 8. Compound **5a** : mp 345-348°C. IR (KBr) 3350, 3180, 1670 cm⁻¹. ¹H NMR (250.12 MHz, DMSO-d₆) : δ 7.21-8.13 (m, 5H, C_{arom}H), 7.27 (br s, 1H, NH), 8.14 (s,1H, H₃), 8.71 (br s, 1H, NH), 11.92 (br s, 1H, NH). ¹³C NMR (62.8 MHz, DMSO-d₆) : δ 92.7 (s, C_{3a}), 120.3 (d, C_{2',6}), 125.4 (d, C_{4'}), 128.8 (d, C_{3',5'}), 135.5 (d, C₃), 139.3 (s, C_{1'}), 153.9 (s,C₄), 156.5 (s, C_{7a}), 157.8 (s, C₆). Anal. Calcd. for C₁₁H₉N₅O : C, 58.14; H, 3.99; N, 30.82. Found : C, 57.9; H, 4.1; N, 30.5.
- 9. Compound **4b** : mp 146-149°C. IR (KBr) 3450, 2220, 1720, 1660 cm⁻¹. ¹H NMR (250.12 MHz, DMSO-d₆) : δ 7.50-8.00 (m, 4H, C_{arom}H), 8.32 (s, 1H, C₃H), 10.96 (br s,1H, NH), 11.40 (br s, 1H, NH). ¹³C NMR (62.8 MHz, DMSO-d₆) : δ 89.6 (s, C₄), 112.7 (s, CN), 122.9 (d), 124.2 (d), 128.4 (d), 128.6 (d), 128.9 (d), 131.2 (d), 131.8 (s), 133.4 (d), 138.4 (s), 140.9 (s, C₅), 142.8 (d, C₃), 150.9 (s, C=O), 168.5 (s, C=O).
- 10. Compound **5b** : mp 355-358°C. IR (KBr) 3450, 3100, 1675 cm⁻¹. ¹H NMR (250.12 MHz, DMSO-d₆) : δ 7.28-8.36 (m, 4H, C_{arom}H), 7.51 (br s, 1H, NH), 8.17 (s, 1H, H₃), 8.79 (br s, 1H, NH), 10.99 (br s, 1H, NH). ¹³C NMR (62.8 MHz, DMSO-d₆) : δ 92.6 (s, C_{3a}), 118.1 (d, C₆'), 119.2 (d, C₂'), 124.9 (d, C₄'),130.6 (d, C₅'), 133.2 (s, C₃'), 136.1 (d, C₃), 140.5 (s, C₁'), 153.6 (s, C₄), 156.2 (s, C_{7a}), 158.5 (s, C₆). Anal. Calcd. for C₁₁H₈N₅OCl : C, 50.49; H, 3.08; N, 26.76. Found : C, 50.6; H, 3.0; N, 26.9.