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Introduction

Ester and amide functionalities are ubiquitous in pharma-
ceuticals, natural products, agriculture, functional materi-
als, and synthetic organic chemistry.1–7 Traditional methods 
for the preparation of esters and amides involve the reac-
tions of carboxylic acids with alcohols or amines.5,6 
However, these methods suffer from dry reaction condi-
tions and the generation of toxic wastes. In recent years, the 
transesterification and aminolysis of esters have repre-
sented alternative routes for the synthesis of various esters 
and amides.8–11 However, transesterification and aminoly-
sis of esters usually require the use of transition-metal cata-
lysts such as Pd,12,13 Co,14 Ru,15,16 and Au,17 excess of 
bases,18,19 metal alkoxides,10,20 carbenes,21–23 and so on,24–28 
which are limited by high costs, low availability, and harsh 
reaction conditions. Moreover, there are only a few exam-
ples involving the transesterification and aminolysis of 
esters using the same system. Thus, the development of an 
efficient, low-cost, and environmentally friendly methodol-
ogy for the synthesis of esters and amides is in high demand.

Phosphorus trichloride (PCl3) is a cheap and readily 
available industrial chemical. Recently, we became 
intrigued by the fact that PCl3 may serve as a green chlorin-
ating reagent due to one molecule of PCl3 having three 

chlorine atoms. The need for esters and amides in our ongo-
ing research encouraged us to investigate methods for their 
synthesis. To the best of our knowledge, there has been no 
report on the reaction of PCl3 with esters that provides the 
corresponding acid chlorides for further reactions, albeit 
there are a few examples of the conversion of tert-butyl 
esters into acid chlorides having been reported, some of 
them using a large excess of chlorinating reagents.29 Herein, 
we report an efficient PCl3-mediated transesterification and 
aminolysis of esters, providing the corresponding esters 
and amides in good-to-high yields (Scheme 1). Notably, 
when a large-scale reaction was conducted, only 2/3 equiv. 
of PCl3 was required.
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Results and discussion

We initiated our research on the transesterification of tert-
butyl benzoate. As demonstrated in Table 1, tert-butyl benzo-
ate (1a) and PCl3 (1.0 equiv.) were stirred in CH3CN at 80 °C 
for 3 h, then MeOH (5.0 equiv.) was added under N2 to afford 
methyl benzoate (2a) in 83% yield (entry 1). Similarly, when 
the reaction was conducted in air, the product was generated in 
92% yield (entry 2). Further reducing or increasing the amount 
of MeOH did not improve the reaction efficiency (entries 3 
and 4). An 87% yield of the product was generated when the 
reaction temperature was lowered to 60 °C (entry 5). To our 
delight, when 2/3 equiv. of PCl3 was used, a 78% yield of 
methyl benzoate was obtained (entry 6). We also examined the 
reactivity of methyl, isopropyl, and phenyl benzoate in this 
reaction. However, no product was detected by gas chroma-
tography–mass spectrometry (GC-MS).

Next, the generality of this transesterification was 
explored. We were pleased to find that the reaction of vari-
ous tert-butyl esters with MeOH proceeded efficiently in 
one-pot to give the corresponding products in good to 
excellent yields. As shown in Table 2, both electron-rich 
and electron-deficient substrates provided the correspond-
ing aryl esters (2a–h) under the optimized reaction condi-
tions in good to excellent yields. A vinyl group at the para 
position was tolerated well (2i) and tert-butyl 2-naphthoate 
underwent this reaction smoothly to give 2j in 90% yield. 

Moreover, benzyl esters such as tert-butyl 2-(naphthalen-
2-yl)acetate, tert-butyl 2-(p-tolyl)acetate, and tert-butyl 
2-phenylpropanoate were also found to be suitable sub-
strates (2k–m). The alkenyl ester tert-butyl cinnamate 
reacted readily to afford methyl cinnamate (2n) in 95% 
yield. It should be noted that alkyl esters, such as tert-butyl 
3-phenylpropanoate and tert-butyl hexanoate, exhibited 
good reactivity, furnishing the expected products 2o and 2p 
in 96% and 94% yield, respectively.

We next explored the reaction of tert-butyl benzoate 
with different alcohols under similar conditions (Table 3). 
Gratifyingly, by prolonging the reaction time to 11 h, etha-
nol and isopropanol were amenable to this transesterifica-
tion and the expected products 2q and 2r were obtained in 

Table 1.  Optimization of the reaction conditions.a

O

O

OMe

O

1) PCl3

1a 2a
2) MeOH

Entry Conditions Yield (%)b

1 sealed tube, N2 83
2 sealed tube, air 92
3 sealed tube, air 44c

4 sealed tube, air 92d

5 sealed tube, 60 °C, air 87
6 sealed tube, 2/3 equiv. of PCl3, air 78

aConditions: (1) 1a (0.3 mmol), PCl3 (0.3 mmol), and CH3CN (0.6 mL) 
were stirred at 80 °C for 3 h under air and (2) MeOH (5.0 equiv.) was 
added and the mixture was stirred at 80 °C for 2 h.
bGC yield based on 1a using dodecane as an internal standard.
cMeOH (3.0 equiv.) was used.
dMeOH (6.0 equiv.) was used.
The bold in Table 1 means the optimal reaction condition.

Table 2.  Substrate scope with various tert-butyl esters.a
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2o: 96%d
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aConditions: (1) 1 (1.3 mmol), PCl3 (1.3 mmol), and CH3CN (2.0 mL) 
were stirred in a sealed 25-mL Schlenk tube at 80 °C for 3 h under air 
and (2) MeOH (5.0 equiv.) was added and the mixture was stirred at 
80 °C for 2 h. Yield of isolated products are given.
bStep (1) was performed at 60 °C for 6 h and step (2) was performed at 
60 °C for 2 h.
cSteps (1) and (2) were performed at 100 °C for 3 and 2 h, respectively.
dSteps (1) and (2) were performed at 60 °C for 3 and 2 h, respectively.

Table 3.  Substrate scope with different alcohols.a
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1) PCl3
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2) R1OH
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2q: 96%

O

O

2r: 84%
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2t: 81%

O

O

2u: 52%

aConditions: (1) 1a (1.3 mmol), PCl3 (1.3 mmol), and CH3CN (2.0 mL) 
were stirred in a sealed tube at 80 °C for 3 h under air and (2) R1OH 
(6.0 equiv.) was added and the mixture was stirred at 80 °C for 11 h. 
Yield of isolated products are given.
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Scheme 1.  PCl3-mediated transesterification and aminolysis of 
tert-butyl esters.
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good to excellent yields. Notably, when sterically hindered 
alcohols, such as cyclohexanol and phenol, were subjected 
to the reaction, 87% and 81% yields of the products 2s and 
2t were achieved, respectively. Benzyl alcohol provided the 
corresponding product 2u in a modest yield.

We subsequently investigated if this PCl3-mediated sys-
tem could be applicable for the aminolysis of tert-butyl 
esters (Table 4). For primary amines, such as aniline, 
4-fluoroaniline, and 4-methoxyaniline, moderate-to-good 
yields of the amidated products 3a–c were obtained. 

Moreover, secondary amines, such as N-methylaniline and 
diphenylamine, were also successfully employed to give 
the amide products 3d and 3e in 83% and 82% yields, 
respectively. To our delight, this aminolysis reaction could 
also be extended to aliphatic amines and aliphatic tert-butyl 
esters giving products 3f–j.

Reactions to synthesize valuable skeletons of bioactive 
molecules were conducted to demonstrate the potential 
synthetic utility of this aminolysis reaction (Scheme 2). 
Thus, dimethylamine and morpholine were subjected to 
this reaction to afford the corresponding skeletons of bioac-
tive molecules30–32 in 77% and 75% yields, respectively 
(equations (1) and (2)). Interestingly, benzenesulfonamide 
could also be converted into the product 3m, which is the 
scaffold of the biologically active compound cyprosulfa-
mide (equation (3)).33

The value of this PCl3-mediated system lies further on 
the scalability of the reaction. As depicted in Scheme 3, 
gram-scale reactions were conducted on 10-mmol scale 
with a reduced quantity of PCl3 usage (2/3 equiv.) and the 
desired products, such as methyl benzoate and N,N-
dibutylbenzamide, were obtained in 81% and 90% yields, 
respectively. As one molecule of PCl3 has three chlorine 
atoms which can be utilized in the reaction, this may 
account for the lower PCl3 loading.34

A series of control experiments have been carried out to 
probe the mechanism (Scheme 4). A 93% yield of benzoyl 
chloride was generated when 1a and PCl3 were stirred in 
CH3CN at 80 °C for 3 h under air (equation (4)). This result 
indicated that acid chlorides are the key intermediates 
which react with alcohols and amines to afford the prod-
ucts. To study the formation of acid chlorides from esters, 
1.5 equiv. of HCl instead of PCl3 were subjected to the reac-
tion and a 90% yield of benzoic acid and 8% of 2a were 

Table 4.  PCl3-mediated aminolysis of tert-butyl esters.a
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3h: 90%c,d 3i: 89%c,d 3j: 48%
e

aConditions: (1) 1a (1.3 mmol), PCl3 (1.3 mmol), and CH3CN (2.0 mL) 
were stirred in a sealed tube at 80 °C for 3 h under air and (2) R2R3NH 
(1.0 equiv.) was added and the mixture stirred at 80 °C for 2 h. Isolated 
yields.
bStep (2) was performed at 100 °C for 2 h.
cAmine (3.0 equiv.) was used.
dSteps (1) and (2) were performed at 60 °C for 6 and 2 h, respectively.
eStep (2) was performed at 80 °C for 0.5 h.
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Scheme 2.  The synthesis of skeletons of bioactive molecules.
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Scheme 3.  Scale-up reactions.
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Scheme 4.  Control experiments.
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Scheme 5.  Possible mechanisms.

obtained, respectively (equations (5) and (6)). The reaction 
was suppressed in the presence of 2.0 equiv. of pyridine 
(equation (7)). We attribute the trace yield of 2a to the neu-
tralization of HCl which was easily formed by the reaction 
of PCl3 with water in air or in the solvent. These results 
indicate that HCl generated in situ plays an important role 
in the reaction. As we reported previously, benzoic acids 

can react with PCl3 or the P-Cl reagent to afford acid chlo-
rides.34 Thus, there are two roles played by PCl3 in this 
reaction: formation of HCl in situ and the chloride reagent.

Based on the above results and our previous reports,29,34 
a possible mechanism has been proposed. As shown in 
Scheme 5, we considered two processes for this reaction. 
The first involves hydrolysis of ester 1 to give the corre-
sponding acid 5 with the aid of HCl. Subsequent reaction of 
acid 5 with (OH)nPCl3-n (n = 0, 1, 2), then forms the corre-
sponding acyl chlorides 4. The second is the complexation 
of 1 with 6 followed by the elimination of a tert-butyl cat-
ion to afford chlorides 7. The resulting intermediate 7 then 
reacts with HCl to afford 4. The reaction of 4 with the alco-
hol or amine provides the product 2 or 3, respectively.

Conclusion

In summary, using cheap and readily available PCl3, an 
efficient transesterification and aminolysis of tert-butyl 
esters has successfully been demonstrated. Mechanistic 
studies revealed that the reaction proceeds via an acid chlo-
ride. This new method provides an efficient and simple pro-
tocol to synthesize a wide range of esters and amides from 
tert-butyl esters. Furthermore, this approach has been 
applied to the synthesis of the frameworks of bioactive 
molecules and is easily scaled up even when 2/3 equiv. of 
PCl3 are used.

Experimental

Unless otherwise noted, all reactions were carried out in 
sealed oven-dried Schlenk tubes under air. Reagents and 
solvents were obtained from commercial suppliers and 
used without purification. Flash column chromatography 
was performed using 200–300 mesh silica gel. Visualization 
on thin-layer chromatography (TLC) was achieved by the 
use of UV light (254 nm). A FULI GC-9790II equipped 
with a flame ionization detector (FID) detector was used to 
analysis the reaction mixture. 1H nuclear magnetic reso-
nance (NMR) and 13C NMR spectra were recorded on a 
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Bruker AV-II 500-MHz NMR spectrometer (1H: 500 MHz, 
13C: 125.76 MHz) in CDCl3 or DMSO-d6. The coupling 
constants J are given in Hz. Chemical shifts for 1H NMR 
are referred to internal Me4Si (0 ppm). GC-MS was recorded 
on a Shimadzu GCMS-QP2010 plus equipped with an elec-
tron ionization (EI) ion source. Substrates 1c,35 1d,36 1f,37 
1g,38 1h–m,39 1n,37 1o,39 and 1p36 were synthesized accord-
ing to the known methods.

Typical procedure for the preparation of the target mol-
ecules: Under air, tert-butyl ester 1 (1.3 or 0.3 mmol), PCl3 
(1.0 equiv.), and CH3CN (0.6 mL) were added to a 25-mL 
sealed Schlenk tube equipped with a magnetic stir bar. The 
mixture was stirred at 80 °C for 3 h. Next, the correspond-
ing alcohol (5.0 equiv.) or amine (1.0 or 3.0 equiv.) was 
added to the reaction and the mixture was stirred at the indi-
cated temperature for the indicated amount of time. The 
mixture was then quenched with aqueous NaHCO3 solution 
and extracted with EtOAc (×3). The combined organic 
layer was dried over MgSO4 and filtered. After evaporation 
of the solvent under reduced pressure, the residue was puri-
fied by column chromatography on silica gel to give the 
analytically pure product 2 or 3.

Methyl benzoate (2a):40 Colorless oil; yield: 86% 
(152.1 mg). Petroleum ether/EtOAc = 10/1. 1H NMR 
(500 MHz, CDCl3): δ 8.07–8.05 (m, 2H), 7.59–7.56 (m, 1H), 
7.47–7.44 (m, 2H), 3.93 (s, 3H). 13C NMR (125.76 MHz 
CDCl3): δ 167.2, 133.0, 130.1, 129.6, 128.4, 52.2. GC-MS 
(EI, 70 eV): m/z = 136 (M+).

Methyl 4-methylbenzoate (2b):40 Colorless oil; yield: 
72% (140.5 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.84 (d, J = 8.0 Hz, 2H), 7.14 (d, 
J = 8.0 Hz, 2H), 3.80 (s, 3H), 2.31 (s, 3H). 13C NMR 
(125.76 MHz, CDCl3): δ 167.2, 143.6, 129.6, 129.1, 127.4, 
51.9, 21.6. GC-MS (EI, 70 eV): m/z = 150 (M+).

Methyl 2,4,6-trimethylbenzoate (2c):41 Colorless oil; 
yield: 83% (192.1 mg). Eluent: petroleum ether/
EtOAc = 10/1. 1H NMR (500 MHz CDCl3): δ 6.66 (s, 2H), 
3.70 (s, 3H), 2.11 (s, 6H), 2.09 (s, 3H). 13C NMR 
(125.76 MHz, CDCl3): δ 170.6, 139.3, 135.2, 130.9, 128.4, 
51.7, 21.1, 19.8. GC-MS (EI, 70 eV): m/z = 178 (M+).

Methyl 4-methoxybenzoate (2d):40 White solid; yield: 
81% (174.8 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.93–7.90 (m, 2H), 6.86–6.83 
(m, 2H), 3.81 (s, 3H), 3.78 (s, 3H). 13C NMR (125.76 MHz, 
CDCl3): δ 166.9, 163.3, 131.6, 122.6, 113.6, 55.4, 51.9. 
GC-MS (EI, 70 eV): m/z = 166 (M+).

Methyl 4-fluorobenzoate (2e):42 Colorless oil; yield: 
85% (170.2 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 8.02–8.00 (m, 2H), 7.08–7.04 
(m, 2H), 3.87 (s, 3H). 13C NMR (125.76 MHz, CDCl3): δ 
165.5, 165.2 (d, JC-F = 252.2 Hz), 131.6 (d, JC-F = 9.3 Hz), 
125.9 (d, JC-F = 2.6 Hz), 114.9 (d, JC-F = 21.9 Hz), 51.6. 
GC-MS (EI, 70 eV): m/z = 154 (M+).

Methyl 4-chlorobenzoate (2f):40 White solid; yield: 94% 
(207.7 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.90 (d, J = 8.5 Hz, 2H), 7.34 (d, 
J = 8.5 Hz, 2H), 3.84 (s, 3H). 13C NMR (125.76 MHz, 
CDCl3): δ 165.8, 138.9, 130.5, 128.2, 128.1, 51.8. GC-MS 
(EI, 70 eV): m/z = 170 (M+).

Methyl 4-(trifluoromethyl)benzoate (2g):40 Light yellow 
oil; yield: 93% (246.6 mg). Eluent: petroleum ether/
EtOAc = 10/1. 1H NMR (500 MHz CDCl3): δ 8.07 (d, 
J = 8.0 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 3.88 (s, 3H). 13C 
NMR (125.76 MHz, CDCl3): δ 165.4, 133.9 (q, JC-

F = 32.7 Hz), 132.9, 129.5, 124.9 (q, JC-F = 3.1 Hz), 123.1 (q, 
JC-F = 272.8 Hz), 52.0. GC-MS (EI, 70 eV): m/z = 204 (M+).

Methyl 4-acetylbenzoate (2h):43 White solid; yield: 64% 
(148.1 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 8.06 (d, J = 8.5 Hz, 2H), 7.94 (d, 
J = 8.5 Hz, 2H), 3.88 (s, 3H), 2.58 (s, 3H). 13C NMR 
(125.76 MHz, CDCl3): δ 197.1, 165.8, 139.7, 133.4, 129.4, 
127.7, 52.0, 26.4. GC-MS (EI, 70 eV): m/z = 178 (M+).

Methyl 4-vinylbenzoate (2i):44 White solid; yield: 63% 
(132.7 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.92 (d, J = 8.5 Hz, 2H), 7.38 (d, 
J = 8.5 Hz, 2H), 6.70–6.64 (m, 1H), 5.79 (d, J = 17.5 Hz, 
1H), 5.30 (d, J = 11.0 Hz, 1H), 3.83 (s, 3H). 13C NMR 
(125.76 MHz, CDCl3): δ 166.4, 141.4, 135.5, 129.4, 128.8, 
125.6, 116.0, 51.6. GC-MS (EI, 70 eV): m/z = 162 (M+).

Methyl 2-naphthoate (2j):40 Light yellow solid; yield: 
90% (217.6 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 8.54 (s, 1H), 7.89 (dd, J = 1.5 Hz, 
8.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.5 Hz, 
2H), 7.54–7.46 (m, 2H), 3.91 (s, 3H). 13C NMR 
(125.76 MHz, CDCl3): δ 167.3, 135.5, 132.5, 131.1, 129.4, 
128.3, 128.2, 127.8, 127.4, 126.7, 125.2, 52.3. GC-MS (EI, 
70 eV): m/z = 186 (M+).

Methyl 2-(naphthalen-2-yl)acetate (2k):45 White solid; 
yield: 70% (182.0 mg). Eluent: petroleum ether/
EtOAc = 10/1. 1H NMR (500 MHz CDCl3): δ 7.74–7.01 (m, 
3H), 7.65 (s, 1H), 7.41–7.32 (m, 3H), 3.71 (s, 2H), 3.62 (s, 
3H). 13C NMR (125.76 MHz, CDCl3): δ 172.1, 133.5, 
132.5, 131.5, 128.3, 128.0, 127.7, 127.7, 127.4, 126.2, 
125.9, 52.2, 41.4. GC-MS (EI, 70 eV): m/z = 200 (M+).

Methyl 2-(p-tolyl)acetate (2l):46 Colorless oil; yield: 
96% (204.7 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.07–7.02 (m, 4H), 3.57 (s, 3H), 
3.48 (s, 2H), 2.22 (s, 3H). 13C NMR (125.76 MHz, CDCl3): 
δ 171.8, 136.3, 130.5, 128.9, 128.7, 51.6, 40.3, 20.6. 
GC-MS (EI, 70 eV): m/z = 164 (M+).

Methyl 2-phenylpropanoate (2m):47 Light yellow oil; 
yield: 95% (202.5 mg). Eluent: petroleum ether/
EtOAc = 10/1. 1H NMR (500 MHz CDCl3): δ 7.39–7.34 (m, 
4H), 7.31–7.28 (m, 1H), 3.78 (q, J = 7.0 Hz, 1H), 3.69 (s, 
3H), 1.55 (d, J = 7.0 Hz, 3H). 13C NMR (125.76 MHz, 
CDCl3): δ 174.5, 140.1, 128.2, 127.0, 126.7, 51.6, 45.0, 
18.2. GC-MS (EI, 70 eV): m/z = 164 (M+).

Methyl cinnamate (2n):42 Light yellow solid; yield: 95% 
(200.1 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.63 (d, J = 16.0 Hz, 1H), 7.47–
7.45 (m, 2H), 7.33–7.30 (m, 3H), 6.38 (d, J = 16.0 Hz, 1H), 
3.74 (s, 3H). 13C NMR (125.76 MHz, CDCl3): δ 167.5, 
144.9, 134.4, 130.3, 128.9, 128.1, 117.8, 51.7. GC-MS (EI, 
70 eV): m/z = 162 (M+).

Methyl 3-phenylpropanoate (2o):48 Light yellow oil; 
yield: 96% (204.7 mg). Eluent: petroleum ether/
EtOAc = 10/1. 1H NMR (500 MHz CDCl3): δ 7.19–7.16 (m, 
2H), 7.11–7.08 (m, 3H), 3.55 (s, 3H), 2.85 (t, J = 7.5 Hz, 
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2H), 2.52 (t, J = 8.0 Hz, 2H). 13C NMR (125.76 MHz, 
CDCl3): δ 172.9, 140.2, 128.1, 127.8, 125.8, 51.2, 35.3, 
30.5. GC-MS (EI, 70 eV): m/z = 164 (M+).

Methyl hexanoate (2p):40 Colorless oil; yield: 94% 
(158.9 mg). Eluent: petroleum ether. 1H NMR (500 MHz 
CDCl3): δ 3.60 (s, 3H), 2.23 (t, J = 7.5 Hz, 2H), 1.59–1.53 
(m, 2H), 1.27–1.22 (m, 4H), 0.83 (t, J = 7.0 Hz, 3H). 13C 
NMR (125.76 MHz, CDCl3): δ 174.3, 51.4, 34.1, 31.3, 
24.6, 22.3, 13.9. GC-MS (EI, 70 eV): m/z = 130 (M+).

Ethyl benzoate (2q):47 Light yellow oil, yield 96% 
(187.2 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.99–7.97 (m, 2H), 7.50–7.46 
(m, 1H), 7.38–7.35 (m, 2H), 4.31 (q, J = 7.5 Hz, 2H), 1.33 
(t, J = 7.0 Hz, 3H); 13C NMR (125.76 MHz, CDCl3): δ 
166.7, 132.8, 130.5, 129.5, 128.3, 61.0, 14.4. GC-MS (EI, 
70 eV): m/z = 150 (M+).

Isopropyl benzoate (2r):47 Light yellow oil; yield: 84% 
(179.1 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.94–7.95 (m, 2H), 7.47–7.44 
(m, 1H), 7.36–7.33 (m, 2H), 5.21–5.14 (m, 1H), 1.29 (d, 
J = 6.5 Hz, 6H). 13C NMR (125.76 MHz, CDCl3): δ 166.1, 
132.7, 130.9, 129.5, 128.3, 68.4, 22.0. GC-MS (EI, 70 eV): 
m/z = 164 (M+).

Cyclohexyl benzoate (2s):49 Light yellow oil; yield: 87% 
(230.7 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 7.98–7.96 (m, 2H), 7.46–7.43 
(m, 1H), 7.35–7.32 (m, 2H), 4.97–4.92 (m, 1H), 1.87–1.84 
(m, 2H), 1.71–1.69 (m, 2H), 1.52–1.47 (m, 3H), 1.40–1.24 
(m, 3H). 13C NMR (125.76 MHz, CDCl3): δ 166.0, 132.7, 
131.0, 126.5, 128.3, 73.0, 31.7, 25.5, 23.7. GC-MS (EI, 
70 eV): m/z = 204 (M+).

Phenyl benzoate (2t):47 White solid; yield: 81% 
(208.5 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 8.15–8.13 (m, 2H), 7.58–7.55 
(m, 1H), 7.46–7.42 (m, 2H), 7.38–7.34 (m, 2H), 7.22–7.17 
(m, 1H), 7.15–7.13 (m, 2H). 13C NMR (125.76 MHz, 
CDCl3): δ 165.2, 151.0, 133.6, 130.2, 129.6, 129.5, 128.6, 
125.9, 121.8. GC-MS (EI, 70 eV): m/z = 198 (M+).

Benzyl benzoate (2u):40 Colorless oil; yield: 52% 
(143.3 mg). Eluent: petroleum ether/EtOAc = 10/1. 1H 
NMR (500 MHz CDCl3): δ 8.17–8.15 (m, 2H), 7.62–7.59 
(m, 1H), 7.53–7.44 (m, 6H), 7.42–7.39 (m, 1H), 5.44 (s, 
2H). 13C NMR (125.76 MHz, CDCl3): δ 166.5, 136.1, 
133.1, 130.2, 129.8, 128.7, 128.5, 128.3, 128.3, 66.8. 
GC-MS (EI, 70 eV): m/z = 212 (M+).

N-phenylbenzamide (3a):50 White solid; yield: 76% 
(194.6 mg). Eluent: petroleum ether/EtOAc = 5/1. 1H NMR 
(500 MHz CDCl3): δ 7.81–7.78 (m, 3H), 7.58–7.57 (m, 2H), 
7.50–7.47 (m, 1H), 7.44–7.41 (m, 2H), 7.31 (t, J = 8.0 Hz, 
2H), 7.09 (t, J = 7.5 Hz, 1H). 13C NMR (125.76 MHz, 
CDCl3): δ 165.8, 137.9, 135.0, 131.9, 129.1, 128.8, 127.0, 
124.6, 120.2. GC-MS (EI, 70 eV): m/z = 197 (M+).

N-(4-Fluorophenyl)benzamide (3b):51 White solid; 
yield: 85% (237.6 mg). Eluent: petroleum ether/
EtOAc = 5/1. 1H NMR (500 MHz DMSO-d6) δ 10.30 (s, 
1H), 7.97–7.94 (m, 2H), 7.82–7.78 (m, 2H), 7.61–7.57 
(m, 1H), 7.55–7.51 (m, 2H), 7.22–7.17 (m, 2H). 13C NMR 
(125.76 MHz, DMSO-d6) δ 165.9, 158.8 (d, JC-F =  
240.2 Hz) 136.0 (d, JC-F = 2.5 Hz), 135.3, 132.1, 128.9, 

128.1, 122.7, 115.6 (d, JC-F = 22.6 Hz). GC-MS (EI, 70 eV): 
m/z = 215 (M+).

(4-Methoxyphenyl)benzamide (3c):50 Light yellow solid; 
yield: 71% (209.5 mg). Eluent: petroleum ether/
EtOAc = 5/1. 1H NMR (500 MHz CDCl3): δ 7.79 (d, 
J = 7.5 Hz, 2H), 7.73 (brs, 1H), 7.48–7.45 (m, 3H), 7.42–
7.39 (m, 2H), 6.85–6.82 (m, 2H), 3.74 (s, 3H). 13C NMR 
(125.76 MHz, CDCl3): δ 165.7, 156.7, 135.0, 131.7, 131.0, 
128.8, 127.0, 122.1, 114.3, 55.5. GC-MS (EI, 70 eV): 
m/z = 227 (M+).

N-Methyl-N-phenylbenzamide (3d):50 Light yellow oil; 
yield: 83% (227.7 mg). Eluent: petroleum ether/
EtOAc = 5/1. 1H NMR (500 MHz CDCl3): δ 7.22–7.21 (m, 
2H), 7.17–7.13 (m, 3H), 7.09–7.04 (m, 3H), 6.95 (d, 
J = 7.5 Hz, 2H), 3.42 (s, 3H). 13C NMR (125.76 MHz, 
CDCl3): δ 170.7, 144.9, 135.9, 129.6, 129.2, 128.7, 127.7, 
126.9, 126.5, 38.4. GC-MS (EI, 70 eV): m/z = 211 (M+).

N,N-Diphenylbenzamide (3e):50 White solid; yield: 82% 
(291.1 mg). Eluent: petroleum ether/EtOAc = 5/1. 1H NMR 
(500 MHz CDCl3): δ 7.39–7.38 (m, 2H), 7.23–7.20 (m, 
5H), 7.16–7.08 (m, 8H). 13C NMR (125.76 MHz, CDCl3): δ 
170.8, 143.9, 136.1, 130.2, 129.2, 129.1, 127.9, 127.5, 
126.4. GC-MS (EI, 70 eV): m/z = 273 (M+).

Benzylbenzamide (3f):50 White solid, yield 70% 
(192.0 mg). Eluent: petroleum ether/EtOAc = 5/1. 1H NMR 
(500 MHz CDCl3): δ 7.73–7.71 (m, 2H), 7.45–7.42 (m, 
1H), 7.38–7.34 (m, 2H), 7.29–7.21 (m, 5H), 6.36 (brs, 1H), 
4.58 (d, J = 5.5 Hz, 2H). 13C NMR (125.76 MHz, CDCl3): δ 
167.4, 138.2, 134.4, 131.6, 128.8, 128.6, 128.0, 127.7, 
127.0, 44.2. GC-MS (EI, 70 eV): m/z = 211 (M+).

N,N-Dibutylbenzamide (3g):52 Light yellow oil; yield: 
90% (272.6 mg). Eluent: petroleum ether/EtOAc = 5/1. 1H 
NMR (500 MHz CDCl3): δ 7.30–7.25 (m, 5H), 3.41–3.10 
(m, 4H), 1.57–1.32 (m, 6H), 1.04–0.70 (m, 8H). 13C NMR 
(125.76 MHz, CDCl3): δ 171.6, 137.4, 129.0, 128.3, 126.4, 
48.7, 44.4, 30.8, 29.6, 20.3, 19.7, 13.9, 13.6. GC-MS (EI, 
70 eV): m/z = 233 (M+).

N-Phenyl-2-(p-tolyl)acetamide (3h):53 White solid; 
yield: 90% (263.3 mg). Eluent: petroleum ether/
EtOAc = 5/1. 1H NMR (500 MHz CDCl3): δ 7.34–7.33 (m, 
2H), 7.20–7.17 (m, 3H), 7.14–7.10 (m, 4H), 7.01–6.98 (m, 
1H), 3.61 (s, 2H), 2.29 (s, 3H). 13C NMR (125.76 MHz, 
CDCl3): δ 169.51, 137.68, 137.43, 131.33, 129.95, 129.46, 
128.93, 124.44, 119.87, 44.41, 21.15. GC-MS (EI, 70 eV): 
m/z = 225 (M+).

N,3-Diphenylpropanamide (3i):53 White solid; yield: 
89% (260.3 mg). Eluent: petroleum ether/EtOAc = 5/1. 1H 
NMR (500 MHz CDCl3): δ 7.75–7.70 (m, 1H), 7.35–7.33 
(m, 2H), 7.17–7.06 (m, 7H), 6.98–6.95 (m, 1H), 2.90 (t, 
J = 8.0 Hz, 2H), 2.52 (t, J = 8.0 Hz, 2H). 13C NMR 
(125.76 MHz, CDCl3): δ 171.02, 140.66, 137.89, 128.96, 
128.65, 128.41, 126.38, 124.39, 120.30, 39.25, 31.64. 
GC-MS (EI, 70 eV): m/z = 225 (M+).

N-Phenylhexanamide (3j):54 White solid; yield: 48% 
(119.2 mg). Eluent: petroleum ether/EtOAc = 5/1. 1H NMR 
(500 MHz CDCl3): δ 7.53–7.51 (m, 2H), 7.38 (brs, 1H), 
7.30 (t, J = 8.0 Hz, 2H), 7.11–7.08 (m, 1H), 2.35 (t, J = 7.5 Hz, 
2H), 1.75–1.69 (m, 2H), 1.38–1.33 (m, 4H), 0.90 (t, 
J = 7.0 Hz, 3H). 13C NMR (125.76 MHz, CDCl3): δ 171.61, 
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138.00, 128.98, 124.18, 119.84, 37.80, 31.44, 25.37, 22.45, 
13.96. GC-MS (EI, 70 eV): m/z = 191 (M+).

N,N-Dimethylcinnamamide (3k):55 White solid; yield: 
77% (134.8 mg). Eluent: petroleum ether/EtOAc = 5/1. 1H 
NMR (500 MHz CDCl3): δ 7.69 (d, J = 15.5 Hz, 1H), 7.56–
7.54 (m, 2H), 7.41–7.34 (m, 3H), 6.91 (d, J = 15.5 Hz, 1H), 
3.18–3.09 (m, 6H). 13C NMR (125.76 MHz, CDCl3): δ 
166.7, 142.4, 135.3, 129.6, 128.8, 127.8, 117.4, 37.5, 36.0. 
GC-MS (EI, 70 eV): m/z = 175 (M+).

(E)-1-Morpholino-3-phenylprop-2-en-1-one (3l):56 White 
solid; yield: 75% (162.8 mg). Eluent: petroleum ether/
EtOAc = 5/1. 1H NMR (500 MHz CDCl3): δ 7.63 (d, J = 15.5 Hz, 
1H), 7.47–7.45 (m, 2H), 7.33–7.28 (m, 3H), 6.78 (d, J = 15.5 Hz, 
1H), 3.66–3.62 (m, 8H). 13C NMR (125.76 MHz, CDCl3): δ 
165.6, 143.3, 135.1, 129.8, 128.9, 127.8, 116.5, 66.9, 46.2, 
42.5. GC-MS (EI, 70 eV): m/z = 217 (M+).

4-Methoxy-N-(phenylsulfonyl)benzamide (3m):57 White 
solid; yield: 81% (235.7 mg). Eluent: petroleum ether/
EtOAc = 5/1. 1H NMR (500 MHz CDCl3): δ 9.47 (brs, 1H), 
8.10–8.08 (m, 2H), 7.75–7.32 (m, 2H), 7.59–7.56 (m, 1H), 
7.50–7.46 (m, 2H), 6.81–6.80 (m, 2H), 3.74 (s, 3H). 13C 
NMR (125.76 MHz, CDCl3): δ 164.0, 163.8, 138.6, 134.0, 
130.2, 129.0, 128.6, 123.1, 114.2, 55.6. GC-MS (EI, 70 eV): 
m/z = 291 (M+).
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