## **REGULAR ARTICLE**



# Profiling of LINS01 compounds at human dopamine $D_2$ and $D_3$ receptors

MICHELLE F CORRÊA<sup>a</sup>, DAVID REINER<sup>b</sup>, GUSTAVO A B FERNANDES<sup>a</sup>, MARINA T VARELA<sup>a</sup>, CECÍLIA M S Q ARANHA<sup>a</sup>, HOLGER STARK<sup>b,\*</sup> and JOÃO PAULO S FERNANDES<sup>a,\*</sup>

<sup>a</sup>Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Rua São Nicolau 210, Diadema, SP 09913-030, Brazil
<sup>b</sup>Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
E-mail: stark@hhu.de; joao.fernandes@unifesp.br

MS received 4 June 2019; accepted 9 August 2019

**Abstract.** Histamine and dopamine neuronal pathways display interesting overlapping in the CNS, especially in the limbic areas, making them very attractive to designing drugs with synergistic and/or additive effects. The roles of these systems to treat schizophrenia, drug addiction, Parkinson's and Alzheimer's diseases, among others are widely known. The LINS01 compounds were previously reported as histamine H<sub>3</sub> receptor (H<sub>3</sub>R) antagonists and some of them are under evaluation in rodent memory models. Considering their pharmacological potential and similarities to literature dopamine D<sub>2</sub> receptor (D<sub>2</sub>R) and dopamine D<sub>3</sub> receptor (D<sub>3</sub>R) ligands, this work aimed to evaluate these compounds as ligands these receptors by using [<sup>3</sup>H]spiperone displacement assays. A set of 11 compounds containing the dihydrobenzofuranyl-piperazine core with substituents at 5-position of dihydrobenzofuran ring and at the piperazine nitrogen was examined. The compounds showed low to moderate affinities at both, D<sub>2</sub>R and D<sub>3</sub>R. *N*-Phenyl compounds LINS01005 (**1d**), LINS01011 (**1h**), LINS01012 (**1i**) and LINS01016 (**1k**) showed the highest affinities in the set to D<sub>3</sub>R ( $K_i$  0.3–1.5  $\mu$ M), indicating that *N*-phenylpiperazine moiety increases the affinity to this receptor subtype with some selectivity, since they showed lower affinities to D<sub>2</sub>R ( $K_i$  1.3–5.5  $\mu$ M). With the LINS01 compounds showing moderate binding affinity, new lead structures for optimization with regards to combined H<sub>3</sub>R and D<sub>2</sub>R/D<sub>3</sub>R-ligands are provided.

Keywords. Antihistamine; dopamine receptor ligand; D2 receptor; D3 receptor.

## 1. Introduction

Classically, the drug discovery process focuses on the "one drug, one target" paradigm, which means that a drug must interact specifically with a defined biological target in the organism, to assure the maximum efficacy (potency) and fewer side effects (selectivity). However, this philosophy has changed in the last years to a more comprehensive view of the diseases, coining a "one drug, multiple targets" paradigm, also known as polypharmacology.<sup>1,2</sup> Several diseases have been treated using a polypharmacological approach with multitarget drugs that were not designed by purpose. For example, schizophrenia is an affective disorder that has been treated with typical and atypical antipsychotics, targeting the dopamine receptors but far from being defined as "selective drugs". The efficacy of the classical antipsychotics such as haloperidol is attributed to the dopamine receptor antagonism, leading to the desired therapeutic outcome, but also causing extrapyramidal side effects (EPS) and worsening the cognitive and negative symptoms.<sup>3</sup> On the other hand, atypical antipsychotics display a better therapeutic profile (especially against the negative and cognitive symptoms of schizophrenia) possibly due to their additional actions on

<sup>\*</sup>For correspondence

*Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s12039-019-1694-6) contains supplementary material, which is available to authorized users.* 

serotonin and histamine systems in the brain.<sup>4</sup> Considering that most of these effects are attributed to the GPCR targeting, and taking advantage of the anatomy and physiology of the neural network of the synapses, CNS diseases have been explored for designing multi target GPCR ligands.<sup>1</sup>

The histamine receptors are class-A GPCRs that are divided into 4 subtypes,  $H_1R$  to  $H_4R$ .<sup>5</sup> The  $H_1R$  and  $H_2R$  are widely expressed in the brain and are related to the control of sleep, food intake, body temperature and cognition. The  $H_4R$  is expressed in glial cells and may play a role in the inflammatory processes in the CNS.<sup>6</sup> The  $H_3R$  is mainly distributed in the CNS as an auto and/or heteroreceptor that regulates the production and releasing of histamine and other neurotransmitters, such as dopamine, and so it is a potential target for several CNS disorders.<sup>7,8</sup>

The dopamine receptors are also class-A GPCRs which are expressed in 5 subtypes, D<sub>1</sub>R-D<sub>5</sub>R. Considering their signalling profile, they are grouped into  $D_1$ -like (coupled to  $G_s$ ) and  $D_2$ -like (coupled to  $G_{i/2}$ ) families.<sup>3</sup> Classically,  $D_2$ -like receptors ( $D_2R$ ,  $D_3R$ ) and possibly  $D_4R$ ) have been widely explored to the treatment of schizophrenia. However, the distribution profile of the subtypes in CNS may lead to different applications. For instance, the high density of  $D_2R$  in the movement-related and cortical areas and the high density of both D<sub>2</sub>R and D<sub>3</sub>R in brain areas such as the limbic system may explain why non-selective  $D_2R$ antagonists lead to the motor-related EPS and cognitive decline as caused by the classical antipsychotics, but also the efficacy in the psychotic effects.<sup>9,10</sup>  $D_3R$ blockade also increases the acetylcholine release in the cortex, related to the improvement in the cognitive processes.<sup>11</sup> In spite of this, selective D<sub>3</sub>R antagonists would be effective drugs against conditions such as schizophrenia, drug addiction, AD, PD and depression.<sup>9</sup>

The histamine and dopamine systems in the brain are noteworthy due to very interesting common characteristics. Both systems are originated in the tuberomammillary nucleus (TMN), with projections to the cortex, (hypo)thalamus, hippocampus, striatum and amygdala. In particular, H<sub>3</sub>R and D<sub>3</sub>R present a considerable density distribution overlapping in the limbic areas, such as hippocampus, stratum and amygdala.<sup>12</sup> It is interesting to note that 95% of the neurons expressing dopamine D<sub>1</sub>-like receptors and 89% of those expressing D<sub>2</sub>-like receptors in the striatum also express H<sub>3</sub>R leading to complex interactions between both neurotransmitter systems.<sup>13</sup> Several results from pharmacological studies suggest that antagonists of both H<sub>3</sub>R and D<sub>3</sub>R can present additive and/or synergistic effects, making them attractive multi-targeting tools for the treatment of schizophrenia, drug addiction, PD, AD, dementias and certain types of epilepsy.<sup>8,14,15</sup>

The LINS01 compounds (e.g., **1c** and **1g**, Figure 1) were previously described as selective  $H_3R$  antagonists.<sup>16,17</sup> However, these compounds present some similarity to dopamine  $D_2R/D_3R$  ligands, since the overlap between the  $H_3R$  and  $D_2R/D_3R$  pharmacophores can be noted.<sup>8,18</sup> The *N*-phenylpiperazine motif present in some LINS01 compounds is found in several  $D_2R/D_3R$  ligands such as compounds **2**, **3** and **4** in Figure 1.<sup>19,20</sup> Moreover, the similarity of LINS01 compounds to compound **4** and its analogue **5** is clearly evident, which are potent ligands of  $D_2R$  and  $D_3R$ .<sup>11</sup> Considering the potential of these compounds to the  $D_2R/D_3R$ .

## 2. Experimental

#### 2.1 Preparation of the compounds LINS01

All chemicals were purchased with adequate purity from Sigma-Aldrich Co. (Brazil) and LabSynth (Brazil) and used as supplied. The compounds were prepared and characterized as described in previous reports from our group (Figure 2).<sup>16,17,21,22</sup> The analytical characterization of the newly synthezised compounds **1j** and **1k** is stated below. All



**Figure 1.** LINS01 compounds and literature ligands of  $D_2R/D_3R$ .



**Figure 2.** Ligands of  $D_2R$  and  $D_3R$  reported in the literature.

compounds were checked for purity through chromatography and considered adequate when purity was >95%.

1-Methyl-4-[(5-phenyl-2,3-dihydro-1-benzofuran-2-

yl)methyl]piperazine (**I**j). The reaction between 1-methylpiperazine and prepared 2-(iodomethyl)-5-phenyl-2,3-dihydrobenzofuran yielded 45% of **1**j. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.31 (*s*, 3H), 2.41–2.74 (*m*, 9H), 2.82 (*dd*, 1H, *J* = 13.3, 7.7 Hz), 3.0 (*dd*, 1H, *J* = 15.7, 8.0 Hz), 3.32 (*dd*, 1H, *J* = 15.6, 9.1 Hz), 5.01 (*dq*, 1H, *J* = 8.2, 4.1 Hz), 6.85 (*d*, 1H, *J* = 8.3 Hz), 7.27–7.46 (*m*, 5H), 7.52 (*d*, 2H, *J* = 7.2 Hz). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  34.2, 46.1, 53.8, 55.0, 63.2, 81.3, 109.8, 123.8, 126.5, 126.8, 127.1, 127.2, 128.9, 133.9, 141.3, 159.2.

1-Phenyl-4-[(5-phenyl-2,3-dihydro-1-benzofuran-2-

yl)methyl]piperazine (**1**k). The reaction between 1-phenylpiperazine and prepared 2-(iodomethyl)-5-phenyl-2,3-dihydrobenzofuran yielded 78% of **1**k. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.67 (*dd*, 1H, *J* = 13.3, 4.1 Hz), 2.72–2.81 (*m*, 4H), 2.88 (*dd*, 1H, *J* = 13.4, 7.8 Hz), 2.98–3.10 (*m*, 2H), 3.26 (*t*, 4H, *J* = 4.9 Hz), 3.36 (*dd*, 1H, *J* = 15.8, 9.2 Hz), 5.00–5.13 (*m*, 1H), 6.83–6.91 (*m*, 2H), 6.95 (*d*, 2H, *J* = 8.2 Hz), 7.28–7.45 (*m*, 6H), 7.52 (*d*, 2H, *J* = 7.2 Hz). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  34.2, 49.1, 53.9, 63.2, 77.3, 81.3, 109.8, 116.1, 119.7, 123.8, 126.5, 126.8, 127.2, 128.7, 129.1, 134.1, 141.3, 151.3, 159.2.

#### 2.2 Binding assays on $D_2R$ and $D_3R$

Membranes from CHO cells stably expressing either the short transcript of D<sub>2</sub> receptors or D<sub>3</sub> receptors were prepared as described previously.<sup>23</sup> For inhibition screening, freshly thawed membrane preparations (containing 25 and 20  $\mu$ g/well of D<sub>2</sub>R and D<sub>3</sub>R, respectively) were incubated on microtiter plates with the indicated concentration of compounds and 0.2 nM [<sup>3</sup>H]spiperone in binding buffer [50 mM TRIS (pH = 7.4) 120 mM NaCl, 5 mM KCl, 1 mM CaCl<sub>2</sub> and 1 mM MgCl<sub>2</sub>]. After an incubation period of 120 min, the mixture was harvested on glass-fiber mats, presoaked with 3% polyethylene-imine solution, followed by three wash-steps using cold demineralized water (approx. 1 mL/sample). The workup for scintillation-counting followed the standard procedure described before.<sup>24</sup> Non-specific binding was determined by an excess of unlabeled

haloperidol (10  $\mu$ M). Inhibition was calculated as residual of specific binding of [<sup>3</sup>H]spiperone in presence of compound relative to specific binding in the absence of inhibitor. For affinity measurements, the same procedure as above was used but including a titration pattern of the investigated ligands (0.01–100,000 nM, final concentration). The finally determined specific binding was analyzed by non-linear least-square fitting to a four-parameter logistic equation. Conversion of the determined IC<sub>50</sub> to  $K_i$ values was performed as described elsewhere.<sup>25</sup>

#### 3. Results and Discussion

The LINS01 compounds (1a-1k, Scheme 1) were prepared as reported previously by our group.<sup>16,17</sup> The derivatives 1a-1d were prepared from 2-allylphenol through iodine-promoted cyclization, using water as a solvent.<sup>21</sup> Finally, the iodinated heterocycle was used to alkylate the N-substituted piperazine in aprotic solvent (THF), with potassium carbonate as base, with moderate yield ( $\sim 50\%$ ). The 5-phenyl derivatives 1j and 1k were prepared from the corresponding 4-phenyl-phenol following the same procedure, with moderate to good yields (45-78%). A novel microwaveassisted methodology<sup>17</sup> was employed to avoid the considerable excess of 1-phenylpiperazine to obtain compounds 1h, 1i and 1k, leading to good yields (>60%). Although this method gave comparable yields to the conventional methodology, it also saved reaction time and required less 1-phenylpiperazine (1.1 eq.) indeed, therefore comprising the green chemistry principles.<sup>22</sup> The spectroscopic data for the final compounds and intermediates are in accordance with the literature reports.<sup>16,17,21, 26</sup>

In an initial screening as shown in Table 1, the LINS01 compounds showed variable inhibition profiles at  $D_2R$  and  $D_3R$ , depending on the presence of certain groups. In general, a slight preference for



Scheme 1. Reagents and conditions. (a) Allyl bromide (2 eq.),  $K_2CO_3$  (2 eq.), acetone, 60 °C, 2–4 h; (b) DMF, MW 200 °C (300 psi, 300 W), 1,5 h; (c) I<sub>2</sub> (1.1 eq.), water or EtOH/water, *r.t.*, 4–6 h; (d)  $K_2CO_3$  (1.2 eq.), THF, reflux, 12–24 h or MW 120 °C (300 psi, 300 W), 1.5 h.

Table 1. Screening of the compounds LINS01 towards inhibition and affinity at the human dopamine  $D_2R$  and  $D_3R$ .



| Compounds      | R 1   | R 2         | % inhibition (10 $\mu$ M) $\pm$ SD (n) |                     | <i>K</i> <sub>i</sub> (μM) [95% CI]         |                                                      |
|----------------|-------|-------------|----------------------------------------|---------------------|---------------------------------------------|------------------------------------------------------|
|                |       |             | D <sub>2</sub> R                       | D <sub>3</sub> R    | $D_2R$                                      | D <sub>3</sub> R                                     |
| 1a (LINS01001) | Н     | Н           | $0.0 \pm 0.0$ (12)                     | $9.0 \pm 6.4$ (12)  | n.d.                                        | n.d.                                                 |
| 1b (LINS01003) | Me    | Н           | 1.5 ± 13.9 (15)                        | 23.5 ± 11.7 (15)    | $(>10 \mu M)$<br>n.d.<br>$(>10 \mu M)$      | $(>10 \mu \text{M})$<br>n.d.<br>$(>10 \mu \text{M})$ |
| 1c (LINS01004) | Allyl | Н           | 33.6 ± 9.7 (15)                        | 62.3 ± 14.4 (15)    | 5.5<br>5.6 0]                               | 1.5 [0 8–3 0]                                        |
| 1d (LINS01005) | Ph    | Н           | 34.1 ± 10.5 (15)                       | 55.1 ± 10.3 (15)    | 2.4<br>[2.0–2.9]                            | 0.89                                                 |
| 1e (LINS01007) | Me    | Cl          | 10.3 ± 10.9 (15)                       | 31.6 ± 10.1 (15)    | n.d.                                        | n.d.                                                 |
| 1f (LINS01008) | Me    | Me          | 11.1 ± 11.7 (15)                       | $29.9 \pm 9.6 (15)$ | $(> 10 \ \mu M)$<br>n.d.<br>$(>10 \ \mu M)$ | $(>10 \ \mu M)$<br>n.d.<br>$(>10 \ \mu M)$           |
| 1g (LINS01010) | Me    | <i>t</i> Bu | $12.9 \pm 12.7 (15)$                   | 31.7 ± 8.5 (15)     | n.d. (>10 µM)                               | $(>10 \ \mu M)$<br>n.d.<br>$(>10 \ \mu M)$           |
| 1h (LINS01011) | Ph    | Cl          | $44.0 \pm 3.6$ (6)                     | $64.0 \pm 7.1$ (6)  | 2.6<br>[1.2–6.1]                            | 0.50<br>[0.10–2.66]                                  |
| 1i (LINS01012) | Ph    | Me          | $45.1 \pm 4.2$ (6)                     | $60.9 \pm 10.7$ (6) | 2.4<br>[1.1–5.3]                            | 1.5<br>[0.4–4.8]                                     |
| 1j (LINS01016) | Me    | Ph          | 3.3 ± 12.3 (15)                        | $27.2 \pm 7.1 (15)$ | n.d. (>10 µM)                               | n.d. (>10 µM)                                        |
| 1k (LINS01017) | Ph    | Ph          | 39.5 ± 9.6 (6)                         | $62.0 \pm 5.7$ (6)  | 1.3<br>[0.6–3.0]                            | 0.39                                                 |
| Haloperidol    |       |             | $100.0 \pm 2.5 \ (15)$                 | 99.3 ± 2.6 (15)     | n.d.                                        | n.d.                                                 |

inhibiting  $[{}^{3}H]$  spiperone binding to  $D_{3}R$  was observed. Compounds 1a to 1d bear the 1-(2,3-dihydrobenzofuranyl)methylpiperazine core with different substituents attached to the nitrogen. Whereas 1a did not show important inhibition at both  $D_2R$  and  $D_3R$ , compounds presenting bigger and/or aromatic substituents attached to the piperazine displayed increased inhibition at the dopamine receptors. The Nmethylpiperazine analogues (1e-1g, 1j) displayed inhibition below 50% at both receptors leading to affinities above the 10 µM concentration range. There instead, substitution of N-allylpiperazine by Nphenylpiperazine (compounds 1c and 1d, respectively) showed comparable inhibition profiles at both receptors but a slight increase in affinity at D<sub>2</sub>R. Furthermore, the results suggest that the presence of these groups drive the preference toward  $D_3R$ .

These results motivated us to further explore the affinities of the *N*-phenylpiperazine derivatives. The *N*-arylpiperazine group can be considered a privileged

group to design ligands of  $D_2$ -like receptors as embodied in the LINS01 series.<sup>10,11</sup> The compounds **1d**, **1h**, **1i** and **1k** presented the highest inhibition at the investigated targets with affinities in the low micromolar concentration range at  $D_2R$ . Though only **1d** showing significant  $D_3R$  preference among them, even submicromolar  $K_i$  values were determined at the  $D_3R$ .

The influence of the groups attached in 5-position of dihydrobenzofuran (R2) on the affinity of the compounds seems minor. When comparing compounds with different substitution profiles in this part of the molecule, it can be noted that the inhibition did not significantly change among the *N*-methylpiperazine derivatives **1e**, **1f** and **1g**, as well as comparable affinities were observed among the *N*-phenylpiperazine compounds **1d**, **1h**, **1i** and **1k**.

The role of the 2,3-dihydrobenzofuran group in the affinity of the compounds remains unclear as this element originates from the initial  $H_3R$  design

strategy. A search in literature reveals that several compounds containing the aromatic benzofuran were already reported as dopamine receptor ligands, however, only few compounds containing the dihydro analogue were tested so far. The aromatic analogues of LINS01 compounds have been demonstrating activity as sigma- and serotonin receptor ligands,<sup>27,28</sup> but usually with poor affinity to dopamine receptors,<sup>26,29</sup> Despite a closely related aromatic N-benzylpiperazine analogue being reported in literature,<sup>29</sup> no compounds containing the unsubstituted N-allyl-, N-methyl- or Nphenylpiperazine moieties were found. On the other hand, homologues containing a longer linker between the benzofuran and the piperazine showed increased affinity to dopamine receptors,<sup>30</sup> suggesting that longer homologues of LINS01 compounds would shed light on the role of the dihydrobenzofuran in the  $D_2R$ and D<sub>3</sub>R affinities, and should be considered in future of evaluations. Secondly. derivatization  $N_{-}$ phenylpiperazine may be used for enhancing affinity at  $D_2R$  and  $D_3R$ . For instance, the substitution with a 2-methoxy or 2,3-dichloro groups in the phenyl ring usually leads to increased D<sub>3</sub>R selectivity, as can be seen in cariprazine (a subnanomolar affinity  $D_3R$ ligand and nanomolar affinity at  $D_2R$ ) and other compounds such as BP897 (bearing a 2-methoxyphenyl piperazine) and FAUC365 (bearing a 2,3dichlorophenyl piperazine), indicating potential substitutions in this direction for designing improved ligands<sup>10</sup> (Figure 2).

## 4. Conclusions

This is the first report exploring the histamine  $H_3R$ targeting LINS01 compounds being ligands at dopamine receptors as well. Although these molecules showed low affinity to  $D_2R$  and  $D_3R$ , some of them show slight  $D_3R$  preference. The *N*-phenylpiperazine and *N*-benzylpiperazine fragments increased the binding of these compounds to  $D_2R$  and  $D_3R$ , although the latter reduces the selectivity. Additionally, the substitution in the dihydrobenzofuran seems not to influence the affinity of these compounds to  $D_2R$  or  $D_3R$ . The presented characterization of the LINS01 series lays the foundation for further profiling of the detected hits, profiling them towards attractive leadcompounds with combined dopaminergic and histaminergic activity.

## Supplementary Information (SI)

Supplementary information is available at www.ias.ac.in/ chemsci.

#### Acknowledgements

The authors would like to thank São Paulo Research Foundation - FAPESP (2016/25028-3) for providing financial support and to the scholarships to M.F.C. (2016/23139-2), G.A.B.F. (2017/05441-6), M.T.V. (2018/03918-2) and to C.M.S.Q.A. (2018/04488-1). J.P.S.F. is also thankful to the National Council for Scientific and Technological Development - CNPq (grant no. 306355/2018-3) for the scientific award. D.R. and H.S. acknowledge the financial support by the German Research Society (DFG INST 208/664-1 FUGG and GRK2158) and the EU COST Actions CA18133 and CA15135.

### References

- 1. Anighoro A, Bajorath J and Rastelli G 2014 Polypharmacology: Challenges and Opportunities in Drug Discovery J. Med. Chem. **57** 7874
- 2. Reddy A S and Zhang S 2013 Polypharmacology: drug discovery for the future *Expert Rev. Clin. Pharmacol.* 6 41
- Rampino A, Marakhovskaia A, Soares-Silva T, Torretta S, Veneziani F and Beaulieu J M 2019 Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects *Front. Psychiatry* 9 702
- MacKenzie N E, Kowalchuk C, Agarwal S M, Costa-Dookhan K A, Caravaggio F, Gerretsen P, Chintoh A, Remignton G J, Taylor V H, Müeller D J, Graff-Guerrero A 2018 Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia *Front. Psychiatry* 9 622
- 5. Tiligada E and Ennis M 2018 Histamine pharmacology: from Sir Henry Dale to the 21st century *Br. J. Pharmacol.* https://doi.org/10.1111/bph.14524
- 6. Corrêa M F and Fernandes J P S 2015 Histamine H4 receptor ligands: Future applications and state of art *Chem. Biol. Drug Des.* **85** 461
- Sadek B, Saad A, Sadeq A, Jalal F and Stark, H 2016 Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases *Behav. Brain Res.* **312** 415
- Khanfar M A, Affini A, Lutsenko K, Nikolic K, Butini S and Stark H 2016 Multiple Targeting Approaches on Histamine H3 Receptor Antagonists *Front. Neurosci.* 10 201
- 9. Moritz A E, Free R B and Sibley D R 2018 Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds *Cell. Signal.* **41** 75
- Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H and Brindisi M 2016 Dopamine D3 Receptor Antagonists as Potential Therapeutics for the Treatment of Neurological Diseases *Front. Neurosci.* 10 451
- Micheli F and Heidbreder C 2006 Selective Dopamine D3 Receptor Antagonists: A Review 2001-2005 Recent Pat. CNS Drug Discov. 1 271
- 12. Ellenbroek B A 2013 Histamine H 3 receptors, the complex interaction with dopamine and its implications for addiction *Br. J. Pharmacol.* **170** 46

- 14. Kononoff Vanhanen J, Nuutinen S, Tuominen M and Panula P 2016 Histamine H3 Receptor Regulates Sensorimotor Gating and Dopaminergic Signaling in the Striatum J. Pharmacol. Exp. Ther. **357** 264
- 15. Ferrada C, Ferré S, Casadó V, Cortés A, Justinova Z, Barnes C, Canela E I, Goldberg S R, Leurs R, Lluís C and Franco R. 2008 Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function *Neuropharmacology* 55 190
- 16. Corrêa M F, Barbosa Á J R, Teixeira L B, Duarte D A, Simões S C, Parreiras-e-Silva L T, Balbino A M, Landgraf R G, Costa-Neto C, Fernandes J P S 2017 Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel Antagonists for the Histamine H3 and H4 Receptors with Anti-inflammatory Potential *Front. Pharmacol.* 8 825
- Corrêa M F, Barbosa Á J R, Fernandes G A B, Baker J G and Fernandes J P S 2019 Pharmacological and SAR analysis of the LINS01 compounds at the human histamine H1, H2, and H3 receptors *Chem. Biol. Drug Des.* 93 89
- von Coburg Y, Kottke T, Weizel L, Ligneau X and Stark H 2009 Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics *Bioorg. Med. Chem. Lett.* 19 538
- Brindisi M, Butini S, Franceschini S, Brogi S, Trotta F, Ros S, Cagnotto A, Salmona M, Casagni A, Andreassi M, Saponara S, Gorelli B, Weikop P, Mikkelsen J D, Scheel-Kruger J, Sandager-Nielsen K, Novellino E, Campiani G and Gemma S 2014 Targeting Dopamine D 3 and Serotonin 5-HT 1A and 5-HT 2A Receptors for Developing Effective Antipsychotics: Synthesis, Biological Characterization, and Behavioral Studies J. Med. Chem. 57 9578
- 20. Ananthan S, Saini S K, Zhou G, Hobrath J V, Padmalayam I, Zhai L, Bostwick J R, Antonio T, Reith M E A, McDowell S, Cho E, McAleer L, Taylor M and Luedtke R R 2014 Design, Synthesis, and Structure-Activity Relationship Studies of a Series of [4-(4-Carboxamidobutyl)]-1-arylpiperazines: Insights into Structural Features Contributing to Dopamine D3

versus D2 Receptor Subtype Selectivity *J. Med. Chem.* **57** 7042

- Corrêa M F, Varela M T, Balbino A M, Torrecilhas A C, Landgraf R G, Troncone L R P and Fernandes J P S 2017 1-[(2,3-Dihydro-1-benzofuran-2-yl) methyl]-piperazines as novel anti-inflammatory compounds: Synthesis and evaluation on H3R/H4R *Chem. Biol.* Drug Des. 90 317
- 22. Corrêa M F, Barbosa Á J R, Sato R, Junqueira L O, Politi M J, Rando D G and Fernandes J P S 2016 Factorial design study to access the "green" iodocyclization reaction of 2-allylphenols *Green Process*. *Synth.* 5 145
- 23. Frank A, Kiss D J, Keserű G M and Stark H 2018 Binding kinetics of cariprazine and aripiprazole at the dopamine D3 receptor *Sci. Rep.* **8** 12509
- 24. Khanfar M A, Reiner D, Hagenow S and Stark H 2018 Design, synthesis, and biological evaluation of novel oxadiazole- and thiazole-based histamine H3R ligands *Bioorg. Med. Chem.* **26** 4034
- 25. Cheng Y and Prusoff W H 1973 Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction *Biochem. Pharmacol.* **22** 3099
- 26. Younes S, Labssita Y, Baziard-Mouysset G, Payard M, Rettori M C, Renard P, Pfeiffer B and Caignard D H 2000 Synthesis and structure-activity relationships of novel arylalkyl 4-benzyl piperazine derivatives as  $\sigma$ site selective ligands *Eur. J. Med. Chem.* **35** 107
- 27. Conroy T, Manohar M, Gong Y, Wilkinson S M, Webster M, Lieberman B P, Banister S D, Reekie T A, Mach R H, Rendina L M and Kassiou M 2016 A systematic exploration of the effects of flexibility and basicity on sigma ( $\sigma$ ) receptor binding in a series of substituted diamines *Org. Biomol. Chem.* **14** 9388
- Gu Z-S, Zhou A, Xiao Y, Zhang Q-W and Li J-Q 2018 Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT1A/ 5-HT7 *Eur. J. Med. Chem.* 144 701
- Moussa I A, Banister S D, Beinat C, Giboureau N, Reynolds A J and Kassiou M 2010 Design, Synthesis, and Structure–Affinity Relationships of Regioisomeric N -Benzyl Alkyl Ether Piperazine Derivatives as σ-1 Receptor Ligands J. Med. Chem. 53 6228
- 30. Sampson D, Zhu X Y, Eyunni S V K, Etukala J R, Ofori E, Bricker B, Lamango N S, Setola V, Roth B L and Ablordeppey S Y 2014 Identification of a new selective dopamine D4 receptor ligand *Bioorg. Med. Chem.* 22 3105