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An eco-friendly and effective electrochemical process was developed for the ortho-
trifluoromethylation of arylamines using CF3SO2Na as the trifluoromethyl source, affording the 
desired products in moderate to good yields with high regioselectivity under mild reaction 
conditions. Importantly, the requirement for both transition metals and oxidants as utilized in 
previous methods were avoided. A radical mechanism was proposed on the basis of various 
control experiments.



Introduction

Fluorine-containing organic compounds have attracted 
increasing attention in materials, [1] pharmaceutical [2] and 
agrochemical chemistry. [3] Especially, the incorporation of 
trifluoromethyl groups into organic compounds [4] has gained 
attention due to their special chemical characteristics and 
metabolic stabilities.

Traditional methods for trifluoromethylation have been 
implemented with aryl halides [5] or boronic acids, requiring 
dangerous fluoridation reagents and harsh reaction conditions. 
[6] Presently, with the development of transition-metal-
catalyzed C-H activation, numerous direct functionalization 
reactions have been reported. [7] Among these reactions, direct 
trifluoromethylations [8] have gained significant attention, 
especially using arylamine derivatives. In 2010 and 2012, the 
ortho-trifluoromethylation of 2-phenylpyridines was developed 
by Yu and co-workers [7a] with Pd(OAc)2 as the catalyst. Later, 
in 2013, and also with the participation of Pd(OAc)2, Shi and 
co-workers reported the direct ortho-trifluoromethylation of 
acetamide [7b], and a similar reaction was demonstrated by Xi 
and co-workers with CuCl [7c]. However, the use of precious 
metals, large amounts of oxidants, and expensive 
trifluoromethylating reagents such as Umemoto's reagent [9], 
Togni's reagent [10] and TMSCF3 [11] were required in these 
works. 

In recent years, CF3SO2Na (a low-cost, hypotoxic and stable 
trifluoromethylated reagent) has proven to be effective in direct 
trifluoromethylation [12]. In 2017, Zhang and co-workers [12a] 
established a nickel(II)-catalyzed ortho-trifluoromethylation of 
arylamines. Next, in 2018, the photoinduced ortho-
trifluoromethylation of arylamines was described by Xia and co-
workers, employing ferrocene as the catalyst [12d]. In 2019, 
another visible-light mediated ortho-trifluoromethylation was 
reported by An, Li and co-workers [12f] (Fig. 1). 

 

N
H

O

UV,acetone, 36 h, rt
Iron-catalyzed (15 mol%) N

H

O

N
N

CF3SO2Na+
CF3

N
H

O NiSO4•6H2O (10 mol%)

H2O, 50 °C, 12 h, Air

K2S2O8 (2.0 eq.) N
H

O

N N
CF3SO2Na+

CF3

R N
H

O
Eosin Y (5 mol%)

MeCN, 20 h, Air

(NH4)2S2O8 (2.0 eq.)
R N

H

O

CF3SO2Na+

CF3
Blue LED

CuCl2 (10 mol%)

Zhang's work [12a]

Xia's work [12d]

An's and Li's work [12f]

Our work

CF3SO2Na+R1 N
H

O

H

R2
C(+)-Pt(-), I=15 mA

MeCN, 50 °C, Air, 2 h

n-Bu4NBr (0.3 eq.)
R1 N

H

O

CF3

R2

1 2a 3undivided cell

Figure 1. Representative examples of the direct ortho-trifluoromethylation 
of arylamines.

Recently, electrochemistry has received widespread 
attention as an effective method to realize radical reactions using 

electrons instead of traditional oxidants [13]. In 2018, Lei and 
co-workers [14d] developed a direct electrochemical 
oxytrifluoromethylation and aminotrifluoromethylation of 
alkenes. In the same year, Zeng and co-workers [14e] described 
an electrochemical trifluoromethylarylation of N-
arylacrylamides catalyzed by bromide. Both of these reactions 
use CF3SO2Na as the trifluoromethyl source, which proves that 
the trifluoromethylation reaction can be realized under metal-
free and oxidant-free conditions via electrochemistry. Inspired 
by these studies and in combination with our previous efforts in 
trifluoromethylation, [12e] we have developed a metal-free, 
electrochemical process for the ortho-trifluoromethylation of 
arylamine derivatives using CF3SO2Na as the 
trifluoromethylating reagent.

Results and Discussion

Initially, we commenced our investigation using the model 
reaction of N-phenylpicolinamide 1a as the starting material and 
CF3SO2Na 2a as the trifluoromethylated reagent. The 
electrochemical reaction was carried out in an undivided cell 
which was equipped with a C anode and a Pt cathode, and stirred 
at 50 oC under an air atmosphere for 2 h in the presence of n-
Bu4BF4 using MeCN as the solvent. Gratifyingly, product 3a 
was formed in 58% yield (Table 1, Entry 1). Encouraged by this 
result, we then screened several other anodes including 
reticulated vitreous carbon (RVC), Pt, Ni, and Cu; however, the 
yields decreased to 47%, 38%, 55%, and 17%, respectively 
(Table 1, Entries 2-5). At the same time, when the cathode was 
changed from Pt to C, no product was detected (Table 1, Entry 
6). Solvents such as CH3OH and 1,4-dioxane were inferior to 
MeCN (Table 1, Entries 7-8). Meanwhile increasing or 
decreasing the current density and replacement of the electrolyte 
did not improve the yield (Table 1, Entries 9-13). The 
transformation also did not take place without an electric current 
(Table 1, Entry 14).

Table 1.
Reaction optimization.a,b 

N
H

O C(+)-Pt(-), I = 15 mA

MeCN, 50 °C, 2 h, Air

n-Bu4NBF4 (0.3 eq.)
N
H

O

1a 3a
N N

CF3SO2Na+

2a undivided cell
CF3

Entry Variation from the standard conditions Yield 3a [%]b

1 None 58
2 RVC anode instead of C anode 47
3 Pt anode instead of C anode 38
4 Ni anode instead of C anode 55
5 Cu anode instead of C anode 17
6 C cathode instead of Pt cathode Trace
7 CH3OH instead of CH3CN 26
8 1,4-dioxane instead of CH3CN 31
9 10 mA instead of 15 mA 50
10 20 mA instead of 15 mA 53
11 n-Bu4NCl instead of n-Bu4NBF4   27
12 n-Bu4NBr instead of n-Bu4NBF4 51
13 n-Bu4NI instead of n-Bu4NBF4 46
14 No electricity N.R.

a Reagents and conditions: C anode, Pt cathode, constant current = 15 mA, 
1a (0.3 mmol), 2a (1.5 eq.), n-Bu4NBF4 (0.3 eq.), CH3CN (3 mL), C anode 
(d = 6 mm), Pt plate cathode (5 mm × 5 mm × 0.3 mm ), 50 oC, 2 h, air.
b Isolated yield. 



c N.R. = No reaction.

With the optimum electrolysis trifluoromethylation protocol 
in hand, we next examined the scope and limitations of the 
reaction using various arylamines. As shown in Table 2, 
electron-donating and electron-withdrawing arylamines were 
tolerated, and gave the desired products in 17-63% yield (Table 
2, 3a-3l), although electron-donating ones performed better. 
Specifically, taking para-substituted arylamines as an example 
(Table 2, 3b-3f), the 4-CH3 arylamine was isolated in 53% yield 
while the yield of 4-Cl, 4-Br, 4-CN, and 4-NO2 arylamines were 
less than 45%. Furthermore, both para-substituted (Table 2, 3b-
3f) and meta-substituted arylamines (Table 2, 3i-3l) gave higher 
yields than ortho-substituted arylamines (Table 2, 3g-3h), 
which indicated that steric hindrance has a significant influence 
on this transformation. Finally, naphthyl derived picolinamides 
and other nitrogen heterocyclic amides also afforded the desired 
products in good yields (Table 2, 3m-3q). 

Table 2.
Substrate scope for the trifluoromethylation reaction.a,b
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a Reagents and conditions: C anode, Pt cathode, constant current = 15 mA, 
1a (0.3 mmol), 2a (1.5 eq.), n-Bu4NBF4 (0.3 eq.), CH3CN (3 mL), C anode 
(d = 6 mm), Pt plate cathode (5 mm × 5 mm × 0.3 mm ), 50 oC, 2 h, air.
b Isolated yield.

Considering that the initial substrates were readily obtained 
and the method was easy to operate, a gram scale reaction was 
performed (Scheme 1); the desired product 3a was obtained in 
47% yield and subsequently 7 was obtained in 85% using our 
previously described method. [12e] 
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Scheme 1. Gram scale reaction.

To gain further insight into the mechanism of this 
transformation, several control experiments were implemented 
(Scheme 3). Firstly, we conducted the trifluoromethylation 
reaction under the standard conditions with the addition of 3.0 
equivalents of TEMPO. Unsurprisingly, none of the desired 
product was obtained, which revealed that a radical pathway 
could explain the process. Next, different amides were used 
instead of 1a; however, none of the desired product was 
detected, which indicated that the pyridine ring was necessary 
for the reaction. Further research was carried out with an On/Off 
experiment, which showed that a continuous electric current 
was required (Scheme 2). 
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Scheme 2. Investigation of the mechanism.

We then carried out cyclic voltammetry (CV) experiments. 
It could be clearly observed that the oxidation potential (EP/2) 
of CF3SO2Na was 1.43 V, which was oxidized to the 
trifluoromethyl radical. Meanwhile, the oxidation potential of 
1a was not detected. It was then found that the oxidation 
potential (EP/2) changed to 1.56 V when CF3SO2Na was added, 
which presumably generated complex C (see Scheme 3).

Figure 2. Cyclic voltammograms. a: blank; b: 1a (10 mM, red); c: 2a (15 
mM, blue); d: 1a (10 mM) + 2a (15 mM, pink).

On the basis of above findings and previous reports [12a, 
14i] we proposed the following plausible mechanism via a 
radical coupling pathway (Scheme 3). 
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Scheme 3. Plausible mechanism of trifluoromethylation

Initially, CF3SO2Na was transformed into the CF3 radical 
through oxidation at the anode. Next, 1a was oxidized into 
intermediate A through deprotonation at the anode. After 
which, B was formed via resonance from A. Then, species C 
was obtained by radical coupling between the CF3 radical and 
B. Finally, the desired product 3a was generated through a 
proton-transfer (PT) process.

Conclusion

In summary, we have developed an efficient and practical 
protocol for the electrochemical ortho-trifluoromethylation of 
anilines under transition metal-free and oxidant-free conditions. 
This electrochemical method tolerated a broad substrate scope 
and the expected products were obtained in moderate to good 
yields. Primary investigation demonstrated that a radical 
mechanism was involved.
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 An electrochemical method for the synthesis of ortho-trifluoromethylation of arylamines was developed.
 The addition of transition metals and oxidants was not required.
 The desired products were obtained in moderate to good yields.
 The study of the reaction mechanism revealed that a radical step was involved in this transformation.
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