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FURO[2,3-h]CHROMONES  AND  PYRANO[2′,3′:5,6]CHROMENO
[4,3-b]PYRIDINES  BASED  ON  NATURAL  ISOFLAVONES

T. V. Shokol,1* N. V. Gorbulenko,1 M. S. Frasinyuk,2

and V. P. Khilya1

Furo[2,3-h]chromone and pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine derivatives were synthesized from
7-hydroxy-8-formylisoflavones, which were prepared from natural isoflavones using a Duff reaction, via
reactions with bromoacetophenones and ethyl 3-aminocrotonate, respectively.
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Angular hetarenochromones provide a template for a broad spectrum of natural flavonoids and a few alkaloids.
Furo[2,3-h]flavones 1a–d were isolated from plants of the genus Pongamia (Fabaceae) and possessed antibacterial, antifungal,
and cytotoxic activity [1, 2].  Pyridine alkaloids were represented by schumanniophytine (2) from plants of the genus
Schumanniophyton [3].

Two reported approaches to the synthesis of chromones annelated by heterocycles at the C(7)–C(8) bond involve
annelation of a heterocycle to a chromone core and annelation of a γ-pyrone ring to a benzohetarene [4].  7-Hydroxy-8-
formylchromones are convenient synthons for synthesizing angular hetarenochromones by the first approach [5].  Previously,
8-formylformononetin (3a) was used by us to synthesize α-pyrono[2,3-f]isoflavones [6].

The goal of the present work was to annelate furan and α-pyronopyridine rings to natural isoflavone cores.
The starting materials were 8-formylformononetin (3a) and 7-hydroxy-8-formylisoflavone (3b) and its 2-methyl derivative
(3c), which were prepared by a Duff reaction from natural isoflavones 4b (isolated from Echinops echinatus [7]) and 4c (from
roots of Glycyrrhiza glabra [8]).

The Hantzsch reaction was a convenient one-step method for annelation of α-pyrone and pyridine rings to a chromone
[9].  Use of this reaction of 7-hydroxy-8-formylisoflavones 3a–c and ethyl 3-aminocrotonate in AcOH afforded
5H,9H-pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine-5,9-diones 5a–c.  Their IR spectra showed strong bands at 1742–1723 cm–1

that were characteristic of ethoxycarbonyl and α-pyrone C=O stretching vibrations and bands at 1653–1644 cm–1 that
corresponded to γ-pyrone.  PMR spectra of 5a–c were characterized by two methyl singlets at 2.69–2.72 ppm and CO2Et
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a: R1 = R2 = R3 = R4 = H (lanceolatin B)
b: R1 = OH, R2 = R3 = R4 = H (pongaglabol)
c: R1 = R4 = H, R2 + R3 = -O-CH2-O- (pongaglabrone)
d: R1 = R2 = R3 = H, R4 = OMe (karanjin)
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proton resonances and were missing weak-field singlets at 10.5 and 12.2 ppm for CHO and OH protons of starting 7-hydroxy-
8-formylisoflavones 3a–c.  The structures of 5a–c differed from those of the classical Hantzsch reaction by the position of the
Py N atom.  The proposed mechanism of the transformation [9] included attack of the 7-hydroxy-8-formylchromone formyls
at the N-nucleophilic center of aminocrotonate to form Schiff bases that then added a second aminocrotonate molecule whereas
ortho-unsubstituted benzaldehydes were attacked by the aminocrotonate C-nucleophilic center [10].  X-ray structure studies
confirmed that type 5 compounds and not the isomers with the schumanniophytine skeleton formed [11].  The yields of 5a and
5b, which were unsubstituted in the 11-position, were much less (18–23%) than those of 11-methyl derivative 5c (56%) and
other previously reported 11-methyl-5H,9H-pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine-5,9-diones [9, 11] regardless of the
heating and stirring time (up to 20 h).

Previously, a furan ring was annelated to the chromone core of 7-hydroxy-8-formylisoflavones using bromoacetic
[12] or bromomalonic ester [13–16].  Condensation of 8-benzoyl-7-hydroxy-2-methylchromone with various para-substituted
phenacylbromides in Me2CO in the presence of potash synthesized 8-benzoyl-2-methyl-9-phenylfuro[2,3-h]chromones [17].
We adapted this method to the synthesis of 8-benzoylfuro[2,3-h]isoflavones 6a, 6b, and 7a.  Reaction of 7-hydroxy-8-
formylisoflavones 3a and 3b and 4-methoxy- or 4-nitrobromoacetophenones with a two-fold excess of potash with heating in
DMF gave high yields (78–93%) of 6a, 6b, and 7a.  PMR spectra of these compounds in the aromatic region showed characteristic
doublets for protons of a para-substituted phenyl and a singlet for 9-H at 7.94–7.96 ppm (6a and 6b) and 8.10 ppm (7a).
IR spectra contained benzoyl and γ-pyrone C=O stretching bands at 1645 and 1631 cm–1, respectively.

Thus, 7-hydroxy-8-formylisoflavones, which were prepared by Duff reactions of natural isoflavones, were used to
synthesize furo[2,3-h]chromone and pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine derivatives.

EXPERIMENTAL

The course of reactions and purity of products were monitored by TLC on Merck 60 F254 plates using CHCl3–MeOH
(9:1).  Melting points were measured on a Kofler apparatus.  PMR spectra were recorded in DMSO-d6–CCl4 (1:1) with TMS
internal standard; 13C NMR spectra, in DMSO-d6 and CF3CO2D on a Varian Mercury-400 spectrometer.  Elemental analyses
were obtained using a Vario micro Cube analyzer and agreed with those calculated.  Compound 3a was prepared and characterized
by us earlier [6].

7-Hydroxy-4-oxo-3-phenyl-4H-8-chromenecarbaldehyde (3b).  C16H10O4, prepared analogously to 3a, yield 69%,
mp 194–195°Ñ (lit. [13]: mp 197–198°Ñ). IR spectrum (KBr, ν, cm–1): 3423 (ÎÍ), 1639 (Ñ=Î). 1Í NMR spectrum (δ, ppm,
J/Hz): 7.06 (1Í, d, J = 9.2, Í-6), 7.36–7.54 (3Í, m, Í-3′, 4′, 5′), 7.56 (2Í, d, J = 9.2, Í-2′, 6′), 8.29 (1Í, d, J = 9.2, Í-5), 8.38
(1Í, s, Í-2), 10.55 (1Í, s, ÑÍÎ), 12.26 (1Í, s, OÍ). 13C NMR spectrum (DMSO-d6–CCl4, δ, ppm): 109.67, 116.44, 123.49,
125.61, 128.47, 128.59, 129.30, 131.85, 134.79, 153.44, 161.70, 167.02, 173.94, 191.42.

3a–7a: R1 = H, R2 = OMe, 7a: R3 = NO2; 3b–6b: R1 = R2 = H; 6a,b: R3 = OMe; 3c–5c: R1 = Me, R2 = H
a. 1. AcOH, 100°C, 6–8 h; 2. HCl, H2O
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7-Hydroxy-2-methyl-4-oxo-3-phenyl-4H-8-chromenecarbaldehyde (3c).  C17H12O4, prepared analogously to 3a,
yield 69%, mp 165–166°Ñ (lit. [12]: mp 164–165°Ñ). IR spectrum (KBr, ν, cm–1): 3417 (ÎÍ), 1634 (Ñ=Î). 1Í NMR spectrum
(δ, ppm, J/Hz): 2.35 (3Í, s, ÑÍ3), 7.01 (1Í, d, J = 9.2, Í-6), 7.24 (2Í, d, J = 7.2, Í-2′, 6′), 7.35–7.44 (3Í, m, Í-3′, 4′, 5′), 8.17
(1Í, d, J = 9.2, Í-5), 10.56 (1Í, s, ÑÍÎ), 12.23 (1Í, s, OÍ). 13C NMR spectrum (DMSO-d6, δ, ppm): 19.34, 109.92, 115.98,
116.18, 123.66, 128.34, 128.77, 131.08, 133.28, 134.17, 157.10, 163.41, 166.30, 174.61, 191.09.

Ethyl 10-Aryl-2,4-dimethyl-5,9-dioxo-5H,9H-pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine-3-carboxylates (5a–c)
(general method).  A solution of 3a–c (1 mmol) in AcOH (5 mL) was treated with ethyl 3-aminocrotonate (0.52 g, 4 mmol)
and stirred vigorously with heating for 18–20 h.  The resulting precipitate was filtered off and rinsed with alcohol.

Ethyl 2,4-Dimethyl-5,9-dioxo-10-(4-methoxyphenyl)-5H,9H-pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine-3-
carboxylate (5a).  C27H21NO7, yield 0.11 g (23%), mp 177–178°Ñ. IR spectrum (KBr, ν, cm–1): 1723 (Ñ=Îester+α), 1645 (C=Oγ).
1Í NMR spectrum (δ, ppm, J/Hz): 1.44 (3H, t, J = 7.2, CH3CH2CO2-3), 2.69 (3H, s, CH3-2), 2.71 (3H, s, CH3-4), 3.84 (3H, s,
CH3O), 4.47 (2H, q, J = 7.2, CH3CH2CO2-3), 6.96 (2H, d, J = 8.0, H-3′, 5′), 7.42 (1H, d, J = 8.8, H-7), 7.56 (2H, d, J = 8.0,
H-2′, 6′), 8.36 (1H, d, J = 8.8, H-8), 8.44 (1Í, s, Í-11). 13C NMR spectrum (DMSO-d6, δ, ppm): 14.59, 19.74, 24.21, 62.71,
108.34, 114.40, 115.37, 121.62, 124.65, 128.70, 128.82, 129.73, 131.27, 131.88, 148.92, 151.61, 154.02, 155.02, 156.39,
158.55, 159.80, 167.55, 174.37.

Ethyl 2,4-Dimethyl-5,9-dioxo-10-phenyl-5H,9H-pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine-3-carboxylate (5b).
C26H19NO6, yield 0.08 g (18%), mp 217–218°Ñ. IR spectrum (KBr, ν, cm–1): 1742 (Ñ=Îester), 1734 (C=Oα), 1653 (C=Oγ).
1Í NMR spectrum (δ, ppm, J/Hz): 1.43 (3H, t, J = 7.2, CH3CH2CO2-3), 2.70 (3H, s, CH3-2), 2.72 (3H, s, CH3-4), 4.47 (2H, q,
J = 7.2, CH3CH2CO2-3), 7.39–7.47 (4H, m, Í-7, 3′, 4′, 5′), 7.64 (2H, d, J = 6.8, H-2′, 6′), 8.40 (1H, d, J = 8.0, H-8), 8.54 (1Í,
s, Í-11). 13C NMR spectrum (DMSO-d6, δ, ppm): 14.59, 19.74, 24.21, 62.71, 108.34, 114.40, 115.37, 121.62, 124.65, 128.70,
128.82, 129.73, 131.27, 131.88, 148.92, 151.61, 154.02, 155.02, 156.39, 158.55, 159.80, 167.55, 174.37.

Ethyl 2,4,11-Trimethyl-5,9-dioxo-10-phenyl-5H,9H-pyrano[2′,3′:5,6]chromeno[4,3-b]pyridine-3-carboxylate
(5c).  C27H21NO6, yield 0.26 g (56%), mp 246–247°Ñ. IR spectrum (KBr, ν, cm–1): 1723 (Ñ=Îester+α), 1645 (C=Oγ).
1Í NMR spectrum (δ, ppm, J/Hz): 1.44 (3H, t, J = 7.2, CH3CH2CO2-3), 2.45 (3H, s, CH3-11), 2.68 (3H, s, CH3-2), 2.72 (3H, s,
CH3-4), 4.47 (2H, q, J = 7.2, CH3CH2CO2-3), 7.39–7.47 (4H, m, Í-7, 3′, 4′, 5′), 7.64 (2H, d, J = 6.8, H-2′, 6′), 8.40 (1H, d,
J = 8.0, H-8), 8.54 (1Í, s, Í-11). 13C NMR spectrum (DMSO-d6 + CCl4, δ, ppm): 14.61, 19.69, 19.73, 24.16, 62.50, 107.96,
114.34, 114.74, 120.75, 123.74, 128.26, 128.71, 129.91, 130.98, 131.29, 133.05, 149.14, 151.74, 153.75, 156.37, 158.34,
159.82, 164.06, 167.37, 174.76.

3-Aryl-8-(4-R3-benzoyl)-4H-furo[2,3-h]chromen-4-ones (6a, 6b, 7a) (general method).  A solution of 3a or 3b
(1 mmol) and 4-methoxy- or 4-nitrobromoacetophenone (1 mmol) in DMF (5 mL) was treated with K2CO3 (0.28 g, 2 mmol),
stirred vigorously with heating for 20 h, cooled, diluted with H2O, and neutralized with HCl.  The precipitate was filtered off
and recrystallized from DMF.

8-(4-Methoxybenzoyl)-3-(4-methoxyphenyl)-4H-furo[2,3-h]chromen-4-one (6a).  C26H18O6, yield 0.40 g (93%),
mp 241–242°Ñ (DMF). IR spectrum (KBr, ν, cm–1): 1645 (Ñ=Î), 1631 (Ñ=Îγ). 

1Í NMR spectrum (δ, ppm, J/Hz): 3.68 (3Í,
s, ÑÍ3Î-4′), 3.93 (3Í, s, ÑÍ3Î-4′′), 6.97 (2Í, d, J = 8.0, H-3′, 5′), 7.10 (2H, d, J = 8.0, H-3′′, 5′′), 7.54 (2Í, d, J = 8.0, H-2′,
6′), 7.79 (1Í, d, J = 8.8, H-6), 7.94 (1Í, s, Í-9), 8.10 (2Í, d, J = 8.0, H-2′′, 6′′), 8.28 (1Í, d, J = 8.8, Í-5), 8.45 (1Í, s, Í-2).
13C NMR spectrum (CF3CO2D, δ, ppm): 57.14, 57.40, 115.00, 116.63, 117.14, 119.40, 120.29, 124.77, 124.82, 128.07,
128.41, 130.06, 133.27, 135.13, 155.06, 155.69, 159.21, 161.38, 162.61, 167.42, 181.36, 187.92.

8-(4-Methoxybenzoyl)-3-phenyl-4H-furo[2,3-h]chromen-4-one (6b).  C25H16O5, yield 0.31 g (78%),
mp 248–249°Ñ (DMF). IR spectrum (KBr, ν, cm–1): 1645 (Ñ=Î), 1631 (Ñ=Îγ). 

1Í NMR spectrum (δ, ppm, J/Hz): 3.93 (3Í,
s, ÑÍ3Î), 7.10 (2H, d, J = 8.0, H-3′′, 5′′), 7.44–7.59 (3Í, m, H-3′, 4′, 5′), 7.59 (2Í, d, J = 8.0, H-2′, 6′), 7.81 (1Í, d, J = 8.8,
H-6), 7.96 (1Í, s, Í-9), 8.11 (2Í, d, J = 8.0, H-2′′, 6′′), 8.29 (1Í, d, J = 8.8, Í-5), 8.51 (1Í, s, Í-2). 13C NMR spectrum
(CF3CO2D, δ, ppm): 57.14, 115.18, 117.10, 119.39, 120.25, 128.35, 128.67, 130.01, 131.17, 131.45, 131.94, 135.13, 155.07,
155.70, 159.47, 162.60, 167.46, 181.13, 187.79.

3-(4-Methoxyphenyl)-8-(4-nitrobenzoyl)-4H-furo[2,3-h]chromen-4-one (7a).  C25H15NO7, yield 0.38 g (86%),
mp 287–288°Ñ (DMF). IR spectrum (KBr, ν, cm–1): 1645 (Ñ=Î), 1631 (Ñ=Îγ).

1Í NMR spectrum (δ, ppm, J/Hz): 3.85 (3Í,
s, ÑÍ3Î), 6.98 (2H, d, J = 6.8, H-3′, 5′), 7.56 (2Í, d, J = 6.8, H-2′, 6′), 7.80 (1Í, d, J = 8.4, H-6), 8.10 (1Í, s, Í-9), 8.32–8.43
(6Í, m, H-2′′, 3′′, 5′′, 6′′, 5, 2). 13C NMR spectrum (CF3CO2D, δ, ppm): 57.19, 114.59, 116.82, 118.23, 119.07, 119.18,
124.74, 125.92, 126.53, 128.22, 129.22, 132.61, 132.93, 142.70, 152.61, 155.55, 158.88, 161.17, 169.67, 181.31, 187.16.
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