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A B S T R A C T

A novel gem-difluoromethylenated castanospermine analogue B was designed and synthesized, starting

from 3-bromo-3,3-difluoropropene and L-(�)-malic acid. The key steps involve substitution cyclization

reaction and RCM reaction to construct the aza fused bicyclic framework.

� 2014 Feng-Ling Qing. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights

reserved.
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1. Introduction

Polyhydroxylated indolizidine alkaloids are widely found in
microorganisms, vertebrates, higher invertebrates, and plants [1].
Some of these aza fused bicyclic compounds, such as lentiginosine
[2], swainsonine [3], and castanospermine [4], have been reported
to exhibit good glycosidase inhibition activity, which makes them
potential therapeutic agents (Fig. 1). Among them, castanosper-
mine has attracted considerable attention. It is a strong inhibitor of
a- and b-glucosidases [5] and has shown potential antitumor,
antiviral, and immunomodulating activities [6]. Because of its
unique biological activities, a lot of efforts have been devoted into
the synthesis of castanospermine [7] as well as its analogues [8] to
study their structure-activity relationship (SAR).

The major drawback for castanospermine in clinical applica-
tions is the low inhibition selectivity between a- and b-
glucosidases. In 1997, Tyler and co-workers reported that 7-epi-
castanospermine showed higher a/b glucosidase selectivity than
castanospermine while retaining almost complete activity towards
a-glucosidase (Scheme 1) [9]. To further improve the selectivity
and the potency of the inhibition of glycosidases, it is highly
desirable to develop new polyhydroxylated alkaloid analogues. In
49
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52
53
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2006, our group found that introduction of a gem-difluoromethy-
lene group (CF2) into 1-deoxymannonojirimycin (DMJ) could
improve the inhibition selectivity of compound A [10]. As a part of
our interest in the synthesis of fluorinated iminosugars [10,11], we
designed a new gem-difluoromethylenated analogue B of 7-epi-
castanospermine. The strongly electron-withdrawing gem-difluor-
omethylene group would reduce the pKa value and might change
the stereoconfiguration, thus affecting the inhibition activity and
selectivity. In this paper, we present our results on the synthesis of
this novel castanospermine analogue.

2. Experimental

2.1. (3S,4R)-Methyl 3-(benzyloxy)-5,5-difluoro-4-hydroxyhept-6-

enoate (3a) and (4S,5S)-4-(benzyloxy)-5-(1,1-

difluoroallyl)dihydrofuran-2(3H)-one (3b)

To a stirring solution of (S)-O-benzylmalic acid dimethyl ester 2
(0.90 g, 3.57 mmol) in CH2Cl2 (50 mL) was added magnesium
bromide etherate (1.0 g, 4.0 mmol) at 0 8C. The solution was stirred
for 1 h at 0 8C and cooled to �90 8C. To the solution was added a
1.5 mol/L solution of diisobutylaluminum hydride in toluene
(3.0 mL, 4.5 mmol) via syringe pump over 90 min, then the
reaction mixture was stirred at �90 8C for 2 h. Methanol (4 mL)
was slowly added followed by saturated Rochelle salts (80 mL).
The mixture was warmed to room temperature and stirred for
12 h. The layers were separated and the aqueous phase was
cise synthesis of gem-difluoromethylenated analogue of 7-epi-
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Fig. 1. Polyhydroxylated indolizidines.
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tracted three times with methylene dichloride. The combined
ganic phase was dried with Na2SO4 and concentrated. The
ixture was separated by flash column chromatography (petro-
um ether/ethyl acetate = 8/1) to yield 0.61 g (77%) of a colourless
l. The colourless oil was dissolved in DMF (10 mL). After that,
dium (474 mg, 4.12 mmol) and 3-bromo-3,3-difluoropropane
20 mL, 4.20 mmol) was added. The reaction mixture was stirred

 room temperature for 24 h. The reaction mixture was then
enched with 1 mol/L HCl and extracted with CH2Cl2. The
mbined organic extract was washed with brine, dried over
hydrous Na2SO4, and filtered. The solvent was removed in vacuo.
e residue was purified by silica gel column chromatography
etroleum ether/ethyl acetate = 8/1) to give 255 mg (31% yield) of
mpound 3a as a clear oil and 362 mg (44% yield) of compound 3b

 a clear oil.
3a: [a]D

20 = �6.93 (c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3): d
31–7.30 (m, 5H), 6.08–5.95 (m, 1H), 5.76–5.68 (m, 1H), 5.54–5.47
, 1H), 4.67–4.60 (m, 2H), 4.28–4.25 (m, 1H), 3.76–3.64 (m, 4H),

73–2.71 (m, 2H), 2.42 (br, 1H); 19F NMR (282 MHz, CDCl3): d
107.0 (dt, 1F, J = 253.0 Hz, 9.45 Hz), �111.5 (dt, 1F, J = 252.4 Hz,
.0 Hz); 13C NMR (100 MHz, CDCl3): d 171.4, 137.4, 130.6 (t,

 25.7 Hz), 128.5, 128.1, 120.7 (t, J = 9.5 Hz), 119.4 (t,
 242.8 Hz), 74.1 (t, J = 29.6 Hz), 73.2, 72.9, 51.8, 37.3; IR (thin
m, cm�1): 3500, 3033, 2953, 1738, 1439; MS (ESI): m/z 301.3
+H+), 318.3 (M+NH4

+); 323.2 (M+Na+); HRMS Calcd. for

5H18O4F2Na: 323.1065; Found: 323.1073.
3b: [a]D

20 = �15.17 (c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3):
7.40–7.30 (m, 5H), 6.04–5.87 (m, 1H), 5.80–5.74 (m, 1H), 5.63–
60 (m, 1H), 4.65–4.51 (m, 3H), 4.46–4.44 (m, 1H), 2.87–2.78 (m,

), 2.65–2.59 (m, 1H); 19F NMR (282 MHz, CDCl3): d �109.8 (ddd,
, J = 258.6 Hz, 12.7 Hz, 4.5 Hz), �113.0 (ddd, 1F, J = 258.9 Hz,
.6 Hz, 10.6 Hz); 13C NMR (100 MHz, CDCl3): d 174.2, 136.7, 128.8

 J = 25.8 Hz), 128.7, 128.3, 127.9, 122.9 (t, J = 9.5 Hz), 117.6 (t,
 242.7 Hz), 84.3 (t, J = 31.4 Hz), 73.4, 71.4, 34.9; IR (thin film,
�1): 3033, 2932, 1691, 1455, 1208; MS (ESI): m/z 286.2
+NH4

+); HRMS Calcd. for C14H14O3F2Na: 291.0803; Found:
1.0811.

2. (3S,4S)-3-(Benzyloxy)-5,5-difluorohept-6-ene-1,4-diol (4)

To a suspension of LiAlH4 (91.2 mg, 2.4 mmol) in dry THF (5 mL)
as added a solution of 3b (0.36 g, 1.2 mmol) in dry THF at 0 8C.
e mixture was stirred for 3 h at 0 8C and quenched by careful
dition of water and then extracted with CH2Cl2. The combined
ganic layer was washed with brine, dried over anhydrous
Scheme 1. Design of
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Na2SO4, and concentrated in vacuo. The residue was quickly
purified by silica gel column chromatography (petroleum ether/
ethyl acetate = 2/1) to afford compound 4 (0.28 g, 86%) as a clear
oil. [a]D

20 = �17.01 (c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3): d
7.35–7.25 (m, 5H), 6.10–5.93 (m, 1H), 5.73–5.68 (m, 1H), 5.50–5.47
(m, 1H), 4.52 (dd, 2H, J = 17.4 Hz, 11.4 Hz), 4.07–3.98 (m, 1H), 3.90–
3.63 (m, 3H), 2.96 (br, 2H), 2.02–1.92 (m, 2H); 19F NMR (282 MHz,
CDCl3): d �107.7 (dt, 1F, J = 251.5 Hz, 10.3 Hz), �109.3 (dt, 1F,
J = 251.8 Hz, 12.0 Hz); 13C NMR (100 MHz, CDCl3): d 137.6, 130.9 (t,
J = 25.4 Hz), 128.6, 128.1, 128.0, 120.4 (t, J = 9.5 Hz), 119.7 (t,
J = 243.1 Hz), 76.3, 73.8 (t, J = 27.9 Hz), 71.8, 58.9, 31.7; IR (thin
film, cm�1): 3392, 3033, 2928, 1664, 1056; MS (ESI): m/z 295.2
(M+Na+); HRMS Calcd. for C14H18O3F2Na: 295.1116; Found:
295.1120.

2.3. (2R,3S)-1-Allyl-3-(benzyloxy)-2-(1,1-difluoroallyl)pyrrolidine

(5)

To a solution of compound 4 (1.0 g, 3.68 mmol) in anhydrous
CH2Cl2 (12 mL), and NEt3 (3.4 mL, 23.8 mmol), MsCl (1.3 mL,
16.7 mmol) was added slowly at 0 8C. The reaction mixture was
then warmed to room temperature and stirred overnight. The
reaction was quenched with water. The resulting mixture was
extracted with CH2Cl2. The combined organic layer was washed
with brine, dried over anhydrous Na2SO4, and filtered. The solvent
was removed in vacuo. The residue was dissolved in allylamine
(6 mL). Then the reaction mixture was heated to 145 8C in the
sealed tub for 10 h. The allylamine was removed in vacuo and then
the residue was purified by silica gel column chromatography
(petroleum ether/ethyl acetate = 15/1) to give 870 mg (81%, yield,
two steps) of compound 5 as a clear oil. [a]D

20 = �16.86 (c 1.10,
CHCl3); 1H NMR (300 MHz, CDCl3): d 7.34–7.25 (m, 5H), 6.35–6.17
(m, 1H), 5.93–5.79 (m, 1H), 5.68–5.62 (m, 1H), 5.42–5.38 (m, 1H),
5.19–5.09 (m, 2H), 4.53 (s, 2H), 4.12 (q, 1H, J = 6.3 Hz), 3.57–3.51
(m, 1H), 3.18–3.00 (m, 3H), 3.17 (q, 1H, J = 8.7 Hz), 1.99–1.92 (m,
2H); 19F NMR (282 MHz, CDCl3): d �96.4 (d, 1F, J = 255.2 Hz), �97.3
(dt, 1F, J = 254.9 Hz, 13.25 Hz); 13C NMR (100 MHz, CDCl3): d 138.2,
134.8, 133.0 (t, J = 24.5 Hz), 128.3, 127.7, 127.6, 121.6 (t,
J = 239.9 Hz), 119.3 (t, J = 9.65 Hz), 117.4, 79.1 (d, J = 7.0 Hz),
72.1, 68.7 (dd, J = 30.3 Hz, 25.6 Hz), 58.2, 50.0 (d, J = 6 Hz), 30.4; IR
(thin film, cm�1): 3066, 2924, 2359, 1419, 1354, 1121, 738; MS
(ESI): m/z 298.4 (M+H+); HRMS Calcd. for C17H22OF2N: 294.1664;
Found: 294.1657.

2.4. (1S,8aR)-1-(Benzyloxy)-8,8-difluoro-1,2,3,5,8,8a-

hexahydroindolizine (6)

To a solution of compound 5 (520 mg, 1.77 mmol) in anhydrous
toluene (50 mL) was added Grubbs’ II catalyst (70 mg,
0.0824 mmol). The reaction mixture was then warmed to 80 8C
and stirred for 10 h. After the solvent was evaporated, the crude
product was purified by flash silica gel column chromatography
(petroleum ether/ethyl acetate = 6/1) to give compound 6 (375 mg,
80%) as a clear oil. [a]D

20 = 98.66 (c 1.15, CHCl3); 1H NMR
(300 MHz, CDCl3): d 7.40–7.23 (m, 5H), 6.15–6.11 (m, 1H), 5.92–
5.86 (m, 1H), 4.66 (dd, 2H, J = 37.5 Hz, 12.3 Hz), 4.39–4.33 (m, 1H),
 target molecule B.

ncise synthesis of gem-difluoromethylenated analogue of 7-epi-
6/j.cclet.2014.04.018
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3.61–3.55 (m, 1H), 3.28 (t, 1H, J = 8.6 Hz), 3.00–2.93 (m, 1H), 2.73–
2.64 (m, 1H), 2.36 (q, 1H, J = 8.4 Hz), 2.26–2.15 (m, 1H), 2.07–1.95
(m, 1H); 19F NMR (282 MHz, CDCl3): d �98.3 (d, 1F, J = 270.4 Hz),
�100.5 (d, 1F, J = 269.3 Hz); 13C NMR (100 MHz, CDCl3): d 138.7,
133.8 (t, J = 9.8 Hz), 128.3, 127.4, 127.3, 123.7 (dd, J = 30.3 Hz,
26.4 Hz), 117.7 (dd, J = 244.8 Hz, 229.7 Hz), 78.2, 72.2, 65.9 (d,
J = 20.7 Hz), 65.6 (d, J = 21.3 Hz), 51.6, 31.2; IR (thin film, cm�1):
3033, 2987, 1620, 1237, 987; MS (ESI): m/z 266.3 (M+H+); HRMS
Calcd. for C15H17OF2NNa: 288.1170; Found: 288.1164.

2.5. (3S,4S)-3-(Benzyloxy)-5,5-difluoro-4-hydroxyhept-6-enyl

acetate (7)

To a solution of compound 4 (1.032 g, 3.79 mmol) in vinyl
acetate (15 mL) was added lipase AK (0.52 g). The solution was
stirred at room temperature. After 24 h, the solution was filtered
and volatiles were removed by reduced pressure. The crude
product was chromatographed (petroleum ether/ethyl ace-
tate = 8/1) to afford 7 (1.037 g, 87%) as a clear oil. [a] D

20 = �35.71
35.71 (c 1.00, CHCl3); 1H NMR (400 MHz, CDCl3): d 7.35–7.25 (m,
5H), 6.05–5.92 (m, 1H), 5.69 (d, 1H, J = 17.2 Hz), 5.49 (d, 1H,
J = 11.2 Hz), 4.51 (dd, 2H, J = 34.4 Hz, 11.2 Hz), 4.23–4.12 (m, 2H),
4.03 (td, 1H, J = 11.2 Hz, 3.2 Hz), 3.77–3.74 (m, 1H), 2.04–1.91 (m,
5H); 19F NMR (282 MHz, CDCl3): d �107.5 (dt, 1F, J = 251.5 Hz,
11.3 Hz), �109.4 (dt, 1F, J = 251.3 Hz, 11.3 Hz); 13C NMR
(100 MHz, CDCl3): d 171.1, 137.4, 130.5 (t, J = 25.3 Hz), 128.5,
128.1, 128.0, 120.6 (t, J = 9.7 Hz), 119.4 (dd, J = 241.2 Hz,
243.3 Hz), 74.6 (t, J = 1.5 Hz), 73.6 (t, J = 28.3 Hz), 72.0, 61.1,
28.7, 20.9; IR (thin film, cm�1): 3466, 3032, 2904, 1736, 819; MS
(ESI): m /z 315.0 (M+H+); HRMS Calcd. for C16H20O4F2NNa:
337.1222; Found: 337.1223.

2.6. (3S,4R)-4-Azido-3-(benzyloxy)-5,5-difluorohept-6-enyl acetate

(8)

Compound 7 (2.62 g, 8.34 mmol) was dissolved in dry CH2Cl2

(50 mL). After that, DMAP (2.03 g, 16.68 mmol) was added. The
resulting mixture was cooled to �35 8C. Then, Tf2O (2.10 mL,
12.52 mmol) was added dropwise to the solution with stirring.
After that, the reaction mixture was stirred for about 3 h at 0 8C.
Water and NaHCO3 solution were added successively after the
mixture was warmed to room temperature. Then the mixture
was extracted with CH2Cl2, dried over anhydrous Na2SO4. The
mixture was separated by flash column (petroleum ether/ethyl
acetate = 8/1) to yield a colourless oil. The colourless oil was
dissolved in DMF (20 mL). Then, sodium azide (2.7 g, 41.7 mmol)
was added carefully with stirring at 0 8C in an ice bath. The
reaction mixture was stirred overnight at room temperature.
Water was added to quench the reaction. The aqueous phase
was extracted with CH2Cl2. The combined organic layer was
washed with brine, dried over anhydrous Na2SO4, and concen-
trated in vacuo. The residue was quickly purified by silica gel
column chromatography (petroleum ether/ethyl acetate = 8/1)
to afford compound 8 (1.95 g, 69% yield) as a clear oil.
[a] D

20 = �45.97 (c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3): d
7.35–7.25 (m, 5H), 6.08–5.95 (m, 1H), 5.78 (dt, 1H, J = 17.4 Hz,
2.1 Hz), 5.49 (d, 1H, J = 11.1 Hz), 4.59 (dd, 2H, J = 39.3 Hz,
11.1 Hz), 4.24–4.08 (m, 2H), 3.92–3.86 (m, 1H), 3.58–3.49 (m,
1H), 2.03–1.97 (m, 5H); 19F NMR (282 MHz, CDCl3): d �97.98 (d,
1F, J = 253.2 Hz), �104.70 (d, 1F, J = 251.3 Hz); 13C NMR
(100 MHz, CDCl3): d 170.3, 136.9, 129.8 (t, J = 25.1 Hz), 128.0,
127.6, 127.5, 120.7 (t, J = 9.6 Hz), 119.0 (dd, J = 244.7 Hz,
243.6 Hz), 73.8 (d, J = 2.7 Hz), 72.8, 66.7 (t, J = 28.3 Hz), 60.1,
31.0, 20.4; IR (thin film, cm�1): 3032, 2962, 2114, 1740, 1240,
989; MS (ESI): m /z 357.1 (M+NH4

+); HRMS Calcd. for
C16H19O3F2N3Na: 362.1287; Found: 362.1287.
Please cite this article in press as: X.-Y. Jiang, et al., Design and con
castanospermine, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016
2.7. (3S,4R)-4-Azido-3-(benzyloxy)-5,5-difluorohept-6-en-1-ol (9)

Compound 8 (0.87 g, 4.06 mmol) was dissolved in MeOH
(15 mL). After that, KOH (0.12 g) was added. The resulting mixture
was stirred for about 1 h. Water was added and the aqueous phase
was extracted with CH2Cl2. Then, the combined organic layers
were washed with brine. After the resultant solution was dried
over anhydrous Na2SO4 and filtered, the solvent was removed in

vacuo. The residue was purified by flash silica gel column
chromatography (petroleum ether/ethyl acetate = 6/1) to give 9
(713 mg, 96%) as a clear oil. [a]D

20 = �49.66 (c 1.00, CHCl3); 1H
NMR (400 MHz, CDCl3): d 7.37–7.27 (m, 5H), 6.09–5.96 (m, 1H),
5.77 (d, 1H, J = 17.2 Hz), 5.54 (d, 1H, J = 11.1 Hz), 4.62 (dd, 2H,
J = 36.8 Hz, 26.0 Hz), 4.02–3.98 (m, 1H), 3.73 (t, 2H, J = 5.6 Hz),
3.62–3.56 (m, 1H), 1.92 (q, 2H, J = 6.0 Hz), 1.73 (br, 1H); 19F NMR
(282 MHz, CDCl3): d �98.6 (dt, 1F, J = 253.5 Hz, 9.9 Hz), �105.24
(dt, 1F, J = 251.5 Hz, 11.8 Hz); 13C NMR (100 MHz, CDCl3): d 137.5,
130.3 (t, J = 25.3 Hz), 128.5, 128.0, 127.9, 121.1 (t, J = 9.7 Hz), 119.5
(t, J = 244.2 Hz), 75.0 (d, J = 3.7 Hz), 73.2, 67.3 (t, J = 28.3 Hz), 59.1,
34.8 (d, J = 1.5 Hz); IR (thin film, cm�1): 3387, 2929, 2883, 2113,
989; MS (ESI): m/z 268.0 ([M�N2�H]+); HRMS Calcd. for
C14H16O2F2N: 268.1149; Found: 268.1152.

2.8. 1-((2R,3S)-3-(Benzyloxy)-2-(1,1-difluoroallyl)pyrrolidin-1-

yl)prop-2-en-1-one (10)

A solution of compound 9 (3.897 g, 13.12 mmol) in dry CH2Cl2

(30 mL) was cooled to 0 8C. Et3N (3.975 g, 39.36 mmol), DMAP
(80 mg, 0.656 mmol), and MsCl (5 mL, 65.6 mmol) were added.
The mixture was stirred at room temperature for 12 h and then
quenched with water. The two layers were separated and the
aqueous layer was extracted with CH2Cl2. The combined organic
layer was dried over Na2SO4 and concentrated. The residue was
purified by silica gel column chromatography (petroleum ether/
ethyl acetate = 6/1) to give methanesulfonate (4.543 g,
12.08 mmol) as a clear oil. To a solution of methanesulfonate in
THF (50 mL) was added Ph3P (4.75 g, 18.12 mmol) and water
(4 mL). The reaction mixture was warmed to 80 8C and stirred for
4 h and then the reaction mixture was monitored by TLC. When
the starting material was consumed, 10% NaOH (aq., 15 mL) was
added and the reaction mixture was stirred for 12 h at room
temperature. The reaction mixture extracted with ethyl acetate.
The combined organic layer was washed with water and dried
over Na2SO4. The residue was dissolved in CH2Cl2 (20 mL). Then,
K2CO3 (3.33 g, 24.16 mmol) and acryloyl chloride (2.18 g,
24.16 mmol) was added. The mixture was stirred at room
temperature for 12 h and then quenched with water. The two
layers were separated, and the aqueous layer was extracted with
CH2Cl2. The combined organic layer was dried over Na2SO4 and
concentrated. The residue was purified by silica gel column
chromatography (petroleum ether/ethyl acetate = 10/1) to give
compound 10 (2.54 g, 63%) as a clear oil. [a] D

20 = �56.83 (c 2.00,
CHCl3); 1H NMR (400 MHz, CDCl3): d 7.34–7.26 (m, 5H), 6.57–6.51
(m, 0.5H), 6.41–6.37 (m, 1.5H), 6.23–6.07 (m, 1H), 5.74–5.66 (m,
2H), 5.44 (dd, 1H, J = 21.2, 11.2 Hz), 4.95–4.87 (m, 0.5H), 4.70–
4.63 (m, 1H), 4.55–4.49 (m, 1H), 4.45–4.38 (m, 0.5H), 4.25–4.08
(m, 1H), 3.74–3.64 (m, 1H), 3.57–3.46 (m, 1H), 2.37–2.12 (m, 2H);
19F NMR (376 MHz, CDCl3): d �96.2 (dd, 0.48F, J = 252.3 Hz,
10.9 Hz), �102.7 (dt, 0.52F, J = 249.3 Hz, 13.9 Hz), �102.8 (dt,
0.48F, J = 250.8 Hz, 10.9 Hz), �103.4 (dt, 0.52F, J = 249.3 Hz,
12.4 Hz); 13C NMR (100 MHz, CDCl3): d 166.1, 137.5, 137.3,
132.4 (t, J = 24.6 Hz), 131.9 (t, J = 24.6 Hz), 129.1, 128.5, 128.4,
128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 120.7 (t, J = 11.1 Hz),
119.5 (t, J = 9.6 Hz), 118.3 (t, J = 245.3 Hz), 117.4 (t, J = 244.9 Hz),
77.8, 76.5, 72.7, 61.4 (t, J = 23.1 Hz), 58.1 (t, J = 26.8 Hz), 44.0, 43.1,
29.5, 27.5; IR (thin film, cm�1): 3030, 2896, 1655, 1614, 1421; MS
cise synthesis of gem-difluoromethylenated analogue of 7-epi-
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SI): m /z 308 (M+H+); HRMS Calcd. for C17H19O2F2NNa:
0.1276; Found: 330.1270.

9. (1S,8aR)-1-(Benzyloxy)-8,8-difluoro-2,3,8,8a-

trahydroindolizin-5(1H)-one (11)

Compound 10 (643 mg, 0.31 mmol) and titanium isopropoxide
80 mg, 0.643 mmol) in dry toluene (20 mL) was refluxed for 3 h
der an argon atmosphere. Then Grubbs’ II catalyst dissolved in

luene (5 mL) was added dropwise to the mixture. The reaction
ixture was stirred at reflux for 10 h. The reaction mixture was
oled to room temperature and concentrated under reduced
essure. The residue was purified by silica gel column chroma-
graphy (petroleum ether/ethyl acetate = 8/1) to give compound

 (450 mg, 78% yield) as a yellow oil. [a]D
20 = �716.00 (c 0.51,

Cl3); 1H NMR (300 MHz, CDCl3): d 7.33–7.24 (m, 5H), 6.52–6.47
, 1H), 6.20 (d, 1H, J = 7.8 Hz), 4.63 (dd, 2H, J = 19.5 Hz, 9.0 Hz),

48 (d, 1H, J = 1.8 Hz), 3.97–3.88 (m, 1H), 3.77–3.65 (m, 2H), 2.21–
15 (m, 1H), 1.93–1.84 (m, 1H); 19F NMR (376 MHz, CDCl3): d
101.4 (dd, 1F, J = 254.9 Hz, 25.6 Hz), �106.4 (dt, 1F, J = 273.7 Hz,
3 Hz); 13C NMR (100 MHz, CDCl3): d 161.0 (d, J = 3.3 Hz), 131.7,
3.7 (dd, J = 32.6 Hz, 24.3 Hz), 131.0 (dd, J = 11.3 Hz, 8.3 Hz),
8.4, 127.8, 127.5, 116.2 (dd, J = 251.3 Hz, 231.5 Hz), 77.85, 72.2
, J = 1.5 Hz), 62.8 (dd, J = 35.7 Hz, 24.3 Hz), 43.0, 29.9; IR (thin
m, cm�1): 2952, 1675, 1616, 1445, 1206; MS (ESI): m/z 302.0
+Na+), 280.0 (M+H+); HRMS Calcd. for C15H16O2F2N: 280.1144;
und: 280.1154.

10. (1S,6R,7S,8aR)-1-(Benzyloxy)-8,8-difluoro-6,7-

hydroxyhexahydroindolizin-5(1H)-one (12)

To a solution of compound 11 (450 mg, 1.61 mmol) in acetone
 mL) was added NMNO (438 mg, 3.23 mmol), followed by
dition of water (10 mL) at room temperature with stirring.
en a catalytic amount of OsO4 (5 mol %) solution in water (4%
lution) was added. After the reaction mixture was stirred at room
mperature for 48 h, it was quenched with saturated NaHSO3

lution and extracted with ethyl acetate. The combined organic
yer was washed with brine, dried over anhydrous Na2SO4, and
tered. The solvent was removed in vacuo. The residue was
rified by silica gel column chromatography (petroleum ether/

hyl acetate = 2/1) to give 402 mg (80% yield) of compound 12 as a
llow oil. [a]D

20 = 93.56 (c 1.00, CHCl3); 1H NMR (400 MHz,
Cl3): d 7.37–7.27 (m, 5H), 4.63 (dd, 2H, J = 14.7 Hz, 9.0 Hz), 4.40–

32 (m, 2H), 4.32 (s, 1H), 4.15 (d, 1H, J = 19.5 Hz), 3.69–3.65 (m,
), 2.21–2.15 (m, 1H), 1.97–1.92 (m, 1H); 19F NMR (376 MHz,
Cl3): d �113.6 (dd, 1F, J = 256.0 Hz, 8.3 Hz), �117.7 (dd, 1F,

 256.0 Hz, 25.6 Hz); 13C NMR (100 MHz, CDCl3): d 169.0, 137.7,
8.4, 127.8, 127.5, 118.6 (t, J = 248.6 Hz), 76.9, 71.9 (d, J = 1.5 Hz),
.3 (dd, J = 32.8, 21.6 Hz), 69.1 (d, J = 8.2 Hz), 59.9 (dd, J = 37.2,
.4 Hz), 43.4, 29.6; IR (thin film, cm�1): 3372, 2896, 1644, 1117,
68; MS (ESI): m/z 314.0 (M+H+); HRMS Calcd. for C15H18O4F2N:
4.1198; Found: 314.1212.

11. (1S,6S,7S,8aR)-1-(Benzyloxy)-8,8-difluorooctahydroindolizine-

7-diol (13)

To a stirred, cooled (0 8C, ice bath) solution of 12 (185 mg,
585 mmol) in THF (3 mL) was added borane dimethylsulfide
heme 2. Retrosynthestic analysis of target molecule B.

Please cite this article in press as: X.-Y. Jiang, et al., Design and co
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complex (2.0 mol/L in THF, 3.0 mL, 6.0 mmol). After 30 min, the
cold bath was removed, and the reaction was heated to reflux and
then stirred for 20 h. The reaction was then quenched with MeOH
(1 mL) and concentrated under reduced pressure. The residue was
dissolved in MeOH (5 mL). Then, the reaction was heated to reflux
and stirred for 12 h. The mixture was concentrated under reduced
pressure and the residue purified by column chromatography on
silica gel (MeOH/CH2Cl2 = 1/50) to afford 13 (147 mg, 85%) as a
white solid. [a]D

20 = 18.06 (c 1.00, CD3OD); 1H NMR (400 MHz,
CD3OD): d 7.34–7.20 (m, 5H), 4.85 (s, 2H), 4.53 (dd, 2H, J = 11.1 Hz,
9.3 Hz), 4.28–4.25 (m, 1H), 3.93–3.84 (m, 2H), 3.14–3.10 (m, 1H),
2.93–2.90 (m, 1H), 2.66 (dd, 1H, J = 19.2 Hz, 3.3 Hz), 2.33 (t, 1H,
J = 8.4 Hz), 2.26–2.15 (m, 2H), 1.93–1.89 (m, 1H); 19F NMR
(376 MHz, CD3OD): d �114.5 (d, 1F, J = 253.5 Hz), �117.1 (dd,
1F, J = 254.5 Hz, 26.0 Hz); 13C NMR (100 MHz, CD3OD): d 138.5,
127.6, 127.2, 127.0, 120.0 (t, J = 243.8 Hz), 76.9, 71.3, 70.9 (dd,
J = 32.6 Hz, 20.5 Hz), 66.6 (d, J = 6.8 Hz), 63.2 (dd, J = 30.4 Hz,
19.0 Hz), 51.9, 51.3, 30.8; IR (thin film, cm�1): 3531, 2952, 1116,
1049, 740; MS (ESI): m/z 300.0 (M+H+); HRMS Calcd. for
C15H19O3F2NNa: 322.1225; Found: 322.1212.

2.12. 7-epi-8,8-Difluorocastanospermine (B)

HCOOH (1.045 mL) was added to a mixture of compound 13
(25 mg, 0.084 mmol) and 10% Pd/C (334 mg) in MeOH (5 mL)
under an argon atmosphere. The suspension was stirred for 4 h and
then filtered through a short pad of celite. The filtrate was
concentrated under reduced pressure and the residue was
dissolved in water and passed through a column of ion-exchange
resin (Dowex 1 � 8, OH-form) eluting with MeOH. The eluent was
concentrated under reduced pressure to give 7-epi-8,8-difluor-
ocastanospermine (B) (16 mg, 92%) as a colourless solid.
[a]D

20 = 20.52 (c 0.50, CD3OD); 1H NMR (400 MHz, CD3OD): d
4.47 (s, 1H), 3.91–3.89 (m, 1H), 3.82 (s, 1H), 3.13 (t, 1H, J = 3.3 Hz),
2.93–2.91 (m, 1H), 2.51 (d, 1H, J = 12.0 Hz), 2.33–2.22 (m, 2H), 2.15
(q, 1H, J = 8.8 Hz), 1.77–1.69 (m, 1H); 19F NMR (376 MHz, CD3OD):
d �112.6 (d, 1F, J = 251.9 Hz), �113.8 (dd, 1F, J = 250.3 Hz, 22.9 Hz);
13C NMR (100 MHz, CD3OD): d 120.2 (t, J = 247.5 Hz), 70.8 (dd,
J = 32.6 Hz, 21.3 Hz), 69.3, 66.9 (d, J = 6.8 Hz), 63.8 (dd, J = 28.8 Hz,
19.0 Hz), 51.9, 51.1, 33.1; IR (thin film, cm�1): 3401, 3321, 2938,
1079, 1057; MS (ESI): m/z 209.9 (M+H+); HRMS Calcd. for
C8H14O3F2N: 210.0936; Found: 210.0946.

3. Results and discussion

The retrosynthetic analysis of target molecule B is shown in
Scheme 2. Compound B could be prepared by substrate-controlled
cis-dihydroxylation of cycloalkene C. The six-member ring in
compound C could be constructed by ring-closing metathesis
(RCM) reaction from diene D, in which the pyrrolidine ring is easily
accessible by intermolecular cyclization of allylamine and
compound E. Compound E is expected to be obtained by coupling
of 3-bromo-3,3-difluoropropene and aldehyde F.

Our initial route towards compound B commenced from the
cheap and commercially available L-(�)-malic acid 1 (Scheme 3).
Esterfication of compound 1 with SO2Cl2/MeOH and then
protection of the hydroxyl group under the condition of Ag2O/
BnBr gave compound 2 in high yield. Lewis acid mediated selective
reduction of compound 2 produced the desired aldehyde [12],
ncise synthesis of gem-difluoromethylenated analogue of 7-epi-
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which reacted with 3-bromo-3,3-difluoropropene in the presence
of indium affording two diastereoisomers 3a and 3b. Interestingly,
compound 3b was obtained in the form of lactone. It was converted
into diol 4 in high yield by reduction with LiAlH4. Reaction of both
of the hydroxyl groups in diol 4 with MsCl and subsequent
intramolecular cyclization with allylamine afforded the RCM
reaction precursor 5. The RCM reaction of compound 5 with
Grubbs’ II catalyst proceeded smoothly to afford alkene 6 in 80%
yield. To our disappointment, the dihydroxylation of alkene 6
could not be achieved, despite trying many different reaction
systems [13]. The failure of the dihydroxylation reaction might be
ascribed to the coordination of nitrogen atom to the catalyst OsO4

[14].
To reduce the coordination ability of nitrogen to osmium, we

decided to connect an electron-withdrawing group to the nitrogen
atom. The modified synthetic route is shown in Scheme 4. Selective
414
415
416
417
418
419
420
421
422
423
424
425
426

427

428
429
430
431Fig. 2. X-ray crystallographic structures of compound 13.
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protection of the primary hydroxyl group in compound 4 with
vinyl acetate and Pseudomonas (AK) [15] gave the secondary
alcohol 7 in 87% yield. Reaction of alcohol 7 with Tf2O in presence
of DMAP afforded the corresponding triflate, which then reacted
with NaN3 to give azide 8. Cleavage of the O-Ac group in a
methanolic solution of 1% KOH afforded the desired alcohol 9.
Mesylation of the hydroxyl group in compound 9 gave the
corresponding methanesulfonate. Reduction of azide group with
triphenylphosphine and subsequent intramolecular substitution
cyclization afforded the pyrrolidine intermediate, which then was
directly treated with acryloyl chloride to give diene 10 in 63%
overall yield. Considering the high electron-deficient properties of
diene 10, we performed the ring-closing metathesis (RCM)
reaction under the reaction conditions developed by our group
[16], with Grubbs’ II catalyst and co-catalyst Ti(i-PrO)4, affording
the desired a,b-unsaturated lactam 11 in 78% yield. Dihydroxyla-
tion of lactam 11 catalyzed by OsO4 proceeded well giving diol 12
as a single isomer. The high diastereoselectivity can be explained
by the steric hindrance of benzyl ether. Subsequent reduction of
lactam 12 with borane dimethyl sulfide complex gave indolizidine
13 in 85% yield. The absolute configuration of 13 was confirmed by
single-crystal X-ray diffraction analysis (Fig. 2). Finally, removal of
the benzyl group, via hydrogenolysis in the presence of 10% Pd/C,
provided the target molecule 7-epi-8,8-difluorocastanospermine
B.

The synthesized 7-epi-8,8-difluorocastanospermine B was
evaluated for its inhibitory activities against a-glucosidase from
baker’s yeast and b-glucosidase from almonds. Unfortunately no
significant inhibitory activity was observed.

4. Conclusion

In conclusion, we have designed and prepared a novel gem-
difluoromethylenated castanospermine analogue B. Intramolecu-
lar cyclization reaction was applied to construct pyrrolidine ring,
while RCM reaction was used to achieve the desired bicyclic
cise synthesis of gem-difluoromethylenated analogue of 7-epi-
/j.cclet.2014.04.018
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mework. Comparing the two synthetic routes, it was found that
ide 11 showed much better reactivity than amine 6 in the

hydroxylation reaction. Thus, the introduction of an electron-
ithdrawing group to the nitrogen atom was the highlight of the
odified route. The synthesis of other difluoromethylenated
stanospermine isomers as well as evaluation of their biological
tivity are currently on progress.
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