Paper

Synthesis of Substituted Indole-3-carboxylates by Iron(II)-Catalyzed Domino Isomerization of 3-Alkyl/aryl-4-aryl-5-methoxyisoxazoles

Α

Vladimir A. Bodunov Ekaterina E. Galenko Alexey V. Galenko Mikhail S. Novikov Alexander F. Khlebnikov* [©]

Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russian Federation a.khlebnikov@spbu.ru

Received: 21.02.2018 Accepted after revision: 28.03.2018 Published online: 29.05.2018 DOI: 10.1055/s-0036-1591576; Art ID: ss-2018-t0101-op

Abstract The iron(II)-catalyzed domino isomerization of 3-alkyl/aryl-4-arylisoxazoles provides a selective access to a wide range of structurally diverse highly substituted indole-3-carboxylates. The operational simplicity, high atom efficiency, and the use of stable starting materials and an inexpensive and low-toxicity catalyst are some of the attractive features of this tandem double ring-opening-ring-closure strategy.

Key words indoles, isoxazoles, isomerization, domino reactions, iron(II) chloride catalysis

The indole moiety is widely present in natural compounds, important marketed medicines, agrochemicals, and progressive materials.^{1,2} Accordingly, the development of atom-economical, practical, and safe synthesis of compounds containing an indole ring is of immense interest to synthetic chemists. While numerous methods for the preparation of indoles have been developed,^{1,3} there still remains a great need to find new methodologies for the selective preparation of functionalized indoles, substituted in specific positions, from inexpensive and easily available starting materials. The use of ring-to-ring intramolecular isomerization for the preparation of indole derivatives is quite rare,¹ although these processes are 100% atom-economical reactions.⁴

Two types of isomerizations involving ring opening followed by recyclization are known: the gold-catalyzed rearrangement of 2-alkynyl-*N*-arylazetidines to pyrrolo[1,2*a*]indoles⁵ and the rearrangement of 2-aryl-2*H*-azirines to indoles (Scheme 1).^{6,7} Since the first report on the thermal rearrangement of 2-phenyl-2*H*-azirine and 3-methyl-2phenyl-2*H*-azirine to the corresponding indoles,^{7a} this reaction has been extended to a series of substituted 2-aryl-2*H*azirines, making this approach useful for the preparation of some indoles having substituted benzene rings.^{7c,d,g} The transformation could also be performed at lower temperatures under Pd(PhCN)₂Cl₂,^{7b} Rh₂[OC(O)CF₃]₄,^{7f} and FeCl₂^{7h} catalysis. Some derivatives of indole-3-carboxylic acid were obtained by both thermal and catalytic isomerization of the corresponding 2*H*-azirines via the 1,5-cyclization of an intermediate styryl nitrene [Scheme 1, eq. 2, R² = CN, CO₂Et]^{7g} or a styryl nitrene complex [Scheme 1, eq. 3, R² = morpholinocarbonyl].^{7f,h}

Scheme 1 Different routes for the synthesis of indole derivatives by isomerization

Nitriles of indole-3-carboxylic acids were prepared in high yields by heating 2-aryl-2*H*-azirine-2-carbonitriles at 140 °C in xylene, albeit ethyl 3-benzyl-2-phenyl-2*H*-azirine-2-carboxylate afforded ethyl 2-benzylindole-3-carboxylate in only 42% yield under the same conditions.^{7g} The

morpholide of 2-methylindole-3-carboxylic acid was obtained by a FeCl₂-catalyzed isomerization of the corresponding azirine in 46% yield^{7h} and by Rh₂[OC(O)CF₃]₄-catalyzed isomerization in 91% yield.^{7f} The above-mentioned isomerization of azirines to indoles depends strongly on the nature of the substituents in the substrates and is applicable mostly to reactive 3-alkyl-substituted 2*H*-azirines. This, along with the limited availability and low stability of some functionalized azirines, necessitates the search for new precursors and catalysts for the generation of styryl nitrenes and their metal complexes.

In a search for more effective approaches to indole-3carboxylates based on nitrenoid-mediated reactions, we turned our attention to 5-alkoxy-4-arylisoxazoles, which can be considered, when using an isoxazole-azirine isomerization,^{8a} as synthetic equivalents of difficult-to-access 2aryl-2H-azirine-2-carboxylates. It was previously found that this isomerization is catalyzed by iron(II) compounds,^{6,8} which, in turn, can promote isomerization of azirine to indole. Taking into account these prerequisites and especially the relatively low toxicity of many iron species, which is of importance for applications in industry related to healthcare and medicine,⁹ we decided to search for conditions for the implementation of a direct domino transformation of isoxazoles into indole-3-carboxylates within the green chemistry framework. We expected that the generation of a nitrene complex 2 from isoxazole, rather than azirine, can prevent some of the secondary processes characteristic for non-complexed azirine-2-carboxylates. This should improve the efficacy of the cyclization of styryl nitrene complexes, leading to indoles and allow the use of higher temperatures, which are necessary for the preparation of 2-arylindole-3-carboxylates, inaccessible until now from the corresponding azirines^{6,7} (Scheme 2).

Scheme 2 Route for the synthesis of indole derivatives by isomerization of isoxazoles

In order to find the optimal reaction conditions, we studied the model transformation of 5-methoxy-3,4-diphenylisoxazole (**1a**) and azirine **4a** into methyl 2-phenylindole-3-carboxylate (**3a**) without any catalyst and with typical iron(II) catalysts, FeCl₂ and Fe(NTf₂)₂,⁸ in different solvents and at various temperatures (Table 1). To start, azirine **4a**, prepared by FeCl₂·4H₂O-catalyzed isomerization of isoxazole **1a**, was heated in xylene. However, even heating at 180 °C for 15 hours without catalyst led to the formation of only traces of **3a** according to NMR analysis, although in other work^{7g} heating 2-aryl-2H-azirine-2-carbo

nitriles gave the corresponding 1*H*-indole-3-carbonitriles already at 140 °C. Heating isoxazole **1a** in 1,4-dioxane without catalyst at 170 °C for 20 hours afforded only azirine **4a**. Further experiments, therefore, were performed in the presence iron(II) catalysts.

Table 1 Optimization of Reaction Conditions^a

В

^a Reaction conditions: **1a** (0.2 mmol), cat. (20 mol%), solvent (2 mL), heat (indicated temperature), time (as shown), screw-capped thick-walled test tube; then reaction mixture cooled down, passed through a short silica pad; reaction progress followed by ¹H NMR spectroscopy (1,1,2,2-tetrabro-moethane as internal standard). ^b Isolated yields.

When isoxazole **1a** was stirred at room temperature in the presence of $FeCl_2$ or $Fe(NTf_2)_2$ for the transformation into methyl 2,3-diphenyl-2H-azirine-2-carboxylate 4a and was further heated at 70 °C in THF (the conditions used for the transformation of 3-alkyl-2*H*-azirines into indoles^{7h}), only traces of indole 3a were detected by NMR analysis (Table 1, entries 1 and 2). Increasing the temperature and using $o-Cl_2C_6H_4$ or 1,4-dioxane as solvent improved the yield to 54% (entries 3-6). Using solvent-free conditions was unsuccessful, presumably due to decomposition of the product under prolonged heating (entries 7-9). The reaction carried out in DMSO under a dual temperature regime (entry 10) gave 3a in 65% yield. Finally, the domino reaction of 1a in the presence of FeCl₂ in DMSO at 170 °C for 5 hours gave **3a** in 77% isolated yield (entry 11). Moreover, FeCl₂·4H₂O proved to be as effective as anhydrous FeCl₂.

The latter conditions were used for the preparation of a series of indoles **3a–u** from isoxazoles **1a–u** (Scheme 3). The structures of the isolated products were confirmed by standard spectroscopic methods. The reactions of 5-methoxy-4-phenylisoxazoles bearing 3-phenyl groups with donor or acceptor substituents afforded the corresponding

methyl 2-arylindole carboxylates in 62–93% yield. The 3-(2-naphthyl)-substituted isoxazole **1f** gave only 40% yield of indole **3f**, whereas the less bulky 3-(2-benzothienyl)-substituted isoxazole **1g** gave 89% yield of indole **3g**. 3-Alkyl-substituted isoxazoles **1h**,**i** afforded indoles **3h**,**i** in excellent yields. The reaction of 5-methoxy-3-phenylisoxazoles with 4-(p-RC₆H₄) groups with R as halogen or MeO substituents afforded the corresponding 6-substituted methyl 2-phenylindole carboxylates **3j**,**l**,**m**,**n** in 80–94% yield, whereas the NO₂ substituent lowered the yield of indole **3o** to 39%.

The reaction of 5-methoxy-3-phenylisoxazoles with 4-(m-NO₂C₆H₄) and 4-(m-BrC₆H₄) substituents led selectively to the corresponding 5-substituted methyl 2-phenylindole carboxylates **3q** and **3p** in 62% and 71% yield, respectively (Scheme 3). 5-Methoxy-4-(2-methoxyphenyl)-3-phenylisoxazole gave 4-substituted methyl 2-phenylindole **3r** in only 31% yield, most likely due to steric congestion in the transition state of the cyclization of the corresponding complex **2**. 5-Methoxy-4-(1/2-naphthyl)-3-(4-tolyl)isoxazoles **1t,s** react selectively, affording methyl 2-phenyl-3*H*-benzo[*e*]indole-1-carboxylate **3t** and methyl 2-phenyl-1*H*-benzo[*g*]indole-3-carboxylate **3s** in excellent yields. 5-Aminoisoxazoles are also suitable for the transformation into the corresponding indoles, e.g. isoxazole **1u** gave pyrrolidide of 2-phenylindole-3-carboxylic acid **3u** in 74% yield. All these results demonstrate that the method can be used for the selective synthesis of various 2/4/5/6-substituted indole-3carboxylates and the benzo[*e*]- and -[*g*]- derivatives.

To verify the applicability of the method for the preparation of hetero analogues of indolecarboxylates, 4-(2-thie-nyl)-substituted isoxazole 1v was treated with FeCl₂ under the standard reaction conditions to give methyl 5-phenyl-4*H*-thieno[3,2-*b*]pyrrole-6-carboxylate (3v) in good yield (Scheme 4).

Svn thesis

On the basis of the obtained results and previous calculations,^{8c,d,10} we propose the plausible reaction pathway for the iron(II)-catalyzed domino isomerization of isoxazoles to indoles as shown in Scheme 5. The mechanism includes the following steps: (a) the formation of the isoxazole-Fe complex **B**. (b) opening of the isoxazole ring of the Fe–isoxazole complex **B** via an N–O bond cleavage to form the Fe–nitrene complex **C** having an inappropriate configuration for 1,5cvclization on the benzene ring. (c) the recvclization of Fenitrene complex C into the Fe-azirine complex D, which, according to calculated data,^{8c,d} should occur via a low activation barrier. (d) low-energy conformational transformations in **D** followed by opening of the three-membered ring leading to the Fe-nitrene complex **E** with a configuration providing the possibility of 1,5-cyclization, (e) 1,5-cyclization giving the Fe complex of 7aH-indole F, and (f) and (g) solvent-assisted¹⁰ H-shift and cleavage of the catalyst to give the final product, indole H.

Scheme 5 Plausible reaction mechanism

In summary, a selective, simple, and effective synthesis of highly substituted 2-alkyl/aryl-indole-3-carboxylates based on the isoxazole–azirine-indole domino isomerization under FeCl₂ catalysis has been described. This double ring-opening–ring-closure strategy nicely complements existing methods based on the rearrangement of azirines to indoles. The reported method is endowed with several important features, including operational simplicity, high atom-efficiency, and the use of stable starting materials, a green solvent, and an inexpensive and low-toxicity catalyst. The methodology is applicable to the preparation of benzofused and hetero analogues of indole-3-carboxylates.

Melting points were determined on a Stuart SMP30 capillary melting point apparatus. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of CD-Cl₃ or DMSO-*d*₆ solutions were recorded with a Bruker AVANCE III 400 spectrometer. Chemical shifts (δ) are reported in ppm downfield from TMS (δ = 0.00). ¹H NMR spectra were calibrated according to the residual peak of CHCl₃ (δ = 7.26) or DMSO-*d*₆ (δ = 2.50). ¹³C{¹H} and ¹³C DEPT135 were calibrated according to the peak of CDCl₃ (δ = 77.00) or DMSO-*d*₆ (δ = 39.51). Mass spectra were recorded on a Bruker maXis HRMS-ESI-QTOF, electrospray ionization, positive mode. Thin-layer chromatography (TLC) was conducted on aluminum sheets with 0.2 mm silica gel (fluorescent indicator, Macherey-Nagel) and Macherey-Nagel Silica 60 M was used for column chromatography. THF was distilled from sodium benzophenone-ketyl under argon atmosphere before use. Dimethyl sulfoxide was distilled from calcium hydride under reduced pressure.

Synthesis of Starting Materials

D

3-Substituted 4-Aryl-5-hydroxyisoxazoles/4-Arylisoxazol-5(4H)ones 6; General Procedure A (Scheme 6)

Scheme 6 Synthesis of 3-substituted 4-aryl-5-hydroxyisoxazoles/4-arylisoxazol-5(4H)-ones 6

A solution of 2.5 M *n*-BuLi in hexane (1.2 equiv) was added dropwise to a solution of HMDS (1.2 equiv) in anhyd THF at –78 °C under argon, and then, after stirring of the mixture for 10 min, a solution of alkyl 2arylacetate (1 equiv) in THF was added in one portion. The mixture was stirred for 10 min, after which a solution of acyl chloride (1.15 equiv) in THF was added in one portion and the mixture was stirred for 15 min at –78 °C and then overnight at r.t. The reaction mixture was quenched with sat. aq NH₄Cl, extracted with EtOAc or Et₂O, and the organic layer was washed with brine and dried over Na₂SO₄. The solvents were evaporated to give 3-substituted alkyl 2-aryl-3-oxopropanoate **5**, which was used without further purification.

NH₂OH·HCl (2–5 equiv) was added to a solution of **5** in MeOH and the mixture was refluxed for 24 h. The solvent was evaporated, the residue was treated with H₂O, and the precipitate that formed was filtered, washed with H₂O and a mixture of PE/EtOAc (10:1), and then dried in air to give pure 3-substituted 4-aryl-5-hydroxyisoxazole/4-arylisoxazol-5(4*H*)-one **6**. The yields of **6** were calculated for the two steps, and is based on the starting alkyl 2-arylacetate.

3,4-Diphenylisoxazol-5-ol/3,4-Diphenylisoxazol-5(4H)-one (6a)

Methyl Propanoate 5a

Pale yellow oil, yield 1.88 g, was prepared from HMDS (1.29 g, 8.0 mmol) in THF (5 mL), *n*-BuLi (3.2 mL, 8.0 mmol), methyl 2-phenylace-tate (1.00 g, 6.7 mmol) in THF (5 mL), and benzoyl chloride (1.08 g, 7.7 mmol) in THF (5 mL).

Isoxazol-5-ol 6a

Isoxazol-5-ol 6a was prepared from compound 5a (1.88 g) and $NH_2OH\cdot HCl$ (2.32 g, 33.5 mmol) in MeOH (40 mL).

Yield: 1.21 g (76%); colorless solid; mp 147–148 $^\circ C$ (MeOH) [Lit. 11 157 $^\circ C$ (CHCl_3)].

 ^1H NMR (400 MHz, DMSO- $d_6):$ δ = 7.21–7.25 (m, 1 H), 7.28–7.33 (m, 4 H), 7.44–7.50 (m, 4 H), 7.52–7.56 (m, 1 H), 12.83 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 126.7 (CH), 127.5 (C), 127.9 (CH), 128.2 (CH), 128.3 (CH), 129.0 (CH), 129.8 (C), 131.0 (CH), 160.4 (C), 170.3 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₅H₁₁NNaO₂⁺: 292.0744; found: 292.0744.

3-(4-Methoxyphenyl)-4-phenylisoxazol-5-ol/3-(4-Methoxyphenyl)-4-phenylisoxazol-5(4H)-one (6b)

Methyl Propanoate 5b

Red semi-solid, yield 1.98 g, was prepared from HMDS (1.29 g, 8.0 mmol) in THF (5 mL), *n*-BuLi (3.2 mL, 8 mmol), methyl 2-phenylace-tate (1.00 g, 6.7 mmol) in THF (5 mL), and 4-methoxybenzoyl chloride (1.31 g, 7.7 mmol) in THF (5 mL).

Isoxazol-5-ol 6b

Isoxazol-5-ol **6b** was prepared from compound **5b** (1.98 g) and NH₂OH·HCl (2.32 g, 33.5 mmol) in MeOH (13 mL).

Yield: 1.44 g (81%); yellowish solid; mp 147-148 °C (MeOH).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.80 (s, 3 H), 7.03 (d, *J* = 8.8 Hz, 2 H), 7.22 – 7.28 (m, 1 H), 7.29 – 7.36 (m, 4 H), 7.39 (d, *J* = 8.8 Hz, 2 H), 12.68 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 55.4 (CH₃), 114.5 (CH), 119.3 (C), 126.7 (CH), 128.3 (CH), 128.3 (CH), 129.4 (CH), 130.1 (C), 160.2 (C), 161.3 (C), 170.5 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₃NNaO₃⁺: 290.0788; found: 290.0792.

4-Phenyl-3-p-tolylisoxazol-5-ol/4-Phenyl-3-p-tolylisoxazol-5(4H)-one (6c)

Methyl Propanoate 5c

Colorless solid, yield 1.96 g, was prepared from HMDS (1.29 g, 8.0 mmol) in THF (8 mL), *n*-BuLi (3.2 mL, 8.0 mmol), methyl 2-phenylace-tate (1.00 g, 6.7 mmol) in THF (10 mL) and 4-methylbenzoyl chloride (1.18 g, 7.7 mmol) in THF (8 mL).

Isoxazol-5-ol 6c

Compound **6c** was prepared from compound **5c** (1.96 g) and NH_2OH -HCl (1.35 g, 19.4 mmol) in MeOH (13 mL).

Paper

Yield: 1.43 g (86%); colorless solid; mp 162-163 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 2.35 (s, 3 H), 7.20–7.39 (m, 9 H), 12.67 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 21.0 (CH₃), 124.7 (C), 126.5 (CH), 127.8 (CH), 128.1 (CH), 128.3 (CH), 129.6 (CH), 130.2 (C), 140.9 (C), 160.4 (C), 170.6 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₃NNaO₂⁺: 274.0838; found: 274.0842.

3-(4-Chlorophenyl)-4-phenylisoxazol-5-ol/3-(4-Chlorophenyl)-4-phenylisoxazol-5(4H)-one (6d)

Methyl Propanoate 5d

Pale green oil, yield 2.05 g, was prepared from HMDS (1.30 g, 8 mmol) in THF (5 mL), *n*-BuLi (3.2 mL, 8 mmol), methyl 2-phenylacetate (1.00 g, 6.7 mmol) in THF (5 mL), and 4-chlorobenzoyl chloride (1.35 mg, 7.7 mmol) in THF (5 mL).

Isoxazol-5-ol 6d

Compound **6d** was prepared from compound **5d** (2.05 g) and $\rm NH_2OH \cdot HCl$ (2.09 g, 30 mmol) in MeOH (13 mL).

Yield: 1.41 g (78%); colorless solid; mp 141–142 °C (MeOH) [Lit.¹¹ 154 °C (CHCl₃)].

¹H NMR (400 MHz, DMSO- d_6): δ = 7.20–7.39 (m, 5 H), 7.46 (d, J = 8.4 Hz, 2 H), 7.56 (d, J = 8.4 Hz, 2 H), 12.66 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 126.6 (C), 126.8 (CH), 128.3 (CH), 128.4 (CH), 129.2 (CH), 129.6 (C), 129.8 (CH), 135.7 (C), 159.4 (C), 170.3 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₅H₁₀³⁵CINNaO₂⁺: 294.0292; found: 294.0295.

3-(4-Nitrophenyl)-4-phenylisoxazol-5-ol/3-(4-Nitrophenyl)-4-phenyl-5(4H)-one (6e)

Methyl Propanoate 5e

Yellowish solid, yield 2.00 g, was prepared from HMDS (1.16 g, 7.2 mmol) in THF (9 mL), *n*-BuLi (2.9 mL, 7.2 mmol), methyl 2-phenylace-tate (901 mg, 6.0 mmol) in THF (11 mL), and 4-nitrobenzoyl chloride (1.28 g, 6.9 mmol) in THF (10 mL).

Isoxazol-5-ol 6e

Compound **6e** was prepared from compound **5e** (2.00 g) and NH_2OH ·HCl (1.05 g, 15.2 mmol) in MeOH (12 mL).

Yield: 1.35 g (82%); colorless solid; mp 154–155 $^\circ C$ (MeOH) [Lit.^1 159 $^\circ C$ (CHCl_3)].

¹H NMR (400 MHz, DMSO- d_6): δ = 7.24–7.28 (m, 3 H), 7.31–7.35 (m, 2 H), 7.69–7.72 (m, 2 H), 8.31 (d, *J* = 8.8 Hz, 2 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 95.8 (C), 124.1 (CH), 126.9 (CH), 128.4 (CH), 128.5 (CH), 129.3 (C), 129.5 (CH), 134.5 (C), 148.5 (C), 159.0 (C), 170.3 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₅H₁₀N₂NaO₄⁺: 305.0533; found: 305.0529.

3-(2-Naphthyl)-4-phenylisoxazol-5-ol/3-(2-Naphthyl)-4-phenylisoxazol-5(4H)-one (6f)

Methyl Propanoate 5f

Colorless solid, yield 1.80 g, was prepared from HMDS (1.07 g, 6.6 mmol) in THF (8 mL), *n*-BuLi (2.6 mL, 6.6 mmol), methyl phenylace-tate (826 mg, 5.5 mmol) in THF (9 mL), and 2-naphthoyl chloride (1.21 g, 6.3 mmol) in THF (13 mL).

Isoxazol-5-ol 6f

Compound **6f** was prepared from compound **5f** (1.80 g) and NH₂OH·HCl (1.81 g, 26.0 mmol) in EtOH (20 mL) for 2 d. After evaporation of MeOH and addition of H₂O, the product was extracted with Et₂O, and the organic layer was washed with H₂O and extracted with 5% aq KOH. The aqueous solution was washed with Et₂O and acidified with HCl. The precipitate was collected by filtration, washed with H₂O, and dried in air to give pure product.

Yield: 1.27g (80%); gray solid; mp 159-160 °C (H₂O).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.22–7.34 (m, 5 H), 7.41–7.43 (m, 1 H), 7.58–7.65 (m, 2 H), 7.97–7.99 (m, 3 H), 8.16 (s, 1 H), 13.00 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 96.8 (br s, C), 124.7 (CH), 125.0 (br s, C), 126.7 (CH), 127.1 (CH), 127.76 (CH), 127.82 (CH), 127.9 (CH), 128.1 (CH), 128.3 (CH), 128.5 (CH), 128.6 (CH), 129.9 (C), 132.4 (C), 133.7 (C), 160.5 (C), 170.4 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₉H₁₄NO₂⁺: 288.1019; found: 288.1006.

3-(Benzo[b]thiophen-2-yl)-4-phenylisoxazol-5-ol/3-(Benzo[b]thiophen-2-yl)-4-phenylisoxazol-5(4H)-one (6g)

Methyl Propanoate 5g

Compound **5g** was prepared from HMDS (1.16 g, 7.2 mmol) in THF (10 mL), *n*-BuLi (2.9 mL, 7.2 mmol), methyl 2-phenylacetate (901 mg, 6.0 mmol) in THF (8 mL), and benzo[*b*]thiophene-2-carbonyl chloride (1.36 g, 6.9 mmol) in THF (10 mL). Compound **5g** was recrystallized from MeOH.

Yield 1.57 g (84%); colorless solid; mp 150-151 °C (MeOH).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.70 (s, 3 H), 6.23 (s, 1 H), 7.32–7.55 (m, 7 H), 8.02–8.06 (m, 2 H), 8.57 (s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 52.6 (CH₃), 58.9 (CH), 123.2 (CH), 125.5 (CH), 126.6 (CH), 128.0 (CH), 128.3 (CH), 128.6 (CH), 129.5 (CH), 132.6 (CH), 133.2 (C), 138.8 (C), 141.6 (C), 142.0 (C), 168.8 (C), 188.4 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₈H₁₄NaO₃S⁺: 333.0556; found: 333.0561.

Isoxazol-5-ol 6g

Compound **6g** was prepared from compound **5g** (1.35 g, 4.4 mmol) and NH₂OH·HCl (1.41 g, 20.3 mmol) in EtOH (26 mL) under reflux for 3 d.

Yield: 986 mg (77%, 65% over two steps); yellowish solid; mp 138–139 $^\circ\text{C}$ (EtOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.34–7.46 (m, 7 H), 7.66 (s, 1 H), 7.89–7.91 (m, 1 H), 8.00–8.02 (m, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 122.6 (CH), 124.7 (CH), 125.1 (CH), 125.9 (CH), 126.2 (CH), 127.6 (CH), 128.5 (CH), 129.1 (C), 129.4 (CH), 138.5 (C), 139.7 (C), 155.5 (C), 170.5 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₇H₁₂NO₂S⁺: 294.0583; found: 294.0594.

3-Methyl-4-phenylisoxazol-5-ol/3-Methyl-4-phenylisoxazol-5(4H)-one (6h)

Methyl Propanoate 5h

Colorless oil, yield 1.50 g, was prepared from HMDS (1.29 g, 8.0 mmol) in THF (5 mL), *n*-BuLi (3.2 mL, 8 mmol), methyl 2-phenylace-tate (1.00 g, 6.7 mmol) in THF (5 mL), and acetyl chloride (604 mg, 7.7 mmol) in THF (5 mL).

Isoxazol-5-ol 6h

Compound **6h** was prepared from compound **5h** (1.50 g) and NH₂OH-HCl (2.32 g, 33.5 mmol) in MeOH (15 mL). After evaporation of MeOH and addition of H₂O, the product was extracted with Et₂O, and the organic layer was washed with H₂O and extracted with 5% aq KOH. The aqueous solution was washed with Et₂O and acidified with HCl. The precipitate was filtered, washed with H₂O, and dried in air to give pure product.

Yield: 552 mg (47%); yellowish solid; mp 106–107 $^{\circ}$ C (H₂O).

¹H NMR (400 MHz, DMSO- d_6): δ = 2.31 (s, 3 H), 7.21–7.25 (m, 1 H), 7.36–7.40 (m, 2 H), 7.53–7.56 (m, 2 H), 11.78 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 12.0 (CH₃), 95.4 (C), 125.9 (CH), 126.8 (CH), 128.3 (CH), 130.8 (C), 159.4 (C), 170.1 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₀H₉NO₂⁺: 176.0706; found: 176.0714.

3-Ethyl-4-phenylisoxazol-5-ol/3-Ethyl-4-phenylisoxazol-5(4H)-one (6i)

Methyl Propanoate 5i

Red oil, yield 1.57 g, was prepared from HMDS (1.29 g, 8.0 mmol) in THF (5 mL), *n*-BuLi (3.2 mL, 8 mmol), methyl 2-phenylacetate (1.00 g, 6.7 mmol) in THF (5 mL), and propionic anhydride (1.00 g, 7.7 mmol) in THF (5 mL).

Isoxazol-5-ol 6i

Compound **6i** was prepared from compound **5i** (1.57 g) and NH₂OH·HCl (2.32 g, 33.5 mmol) in MeOH (15 mL). After evaporation of MeOH and addition of H₂O, the product was extracted with Et₂O, and the organic layer was washed with H₂O and extracted with 5% aq KOH. The aqueous solution was washed with Et₂O and acidified with HCl. The precipitate was collected by filtration, washed with H₂O, and dried in air to give pure product.

Yield: 728 mg (58%); light rose solid; mp 96–97 °C (H₂O).

¹H NMR (400 MHz, DMSO- d_6): δ = 1.15 (q, J = 7.6 Hz, 3 H), 2.73 (t, J = 7.6 Hz, 2 H), 7.26–7.27 (m, 1 H), 7.37–7.41 (m, 2 H), 7.48–7.50 (m, 2 H), 12.77 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 11.1 (CH₃), 19.2 (CH₂), 126.2 (CH), 127.3 (CH), 128.4 (CH), 130.5 (C), 163.9 (C), 170.0 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₁H₁₁NNaO₂⁺: 212.0682; found: 212.0691.

Paper

4-(4-Methoxyphenyl)-3-phenylisoxazol-5-ol/4-(4-Methoxyphenyl)-3-phenylisoxazol-5(4*H*)-one (6j)

Methyl Propanoate 5j

Pale yellow oil, yield 880 mg, was prepared from HMDS (549 mg, 3.4 mmol) in THF (5 mL), *n*-BuLi (1.4 mL, 3.4 mmol), methyl 2-(4-methoxyphenyl)acetate (500 mg, 2.8 mmol) in THF (5 mL), and benzoyl chloride (450 mg, 3.2 mmol) in THF (5 mL).

Isoxazol-5-ol 6j

Compound **6j** was prepared from compound **5j** (880 mg) and NH_2OH ·HCl (970 mg, 14.0 mmol) in MeOH (20 mL).

Yield: 530 mg (71%); light yellow solid; 151-152 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 3.74 (s, 3 H), 6.89 (d, *J* = 8.7 Hz, 2 H), 7.21 (d, *J* = 8.7 Hz, 2 H), 12.7 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 55.0 (CH₃), 113.9 (CH), 121.8 (C), 127.7 (C), 127.8 (CH), 129.0 (CH), 129.5 (CH), 130.9 (CH), 158.1 (C), 160.0 (C), 170.6 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₃NNaO₃⁺: 290.0788; found: 290.0786.

3-Phenyl-4-p-tolylisoxazol-5-ol/3-Phenyl-4-p-tolylisoxazol-5(4H)-one (6k)

Methyl Propanoate 5k

Colorless oily solid, yield 2.72 g, was prepared from HMDS (1.89 g, 11.7 mmol) in THF (10 mL), *n*-BuLi (4.7 mL, 11.7 mmol), methyl 2-(4-methylphenyl)acetate (1.46 g, 9.8 mmol) in THF (12 mL), and benzoyl chloride (1.58 g, 11.2 mmol) in THF (9 mL).

Isoxazol-5-ol 6k

Compound 6k was prepared from compound 5k (2.72 g) and $\rm NH_2OH \cdot HCl~(1.51$ g, 21.7 mmol) in MeOH (13 mL).

Yield: 1.69 mg (69%); colorless solid; mp 173-174 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 2.28 (s, 3 H), 7.12 (d, J = 8.1 Hz, 2 H), 7.18 (d, J = 8.1 Hz, 2 H), 7.43–7.55 (m, 5 H), 12.78 (br s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 20.7 (CH₃), 126.8 (C), 127.6 (C), 127.9 (CH), 128.1 (CH), 128.9 (CH), 129.0 (CH), 130.9 (CH), 136.0 (C), 160.3 (C), 170.5 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₃NNaO₂⁺: 274.0838; found: 274.0842.

4-(4-Fluorophenyl)-3-phenylisoxazol-5-ol/4-(4-Fluorophenyl)-3-phenylisoxazol-5(4H)-one (6l)

Methyl Propanoate 51

Colorless oily solid, yield 1.32 g, was prepared from HMDS (872 mg, 5.4 mmol) in THF (5 mL), *n*-BuLi (2.7 mL, 5.4 mmol), methyl 2-(4-fluorophenyl)acetate (750 mg, 4.5 mmol) in THF (5 mL), and benzoyl chloride (730 mg, 5.2 mmol) in THF (3 mL).

Isoxazol-5-ol 6l

Compound **61** was prepared from compound **51** (1.32 g) and NH_2OH ·HCl (1.56 g, 22.5 mmol) in MeOH (35 mL).

Yield: 820 mg (72%); colorless solid; 162–163 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.13–7.18 (m, 2 H), 7.29–7.33 (m, 2 H), 7.44–7.55 (m, 5 H), 12.89 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 115.3 (d, J = 21.5 Hz, CH), 126.2 (d, J = 3.2 Hz, C), 127.4 (C), 127.9 (CH), 129.1 (CH), 130.1 (d, J = 8.1 Hz, CH), 131.0 (CH), 160.3 (C), 160.9 (d, J = 244 Hz, C), 170.3 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₅H₁₀FNNaO₂⁺: 278.0588; found: 278.0600.

4-(4-Chlorophenyl)-3-phenylisoxazol-5-ol/4-(4-Chlorophenyl)-3-phenylisoxazol-5(4*H*)-one (6m)

Methyl Propanoate 5m

Colorless oily solid, yield 1.19 g, was prepared from HMDS (775 mg, 4.8 mmol) in THF (5 mL), *n*-BuLi (2.4 mL, 4.8 mmol), methyl 2-(4-chlorophenyl)acetate (750 mg, 4.0 mmol) in THF (4 mL), and benzoyl chloride (650 mg, 4.6 mmol) in THF (3 mL).

Isoxazol-5-ol 6m

Compound **6m** was prepared from compound **5m** (1190 mg) and NH_2OH ·HCl (1390 mg, 20.0 mmol) in MeOH (30 mL).

Yield: 760 mg (70%); colorless solid; mp 157–158 °C (MeOH) [Lit.¹¹ 159 °C (CHCl₃)].

¹H NMR (400 MHz, DMSO- d_6): δ = 7.29–7.31 (m, 2 H), 7.36–7.38 (m, 2 H), 7.45–7.58 (m, 5 H), 12.80 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 94.9 (C), 127.3 (C), 128.0 (CH), 128.4 (CH), 128.9 (C), 129.2 (CH), 129.6 (CH), 131.1 (CH), 160.4 (C), 170.1 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₅H₁₀³⁵ClNNaO₂⁺: 294.0292; found: 294.0298.

4-(4-Bromophenyl)-3-phenylisoxazol-5-ol/4-(4-Bromophenyl)-3-phenylisoxazol-5(4H)-one (6n)

Methyl Propanoate 5n

Light yellow oil, yield 2.45 g, was prepared from HMDS (1.34 g, 8.3 mmol) in THF (10 mL), *n*-BuLi (3.3 mL, 8.3 mmol), methyl 2-(4-bro-mophenyl)acetate (1.59 g, 6.9 mmol) in THF (14 mL), and benzoyl chloride (1.12 g, 8.0 mmol) in THF (11 mL).

Isoxazol-5-ol 6n

Compound **6n** was prepared from compound **5n** (2.45 g) and NH_2OH ·HCl (1.66 g, 23.9 mmol) in MeOH (15 mL).

Yield: 1.75 g (80%); colorless solid; mp 157–158 $^\circ C$ (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.22–7.26 (m, 2 H), 7.45–7.58 (m, 7 H), 12.85 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 94.9 (C), 119.6 (C), 127.3 (C), 128.0 (CH), 129.2 (CH), 129.3 (C), 129.9 (CH), 131.1 (CH), 131.3 (CH), 160.4 (C), 170.0 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for $C_{15}H_{10}^{79}BrNNaO_2^+$: 337.9787; found: 337.9802.

4-(4-Nitrophenyl)-3-phenylisoxazol-5-ol/4-(4-Nitrophenyl)-3-phenylisoxazol-5(4H)-one (60)

Methyl Propanoate 50

Red oil, yield 790 mg, was prepared from HMDS (500 mg, 3.1 mmol) in THF (2 mL), *n*-BuLi (1.2 mL, 3.1 mmol), methyl 2-(4-nitrophenyl)acetate (500 mg, 2.6 mmol) in THF (3 mL), and benzoyl chloride (420 mg, 3.0 mmol) in THF (2 mL).

Isoxazol-5-ol 6o

Compound **60** was prepared from compound **50** (790 mg) and NH_2OH ·HCl (900 mg, 13.0 mmol) in MeOH (20 mL).

Yield: 520 mg (70%); yellow solid; 184–185 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.49–7.62 (m, 7 H), 8.12 (d, J = 8.9 Hz, 2 H), 12.17 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 92.5 (C), 123.6 (CH), 127.3 (CH), 127.4, 128.2 (CH), 129.3 (CH), 131.2 (CH), 138.3, 144.7, 160.7, 169.9.

HRMS-ESI: m/z [M + Na]⁺ calcd for $C_{15}H_{10}N_2NaO_4^+$: 305.0533; found: 305.0544.

4-(3-Bromophenyl)-3-phenylisoxazol-5-ol/4-(3-Bromophenyl)-3-phenylisoxazol-5(4H)-one (6p)

Methyl Propanoate 5p

Light yellow solid, yield 2.46 g, was prepared from HMDS (1.37 g, 8.5 mmol) in THF (10 mL), *n*-BuLi (3.4 mL, 8.5 mmol), methyl 2-(3-bro-mophenyl)acetate (1.51 g, 6.6 mmol) in THF (8 mL), and benzoyl chloride (1.14 g, 8.1 mmol) in THF (8 mL).

Isoxazol-5-ol 6p

Compound 6p was prepared from compound 5p (2.46 g) and $\rm NH_2OH \cdot HCl$ (1.51 g, 21.7 mmol) in MeOH (13 mL).

Yield: 1.59 g (71%); yellowish solid; mp 142-143 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 7.22–7.24 (m, 2 H), 7.40–7.41 (m, 1 H), 7.48–7.58 (m, 6 H), 12.07 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 94.1 (C), 121.6 (C), 126.6 (CH), 127.2 (C), 128.0 (CH), 129.1 (CH), 129.1 (CH), 130.1 (CH), 130.3 (CH), 131.2 (CH), 132.6 (C), 160.5 (C), 170.0 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₅H₁₁⁷⁹BrNO₂⁺: 315.9968; found: 315.9983.

4-(3-Nitrophenyl)-3-*p*-tolylisoxazol-5-ol/4-(3-Nitrophenyl)-3-*p*-tolylisoxazol-5(4H)-one (6q)

Methyl Propanoate 5q

Brown oil, yield 1.43 g, was prepared from HMDS (780 mg, 4.8 mmol) in THF (6 mL), *n*-BuLi (1.9 mL, 4.8 mmol), methyl 2-(3-nitrophe-nyl)acetate (786 mg, 4.0 mmol) in THF (11 mL) and 4-methylbenzoyl chloride (716 mg, 4.6 mmol) in THF (8 mL).

Isoxazol-5-ol 6q

Compound **6q** was prepared from compound **5q** (1.43 g) and NH₂OH·HCl (996 mg, 14.3 mmol) in MeOH (11 mL).

Yield: 992 mg (83%); yellowish solid; mp 162–163 °C (MeOH).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.38 (s, 3 H), 7.34 (d, *J* = 8.1 Hz, 2 H), 7.40 (d, *J* = 8.1 Hz, 2 H), 7.54–7.67 (m, 2 H), 8.04–8.06 (m, 1 H), 8.25 (m, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 21.0 (CH₃), 92.0 (C), 120.9 (CH), 121.6 (CH), 124.0 (C), 127.9 (CH), 129.7 (CH), 129.9 (CH), 132.3 (C), 133.6 (CH), 141.4 (C), 147.8 (C), 160.5 (C), 170.0 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for $C_{16}H_{13}N_2O_4^+$: 297.0870; found: 297.0877.

4-(2-Methoxyphenyl)-3-phenylisoxazol-5-ol/4-(2-Methoxyphenyl)-3-phenyl-5(4H)-one (6r)

Methyl Propanoate 5r

Brown oil, yield 550 mg, was prepared from HMDS (322 mg, 2 mmol) in THF (2 mL), *n*-BuLi (0.8 mL, 2 mmol), methyl 2-(2-methoxyphenyl)acetate (300 mg, 1.7 mmol) in THF (3 mL), and benzoyl chloride (270 mg, 1.9 mmol) in THF (2 mL).

Isoxazol-5-ol 6r

Compound **6r** was prepared from compound **5r** (550 mg) and NH_2OH ·HCl (590 mg, 8.5 mmol) in MeOH (10 mL).

Yield: 280 mg (63%); creamy solid; mp 141-142 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 3.44 (s, 3 H), 6.96–7.01 (m, 2 H), 7.23–7.25 (m, 1 H), 7.31–7.35 (m, 3 H), 7.38–7.42 (m, 2 H), 7.45–7.48 (m, 1 H), 12.69 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 54.9 (CH₃), 111.5 (CH), 118.6 (C), 120.4 (CH), 126.6 (CH), 128.7 (CH), 129.3 (CH), 130.7 (CH), 131.6 (CH), 157.0 (C), 161.2 (C), 170.6 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₃NNaO₃⁺: 290.0788; found: 290.0798.

4-(2-Naphthyl)-3-*p*-tolylisoxazol-5-ol/4-(2-Naphthyl)-3-*p*-tolylisoxazol-5(4*H*)-one (6s)

Methyl Propanoate 5s

Colorless solid, yield 1.72 g, was prepared from HMDS (947 mg, 5.9 mmol) in THF (8 mL), *n*-BuLi (2.4 mL, 5.9 mmol), methyl 2-(2-naphth-yl)acetate (950 mg, 4.8 mmol) in THF (6 mL), and 4-methylbenzoyl chloride (869 mg, 5.6 mmol) in THF (7 mL).

Isoxazol-5-ol 6s

Compound 6s was prepared from compound 5s~(1.72~g) and $\rm NH_2OH \cdot HCl~(1.53~g, 22.0~mmol)$ in MeOH (20 mL).

Yield: 1.10 g (75%); yellowish solid; mp 160–161 °C (MeOH).

 ^1H NMR (400 MHz, DMSO- $d_6):$ δ = 2.34 (s, 3 H), 7.27–7.31 (m, 3 H), 7.37–7.39 (m, 2 H), 7.47–7.50 (m, 2 H), 7.79–7.87 (m, 3 H), 7.96 (s, 1 H), 12.90 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 21.0 (CH₃), 95.7 (C), 124.9 (C), 125.7 (CH), 126.2 (CH), 126.44 (CH), 126.50 (CH), 127.46 (CH), 127.52 (CH), 127.58 (CH), 127.8 (CH), 128.0 (C), 129.6 (CH), 131.6 (C), 133.0 (C), 141.0 (C), 160.5 (C), 170.8 (C).

HRMS-ESI: $m/z \ [M + Na]^+$ calcd for $C_{20}H_{15}NNaO_2^+$: 324.0995; found: 324.1005.

4-(1-Naphthyl)-3-phenylisoxazol-5-ol/4-(1-Naphthyl)-3-phenylisoxazol-5(4H)-one (6t)

Methyl Propanoate 5t

Colorless solid, yield 1.52 g, was prepared from HMDS (1.13 g, 7.0 mmol) in THF (6 mL), *n*-BuLi (2.8 mL, 7.0 mmol), methyl 2-(1-naphth-yl)acetate (901 mg, 4.6 mmol) in THF (5 mL) and benzoyl chloride (717 mg, 5.1 mmol) in THF (5 mL).

Isoxazol-5-ol 6t

Compound **6t** was prepared from compound **5t** (1.52 g) and NH_2OH ·HCl (1.38 g, 19.9 mmol) in MeOH (50 mL).

Yield: 926 mg (69%); yellowish solid; mp 158–159 $^{\circ}\mathrm{C}$ (MeOH).

 ^1H NMR (400 MHz, DMSO- d_6): δ = 7.28–7.32 (m, 4 H), 7.35–7.46 (m, 3 H), 7.50–7.54 (m, 2 H), 7.71–7.73 (m, 1 H), 7.95–7.98 (m, 2 H), 13.07 (br s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 125.1 (CH), 125.7 (CH), 126.0 (CH), 126.3 (CH), 127.2 (CH), 127.4 (C), 128.3 (CH), 128.4 (CH), 128.8 (CH), 129.3 (CH), 130.9 (CH), 131.8 (C), 133.4 (C), 161.4 (C), 170.7 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₉H₁₄NO₂⁺: 288.1019; found: 288.1026.

3-Phenyl-4-(2-thienyl)isoxazol-5-ol/3-Phenyl-4-(2-thienyl)isoxazol-5(4H)-one (6v)

Methyl Propanoate 5v

Yellow oil, yield 1.86 g, was prepared from HMDS (1.28 g, 7.9 mmol) in THF (5 mL), *n*-BuLi (3.2 mL, 7.9 mmol), methyl 2-(2-thienyl)acetate (1.03 g, 6.59 mmol) in THF (10 mL), and benzoyl chloride (1.06 g, 7.6 mmol) in THF (5 mL).

Isoxazol-5-ol 6v

Compound **6v** was prepared from compound **5v** (1.86 g) and NH₂OH·HCl (1.28 g, 20.0 mmol) in MeOH (15 mL). After evaporation of MeOH and addition of H₂O, the product was extracted with Et₂O, and the organic layer was washed with H₂O and extracted with 5% aq KOH. The aqueous solution was washed with Et₂O and acidified with HCl. The precipitate was collected by filtration, washed with H₂O and dried in air to give **6v**, which was used freshly prepared and without further purification because of instability.

Yield: 1.16 g (72 %); violet solid; mp 95-96 °C (H₂O).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₃H₁₀NO₂S⁺: 244.0427; found: 244.0430.

3-Substituted 4-Aryl-5-methoxyisoxazoles 1a–v; General Procedure B

A THF suspension/solution of the appropriate **6** (1 equiv) was cooled to 0 °C and treated portionwise with a solution of diazomethane in Et₂O [prepared from *N*-methyl-*N*-nitrosourea (MNU) (2.5–3.0 equiv) and a 40% solution of KOH (10–20 equiv)]. The reaction mixture was stirred at r.t. for 1 h and quenched by AcOH. The solvents were evaporated in vacuo, and the residue was dissolved in CH_2Cl_2 and purified by column chromatography (silica gel, PE/EtOAc, 10:1 to 5:1).

5-Methoxy-3,4-diphenylisoxazole (1a)

Isoxazole **1a** was prepared from compound **6a** (1.00 g, 4.2 mmol) in THF (5 mL) and MNU (1.08 g, 10.5 mmol) in Et₂O (35 mL).

Yield: 750 mg (71%); colorless solid; mp 81–82 °C (PE/EtOAc) (Lit.¹² 81–83 °C).

¹H NMR (400 MHz, CDCl₃): δ = 4.18 (s, 3 H), 7.22–7.41 (m, 8 H), 7.46–7.49 (m, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 58.0 (CH₃), 93.5 (C), 126.9 (CH), 128.36 (CH), 128.43 (CH), 128.5 (CH), 129.0 (CH), 129.1 (C), 129.6 (CH), 129.6 (C), 163.6 (C), 168.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₃NNaO₂⁺: 274.0838; found: 274.0835.

5-Methoxy-3-(4-methoxyphenyl)-4-phenylisoxazole (1b)

Isoxazole **1b** was prepared from compound **6b** (418 mg, 1.6 mmol) in THF (11 mL) and MNU (532 mg, 4.1 mmol) in Et₂O (24 mL).

Yield: 370 mg (84%); colorless solid; mp 68–69 °C (PE/EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 3.82 (s, 3 H), 4.16 (s, 3 H), 6.86–6.89 (m, 2 H), 7.23–7.26 (m, 3 H), 7.29–7.33 (m, 2 H), 7.39–7.43 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 55.2 (CH₃), 57.9 (CH₃), 93.3 (C), 113.9 (CH), 121.9 (C), 126.8 (CH), 128.4 (CH), 129.1 (CH), 129.3 (C), 129.8 (CH), 160.6 (C), 163.2 (C), 168.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₃⁺: 304.0944; found: 304.0952.

5-Methoxy-4-phenyl-3-p-tolylisoxazole (1c)

Isoxazole 1c was prepared from compound 6c (616 mg, 2.5 mmol) in THF (17 mL) and MNU (655 mg, 6.4 mmol) in Et_2O (21 mL).

Yield: 438 mg (67%); colorless solid; mp 59-60 °C (PE/EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 2.37 (s, 3 H), 4.17 (s, 3 H), 7.16 (d, J = 8.1 Hz, 2 H), 7.23–7.26 (m, 3 H), 7.29–7.33 (m, 2 H), 7.37 (d, J = 8.1 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 21.4 (CH₃), 58.0 (CH₃), 93.4 (C), 126.7 (C), 126.8 (CH), 128.30 (CH), 128.34 (CH), 129.0 (CH), 129.2 (CH), 129.3 (C), 139.6 (C), 163.6 (C), 168.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₂⁺: 288.0995; found: 288.1001.

3-(4-Chlorophenyl)-5-methoxy-4-phenylisoxazole (1d)

Isoxazole 1d was prepared from compound 6d (350 mg, 1.3 mmol) in THF (2 mL) and MNU (340 mg, 3.3 mmol) in Et_2O (14 mL).

Yield: 272 mg (74%); colorless solid; mp 100-101 °C (PE/EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 4.17 (s, 3 H), 7.19–7.23 (m, 2 H), 7.26–7.36 (m, 5 H), 7.40–7.44 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 58.1 (CH₃), 93.5 (C), 127.1 (CH), 128.1 (C), 128.5 (CH), 128.79 (C), 128.82 (CH), 129.0 (CH), 129.7 (CH), 135.8 (C), 162.5 (C), 169.1 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂ClNNaO₂⁺: 308.0449; found: 308.0451.

5-Methoxy-3-(4-nitrophenyl)-4-phenylisoxazole (1e)

Isoxazole 1e was prepared from compound 6e (506 mg, 1.8 mmol) in THF (16 mL) and MNU (481 mg, 4.7 mmol) in Et_2O (25 mL).

Yield: 445 mg (83%); colorless solid; mp 124–125 °C (PE/EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 4.20 (s, 3 H), 7.18–7.21 (m, 2 H), 7.28–7.36 (m, 3 H), 7.66 (d, J = 8.8 Hz, 2 H), 8.21 (d, J = 8.8 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 58.3 (CH₃), 93.9 (C), 123.7 (CH), 127.5 (CH), 128.29 (C), 128.7 (CH), 129.1 (CH), 129.3 (CH), 136.09 (C), 148.59 (C), 161.69 (C), 169.59 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂N₂NaO₄⁺: 319.0689; found: 319.0704.

5-Methoxy-3-(2-naphthyl)-4-phenylisoxazole (1f)

Isoxazole 1f was prepared from compound 6f (650 mg, 2.3 mmol) in THF (4 mL) and MNU (588 mg, 5.7 mmol) in Et_2O (25 mL).

Yield: 408 mg (60%); colorless solid; mp 75-76 °C (PE/EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 4.21 (s, 3 H), 7.24–7.33 (m, 5 H), 7.47–7.56 (m, 3 H), 7.78–7.87 (m, 3 H), 8.04 (pseudo-s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 58.1 (CH₃), 93.7 (C), 125.6 (CH), 126.3 (CH), 126.88 (CH), 126,92 (CH), 127.0 (C), 127.7 (CH), 128.16 (CH), 128.20 (CH), 128.40 (CH), 128.49 (CH), 129.0 (CH), 129.1 (C), 133.0 (C), 133.7 (C), 163.6 (C), 169.0 (C).

Paper

Syn thesis

V. A. Bodunov et al.

Paper

HRMS-ESI: m/z [M + Na]⁺ calcd for C₂₀H₁₅NNaO₂⁺: 324.0995; found: 324.1009.

3-(Benzo[b]thiophen-2-yl)-5-methoxy-4-phenylisoxazole (1g)

Isoxazole **1g** was prepared from compound **6g** (565 mg, 1.9 mmol) in THF (10 mL) and MNU (515 mg, 5.0 mmol) in Et₂O (25 mL).

Yield: 440 mg (74%); colorless solid; mp 99-100 °C (PE/EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 4.15 (s, 3 H), 7.31–7.42 (m, 8 H), 7.66– 7.68 (m, 1 H), 7.82–7.84 (m, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 58.2 (CH₃), 93.8 (C), 122.3 (CH), 124.2 (CH), 124.5 (CH), 125.2 (CH), 125.4 (CH), 127.8 (CH), 128.5 (C), 128.6 (CH), 130.0 (CH), 130.8 (C), 135.3 (C), 140.0 (C), 158.4 (C), 169.3 (C).

HRMS-ESI: $m/z [M + Na]^+$ calcd for $C_{18}H_{13}NNaO_2S^+$: 330.0559; found: 330.0568.

5-Methoxy-3-methyl-4-phenylisoxazole (1h)

Isoxazole 1h was prepared from compound 6h (300 mg, 1.7 mmol) in THF (4 mL) and MNU (440 mg, 4.3 mmol) in Et_2O (15 mL).

Yield: 195 mg (60%); orange solid; mp 31-32 °C (PE/EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 2.34 (s, 3 H), 4.13 (s, 3 H), 7.24–7.31 (m, 1 H), 7.37–7.42 (m, 4 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 12.4 (CH₃), 57.8 (CH₃), 93.9 (C), 126.6 (CH), 127.8 (CH), 128.6 (CH), 129.6 (C), 161.3 (C), 168.4 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₁H₁₂NO₂⁺: 190.0863; found: 190.0862.

3-Ethyl-5-methoxy-4-phenylisoxazole (1i)

Isoxazole **1i** was prepared from compound **6i** (518 mg, 2.7 mmol) in THF (7 mL) and MNU (742 mg, 7.2 mmol) in Et_2O (28 mL).

Yield: 378 mg (68%); rose oil.

 1H NMR (400 MHz, CDCl_3): δ = 1.22 (t, J = 7.5 Hz, 3 H), 2.75 (q, J = 7.5 Hz, 2 H), 4.11 (s, 3 H), 7.25–7.30 (m, 1 H), 7.36–7.41 (m, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ = 11.6 (CH₃), 20.2 (CH₂), 57.8 (CH₃), 93.4 (C), 126.7 (CH), 128.1 (CH), 128.6 (CH), 129.6 (C), 166.0 (C), 168.4 (C). HRMS-ESI: *m/z* [M + H]⁺ calcd for $C_{12}H_{14}NO_2^+$: 204.1019; found: 204.1025.

5-Methoxy-4-(4-methoxyphenyl)-3-phenylisoxazole (1j)

Isoxazole **1j** was prepared from compound **6j** (200 mg, 0.8 mmol) in THF (2 mL) and MNU (206 mg, 2 mmol) in Et₂O (10 mL).

Yield: 150 mg (71%); colorless solid; mp 78-79°C (PE/EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 3.80 (s, 3 H), 4.16 (s, 3 H), 6.83–6.87 (m, 2 H), 7.13–7.17 (m, 2 H), 7.33–7.42 (m, 3 H), 7.46–7.49 (m, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 55.2 (CH₃), 58.0 (CH₃), 93.2 (C), 113.9 (CH), 121.3 (C), 128.4 (CH), 128.5 (CH), 129.5 (CH), 129.7 (C), 130.3 (CH), 158.6 (C), 163.5 (C), 168.8 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₃⁺: 304.0944; found: 304.0953.

5-Methoxy-3-phenyl-4-p-tolylisoxazole (1k)

Isoxazole **1k** was prepared from compound **6k** (624 mg, 2.5 mmol) in THF (20 mL) and MNU (670 mg, 6.5 mmol) in Et₂O (23 mL).

Yield: 561 mg (85%); colorless solid; mp 80-81 °C (PE/EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 2.35 (s, 3 H), 4.16 (s, 3 H), 7.12 (pseudoss, 4 H), 7.33–7.43 (m, 3 H), 7.48–7.50 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 21.2 (CH₃), 58.0 (CH₃), 93.5 (C), 126.1 (C), 128.41 (CH), 128.45 (CH), 128.9 (CH), 129.1 (CH), 129.5 (CH), 129.7 (C), 136.7 (C), 163.6 (C), 168.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₂⁺: 288.0995; found: 288.0994.

4-(4-Fluorophenyl)-5-methoxy-3-phenylisoxazole (11)

Isoxazole **1l** was prepared from compound **6l** (600 mg, 2.4 mmol) in THF (8 mL) and MNU (618 mg, 6 mmol) in Et_2O (24 mL).

Yield: 490 mg (76%); colorless solid; mp 79-80 °C (PE/EtOAc),

 ^1H NMR (400 MHz, CDCl_3): δ = 4.18 (s, 3H), 6.96–7.03 (m, 2H), 7.16–7.22 (m, 2H), 7.34–7.48 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 58.0 (CH₃), 92.6 (C), 115.4 (d, J = 21.7 Hz, CH), 125.1 (d, J = 3.2 Hz, C), 128.4 (CH), 128.6 (CH), 129.4 (C), 129.7 (CH), 130.7 (d, J = 8.0 Hz, CH), 161.7 (d, J = 246.8 Hz, C), 163.5 (C), 168.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂FNNaO₂⁺: 292.0744; found: 292.0748.

4-(4-Chlorophenyl)-5-methoxy-3-phenylisoxazole (1m)

Isoxazole **1m** was prepared from compound **6m** (500 mg, 1.8 mmol) in THF (4 mL) and MNU (464 mg, 4.5 mmol) in Et_2O (19 mL).

Yield: 380 mg (74%); colorless solid; mp 111–112 °C (PE/EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 4.19 (s, 3 H), 7.14–7.17 (m, 2 H), 7.25–7.28 (m, 2 H), 7.36–7.47 (m, 5 H).

¹³C NMR (100 MHz, CDCl₃): δ = 58.0 (CH₃), 92.4 (C), 127.6 (C), 128.4 (CH), 128.59 (CH), 128.60 (CH), 129.3 (C), 129.7 (CH), 130.1 (CH), 132.6 (C), 163.5 (C), 168.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂³⁵ClNNaO₂⁺: 308.0449; found: 308.0453.

4-(4-Bromophenyl)-5-methoxy-3-phenylisoxazole (1n)

Isoxazole 1n was prepared from compound 6n (545 mg, 1.7 mmol) in THF (9 mL) and MNU (464 mg, 4.5 mmol) in Et_2O (20 mL).

Yield: 413 mg (73%); colorless solid; mp 103-104 °C (PE/EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 4.19 (s, 3 H), 7.08–7.11 (m, 2 H), 7.36–7.47 (m, 7 H).

¹³C NMR (100 MHz, CDCl₃): δ = 58.1 (CH₃), 92.5 (C), 120.8(C), 128.1 (C), 128.4 (CH), 128.6 (CH), 129.3 (C), 129.8 (CH), 130.4 (CH), 131.6 (CH), 163.4 (C), 168.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for $C_{16}H_{12}^{79}BrNNaO_2^+$: 351.9944; found: 351.9951.

5-Methoxy-4-(4-nitrophenyl)-3-phenylisoxazole (10)

Isoxazole ${\bf 1o}$ was prepared from compound ${\bf 6o}$ (120 mg, 0.4 mmol) in THF (6 mL) and MNU (103 mg, 1 mmol) in Et_2O (6 mL).

Yield: 90 mg (70%); yellowish solid; mp 133–134 °C (PE/EtOAc).

¹H NMR (400 MHz, DMSO- d_6): δ = 4.24 (s, 3 H), 7.42 (d, J = 8.9 Hz, 2 H), 7.40–7.43 (m, 2 H), 7.46–7.56 (m, 3 H), 8.19 (d, J = 8.9 Hz, 2 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 58.9 (CH₃), 91.4 (C), 123.7 (CH), 128.2 (CH), 128.6 (C), 128.9 (CH), 129.0 (CH), 130.2 (CH), 136.0 (C), 145.7 (C), 162.9 (C), 169.4 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂N₂NaO₄⁺: 319.0700; found: 319.0697.

4-(3-Bromophenyl)-5-methoxy-3-phenylisoxazole (1p)

Isoxazole **1p** was prepared from compound **6p** (500 mg, 1.6 mmol) in THF (3 mL) and MNU (412 mg, 4 mmol) in Et₂O (17 mL).

Yield: 443 mg (84%); light yellow-green oil.

 ^{1}H NMR (400 MHz, CDCl_3): δ = 4.21 (s, 3 H), 7.06–7.16 (M, 2 H), 7.35–7.48 (m, 7 H).

¹³C NMR (100 MHz, CDCl₃): δ = 58.1 (CH₃), 92.2 (C), 122.4 (C), 127.4 (CH), 128.4 (CH), 128.6 (CH), 129.2 (C), 129.78 (CH), 129.80 (CH), 131.3 (C), 131.5 (CH), 163.5 (C), 169.0 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for $C_{16}H_{13}^{79}BrNO_2^+$: 330.0124; found: 330.0125.

5-Methoxy-4-(3-nitrophenyl)-3-p-tolylisoxazole (1q)

Isoxazole 1q was prepared from compound 6q (505 mg, 1.7 mmol) in THF (22 mL) and MNU (464 mg, 4.5 mmol) in Et_2O (25 mL).

Yield: 387 mg (68%); colorless solid; mp 100-101 °C (PE/EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 2.39 (s, 3 H), 4.25 (s, 3 H), 7.20 (d, J = 8.0 Hz, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 7.41 (t, J = 8.0 Hz, 1 H), 7.47 (dt, J = 7.7, 1.2 Hz, 1 H), 8.06 (ddd, J = 8.0, 2.0, 1.2 Hz, 1 H), 8.17 (t, J = 2.0 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 21.4 (CH₃), 58.2 (CH₃), 91.4 (C), 121.4 (CH), 123.2 (CH), 125.9 (C), 128.3 (CH), 129.1 (CH), 129.5 (CH), 131.3 (C), 134.3 (CH), 140.2 (C), 148.4 (C), 163.5 (C), 169.2 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₄N₂NaO₄⁺: 333.0846; found: 333.0846.

5-Methoxy-4-(2-methoxyphenyl)-3-phenylisoxazole (1r)

Isoxazole **1r** was prepared from compound **6r** (200 mg, 0.8 mmol) in THF (2 mL) and MNU (206 mg, 2 mmol) in Et₂O (10 mL).

Yield: 150 mg (71%); creamy solid; mp 97-98 °C (PE/EtOAc).

 1H NMR (400 MHz, CDCl_3): δ = 3.45 (s, 3 H), 4.10 (s, 3 H), 6.85–6.87 (m, 1 H), 6.95–6.99 (m, 1 H), 7.21–7.24 (m, 1 H), 7.26–7.36 (m, 4 H), 7.41–7.43 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 55.0 (CH₃), 58.0 (CH₃), 90.1 (C), 111.2 (CH), 118.2 (C), 120.6 (CH), 127.2 (CH), 128.2 (CH), 129.1 (CH), 129.3 (CH), 130.7 (C), 131.9 (CH), 157.3 (C), 164.2 (C), 169.1 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₃⁺: 304.0944; found: 304.0945.

5-Methoxy-4-(2-naphthyl)-3-p-tolylisoxazole (1s)

Isoxazole **1s** was prepared from compound **6s** (400 mg, 1.3 mmol) in THF (3 mL) and MNU (342 mg, 3.3 mmol) in Et₂O (15 mL).

Yield: 300 mg (72%); light yellow oil; mp 89-90 °C (PE/EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 2.38 (s, 3 H), 4.20 (s, 3 H), 7.15 (d, *J* = 8.0 Hz, 2 H), 7.29–7.33 (m, 1 H), 7.41 (d, *J* = 8.0 Hz, 2 H), 7.45–7.49 (m, 2 H), 7.74–7.79 (m, 3 H), 7.80–7.84 (m, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 21.4 (CH₃), 58.0 (CH₃), 93.4 (C), 125.9 (CH), 126.1 (CH), 126.6 (C), 126.7 (C), 127.1 (CH), 127.6 (CH), 127.82 (CH), 127.84 (CH), 128.3 (CH), 129.2 (CH), 132.2 (C), 133.3 (C), 139.7 (C), 163.6 (C), 169.1 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₂₁H₁₇NNaO₂⁺: 338.1151; found: 338.1152.

5-Methoxy-4-(1-naphthyl)-3-phenylisoxazole (1t)

Isoxazole **1t** was prepared from compound **6t** (400 mg, 1.4 mmol) in THF (10 mL) and MNU (402 mg, 3.9 mmol) in Et₂O (18 mL).

Yield: 321 mg (77%); colorless solid; mp 128–129 $^\circ C$ (PE/EtOAc).

 1H NMR (400 MHz, CDCl₃): δ = 4.05 (s, 3 H), 7.15–7.19 (m, 2 H), 7.24–7.28 (m, 1 H), 7.36–7.38 (m, 3 H), 7.40–7.51 (m, 3 H), 7.75–7.77 (m, 1 H), 7.87–7.90 (m, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 58.1 (CH₃), 91.5 (C), 125.4 (CH), 125.5 (CH), 126.0 (CH), 126.4 (CH), 126.6 (C), 127.6 (CH), 128.36 (CH), 128.40 (CH), 128.7 (CH), 129.46 (C), 129.48 (CH), 129.51 (CH), 132.6 (C), 133.8 (C), 164.1 (C), 169.6 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₂₀H₁₅NNaO₂⁺: 324.0995; found: 324.1007.

3,4-Diphenyl-5-(pyrrolidin-1-yl)isoxazole (1u)

5-Chloro-3,4-diphenylisoxazole

5-Chloro-3,4-diphenylisoxazole was prepared according to a modified procedure.¹¹ A mixture of 3,4-diphenylisoxazol-5(4*H*)-one **6a** (880 mg, 3.7 mmol) and phosphorus oxychloride (3.4 mL, 37 mmol) was stirred at 0 °C and Et₃N (0.3 mL, 2.1 mmol) was added dropwise. The solution was stirred at 0 °C for 20 min, slowly heated to r.t., and then was heated under stirring at 80 °C for 4 d. After the mixture had cooled to r.t., it was quenched with ice, and the precipitate that formed was filtered and washed with H₂O. The residue was dissolved in EtOAc, and the solution was dried with Na₂SO₄, filtered, and concentrated to an oil that was crystallized after the addition of pentane.

Yield: 710 mg (74%); colorless solid; mp 85–86 °C (pentane) [Lit.¹¹ 72 °C (PE)].

¹H NMR (400 MHz, CDCl₃): δ = 7.24–7.29 (m, 2 H), 7.32–7.45 (m, 8 H). ¹³C NMR (100 MHz, CDCl₃): δ = 114.6 (C), 127.8 (C), 128.2 (C), 128.3 (CH), 128.5 (CH), 128.6 (CH), 128.7 (CH), 129.5 (CH), 130.0 (CH), 152.2 (C), 162.9 (C).

HRMS-ESI: m/z [M + Ag]⁺ calcd for C₁₅H₁₀³⁵ClNOAg⁺: 361.9496; found: 361.9513.

Isoxazole 1u

A mixture of 5-chloro-3,4-diphenylisoxazole (180 mg, 0.70 mmol), pyrrolidine (600 mg, 8.4 mmol), and K_2CO_3 (146 mg, 1.1 mmol) in THF (4 mL) was refluxed under stirring for 4 h (monitoring by TLC). The solvent was evaporated, H_2O was added to the reaction mixture, and the residue was filtered, washed with H_2O , and dried in air to give pure **1u**.

Yield: 192 mg (94%); colorless solid; mp 157–158 $^\circ C$ (H_2O).

¹H NMR (400 MHz, CDCl₃): δ = 1.84–1.88 (m, 4 H), 3.28–3.31 (m, 4 H), 7.20–7.31 (m, 8 H), 7.34–7.36 (m, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 25.3 (CH₂), 48.3 (CH₂), 92.1 (C), 126.9 (CH), 127.8 (CH), 128.1 (CH), 128.4 (CH), 128.8 (CH), 130.2 (C), 131.6 (C), 132.0 (C), 162.9 (C), 165.2 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for $C_{19}H_{19}N_2O^+$: 291.1492; found: 291.1504.

5-Methoxy-3-phenyl-4-(2-thienyl)isoxazole (1v)

Isoxazole 1v was prepared from compound 6v (500 mg, 2 mmol) in THF (5 mL) and MNU (620 mg, 6 mmol) in Et_2O (20 mL).

Yield: 133 mg (25%); light yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 4.21 (s, 3 H), 6.90 (dd, J = 3.6, 1.1 Hz, 1 H), 6.98 (dd, J = 5.2, 3.6 Hz, 1 H), 7.23 (dd, J = 5.2, 1.1 Hz, 1 H), 7.38–7.46 (m, 3 H), 7.52–7.57 (m, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 58.2 (CH₃), 88.4 (C), 124.9 (CH), 126.2 (CH), 126.9 (CH), 128.5 (CH), 128.6 (CH), 129.2 (C), 129.8 (CH), 129.9 (C), 163.5 (C), 168.7 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₄H₁₂NO₂S⁺: 258.0583; found: 258.0579.

Methyl 2,3-Diphenyl-2H-azirine-2-carboxylate (4a)

FeCl₂ (11 mg, 25 mol%) was added to a solution of **1a** (85 mg, 0.34 mmol) in 0.5 mL anhyd DMSO under an argon atmosphere. After stirring for 4 h at r.t., the reaction mixture was poured into H_2O , and extracted with EtOAc; the combined organic layer was washed with brine and dried over Na_2SO_4 . The solvent was evaporated and the residue was filtered (silica gel, PE/EtOAc, 5:1).

Yield: 84 mg (99%); colorless solid; mp 67–68 $^\circ C$ (PE/EtOAc) (Lit. 13 70–71 $^\circ C$ for *R*-isomer).

¹H NMR (400 MHz, CDCl₃): δ = 3.75 (s, 3 H), 7.27–7.36 (m, 3 H), 7.47–7.52 (m, 2 H), 7.55–7.61 (m, 2 H), 7.62–7.67 (m, 1 H), 7.91–7.96 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 41.1 (C), 52.6 (CH₃), 122.0 (C), 127.7 (CH), 128.1 (CH), 128.2 (CH), 129.4 (CH), 130.4 (CH), 133.9 (CH), 136.2 (C), 160.7 (C), 171.6 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₆H₁₃NNaO₂⁺: 274.0838; found: 274.0849.

Substituted Indole-3-carboxylates 3a-v; General Procedure C

A mixture of the appropriate isoxazole **1** (1 mmol) and FeCl₂·4H₂O or FeCl₂ (20–30 mol%) in DMSO (2–3 mL) was stirred at 170 °C in a screw-cap thick-wall test tube until the reaction reached completion (TLC monitoring). The reaction mixture was cooled and H₂O was added. The precipitate that formed was filtered, washed with H₂O, and dried to give pure indole **3**. If a precipitate was not formed, the mixture was extracted with EtOAc or Et₂O, the organic layer was washed with brine and dried over Na₂SO₄, the solvent was evaporated, and the residue was purified by column chromatography (silica gel, EtOAc, CH₂Cl₂ or PE/EtOAc).

Methyl 2-Phenyl-1H-indole-3-carboxylate (3a)

Indole-3-carboxylate **3a** was prepared from isoxazole **1a** (90 mg, 0.36 mmol) and FeCl₂ (11 mg 0.085 mmol, 24 mol%) in DMSO (0.5 mL) for 5 h.

Yield: 69 mg (77%); light orange solid; mp 146–147 $^\circ C$ (EtOAc) (Lit. 14 137–139 $^\circ C$).

 ^1H NMR (400 MHz, CDCl_3): δ = 3.82 (s, 3 H), 7.24–7.31 (m, 2 H), 7.33–7.38 (m, 1 H), 7.41–7.46 (m, 3 H), 7.61–7.66 (m, 2 H), 8.20–8.23 (m, 1 H), 8.66 (br s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 50.8 (CH₃), 104.4 (C), 111.0 (CH), 122.07 (CH), 122.11 (CH), 123.2 (CH), 127.5 (C), 128.1 (CH), 129.2 (CH), 129.5 (CH), 131.9 (C), 135.1 (C), 144.6 (C), 165.8 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₃NNaO₂⁺: 274.0838; found: 274.0844.

Methyl 2-(4-Methoxyphenyl)-1H-indole-3-carboxylate (3b)

Indole-3-carboxylate **3b** was prepared from isoxazole **1b** (98 mg, 0.35 mmol) and FeCl₂·4H₂O (15 mg 0.07 mmol, 20 mol%) in DMSO (1.0 mL) for 5 h.

Yield: 68 mg (62%); colorless solid; mp 144-145 °C (CH₂Cl₂).

¹H NMR (400 MHz, CDCl₃): δ = 3.81 (s, 3 H), 3.84 (s, 3 H), 6.92 (d, *J* =

8.1 Hz, 2 H), 7.26–7.35 (m, 3 H), 7.57 (d, *J* = 8.1 Hz, 2 H), 8.18–8.20 (m, 1 H), 8.63 (br s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 50.8 (CH₃), 55.3 (CH₃), 103.8 (C), 110.9 (CH), 113.6 (CH), 121.96 (CH), 122.00 (CH), 123.0 (CH), 124.1 (C), 127.6 (C), 130.8 (CH), 135.0 (C), 144.8 (C), 160.3 (C), 166.0 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₃⁺: 304.0944; found: 304.0949.

Methyl 2-p-Tolyl-1H-indole-3-carboxylate (3c)

Indole-3-carboxylate **3c** was prepared from isoxazole **1c** (106 mg, 0.29 mmol) and FeCl₂·4H₂O (12 mg, 0.06 mmol, 21 mol%) in DMSO (2 mL) for 4 h.

Yield: 90 mg (85%); colorless solid; mp 148–149 $^{\circ}C$ (PE/EtOAc) (Lit. 14 148–149 $^{\circ}C$).

 ^1H NMR (400 MHz, CDCl₃): δ = 2.38 (s, 3 H), 3.84 (s, 3 H), 7.21–7.23 (m, 2 H), 7.25–7.30 (m, 2 H), 7.34–7.36 (m, 1 H), 8.19–8.24 (m, 1 H), 8.60 (br s, 1 H). ^{13}C NMR (100 MHz, CDCl₃): δ = 21.3 (CH₃), 50.8 (CH₃), 104.2 (C), 111.0 (CH), 122.0 (CH), 122.1 (CH), 123.1 (CH), 127.6 (C), 128.85 (CH), 128.93 (C), 129.3 (CH), 135.1 (C), 139.3 (C), 145.9 (C), 166.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₂⁺: 288.0995; found: 288.1002.

Methyl 2-(4-Chlorophenyl)-1H-indole-3-carboxylate (3d)

Indole-3-carboxylate 3d was prepared from isoxazole 1d (110 mg, 0.39 mmol) and FeCl_2-4H_2O (15 mg 0.075 mmol, 20 mol%) in DMSO (1.5 mL) for 3.5 h.

Yield: 82 mg (84%); colorless solid; mp 172–173 $^\circ C$ (CH_2Cl_2) (Lit. 14 166–167 $^\circ C).$

¹H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3 H), 7.27–7.31 (m, 2 H), 7.34–7.39 (m, 3 H), 7.54–7.57 (m, 2 H), 8.18–8.21 (m, 1 H), 8.66 (br s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 50.9 (CH₃), 104.8 (C), 111.1 (CH), 122.2 (CH), 122.3 (CH), 123.5 (CH), 127.4 (C), 128.4 (CH), 130.3 (C), 130.8 (CH), 135.2 (C), 135.3 (C), 143.2 (C), 165.8 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂³⁵ClNNaO₂⁺: 308.0449; found: 308.0459.

Methyl 2-(4-Nitrophenyl)-1H-indole-3-carboxylate (3e)

Indole-3-carboxylate 3e was prepared from isoxazole 1e (137 mg, 0.46 mmol) and FeCl_2-4H_2O (19 mg, 0.095 mmol, 20 mol%) in DMSO (2 mL) for 3.5 h.

Yield: 128 mg (93%); bright yellow solid; mp 192–193 °C (CH₂Cl₂).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.76 (s, 3 H), 7.22–7.30 (m, 2 H), 7.51 (d, *J* = 7.6 Hz, 1 H), 7.97–7.99 (m, 2 H), 8.08 (d, *J* = 8.0 Hz, 1 H), 8.35 (d, *J* = 8.9 Hz, 2 H), 12.41 (s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 50.7 (CH₃), 104.2 (C), 112.1 (CH), 121.5 (CH), 121.8 (CH), 122.9 (CH), 123.3 (CH), 127.0 (C), 131.2 (CH), 135.9 (C), 138.2 (C), 141.6 (C), 147.4 (C), 164.7 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂N₂NaO₄⁺: 319.0689; found: 319.0705.

Methyl 2-(2-Naphthyl)-1H-indole-3-carboxylate (3f)

Indole-3-carboxylate **3f** was prepared from isoxazole **1f** (100 mg, 0.33 mmol) and FeCl₂-4H₂O (7 mg, 0.035 mmol, 11 mol%) in DMSO (1 mL) for 7 h.

Downloaded by: University of Massachusetts - Amherst. Copyrighted material

Paper

Yield: 40 mg (40%); orange solid; mp 133–134 °C (EtOAc) (Lit.¹⁴ 140–141 °C).

 ^1H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3 H), 7.28–7.33 (m, 2 H), 7.39–7.44 (m, 1 H), 7.50–7.57 (m, 2 H), 7.75–7.79 (m, 1 H), 7.85–7.93 (m, 3 H), 8.09 (*pseudo*-s, 1 H), 8.21–8.27 (m, 1 H), 8.62 (br s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 50.9 (CH₃), 104.9 (C), 110.9 (CH), 122.18 (CH), 122.20 (CH), 123.3 (CH), 126.5 (CH), 126.9 (CH), 127.3 (CH), 127.65 (CH), 127.66 (C), 127.8 (CH), 128.3 (CH), 128.5 (CH), 129.5 (C), 132.9 (C), 133.5 (C), 135.2 (C), 144.4 (C), 165.7 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₂₀H₁₅NNaO₂⁺: 324.0995; found: 324.1007.

Methyl 2-(Benzo[b]thiophen-2-yl)-1H-indole-3-carboxylate (3g)

Indole-3-carboxylate 3g was prepared from isoxazole 1g (121 mg, 0.39 mmol) and FeCl_2·4H_2O (16 mg, 0.08 mmol, 20 mol%) in DMSO (1.5 mL) for 3.5 h.

Yield: 86 mg (71%); light yellow solid; mp 174-175 °C (CH₂Cl₂).

¹H NMR (400 MHz, DMSO- d_6): δ = 3.87 (s, 3 H), 7.21–7.30 (m, 2 H), 7.41–7.47 (m, 2 H), 7.51–7.53 (m, 1 H), 7.95–7.99 (m, 1 H), 8.03–8.07 (m, 2 H), 8.12 (s, 1 H), 12.36 (s, 1 H).

¹³C NMR (DMSO-d, 100 MHz): δ = 50.8 (CH₃), 104.0 (C), 111.9 (CH), 112.5 (C),121.5 (CH), 121.7 (CH), 122.2 (CH), 123.4 (CH), 124.1 (CH), 124.8 (CH), 125.3 (CH), 126.1 (CH), 127.0 (C), 132.5 (C), 135.8 (C), 136.6 (C), 138.8 (C), 140.1 (C), 164.7 (C).

HRMS-ESI: $m/z \ [M + Na]^+$ calcd for $C_{18}H_{13}NNaO_2S^+$: 330.0559; found: 330.0564.

Methyl 2-Methyl-1H-indole-3-carboxylate (3h)

Indole-3-carboxylate 3h was prepared from isoxazole 1h (95 mg, 0.50 mmol) and FeCl_2-4H_2O (20 mg, 0.10 mmol, 20 mol%) in DMSO (1.0 mL) for 4 h.

Yield: 85 mg (89%); colorless solid; mp 164–165 $^\circ C$ (CH $_2 Cl_2$) (Lit. 15 154 $^\circ C$, decomp.).

¹H NMR (400 MHz, CDCl₃): δ = 2.74 (s, 3 H), 3.94 (s, 3 H), 7.18–7.25 (m, 2 H), 7.29–7.31 (m, 1 H), 8.09–8.11 (m, 1 H), 8.51 (br s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.2 (CH₃), 50.8 (CH₃), 104.5 (C), 110.5 (CH), 121.2 (CH), 121.7 (CH), 122.4 (CH), 127.1 (C), 134.5 (C), 144.0 (C), 166.6 (C).

HRMS-ESI: $m/z [M + Na]^+$ calcd for $C_{11}H_{11}NNaO_2^+$: 212.0682; found: 212.0684.

Methyl 2-Ethyl-1H-indole-3-carboxylate (3i)

Indole-3-carboxylate **3i** was prepared from isoxazole **1i** (146 mg, 0.70 mmol) and FeCl₂·4H₂O (28 mg, 0.140 mmol, 20 mol%) in DMSO (0.8 mL) for 4 h.

Yield: 126 mg (86%); rose solid; mp 72–73 $^{\circ}C$ (CH₂Cl₂) (Lit.¹⁶ 72–73 $^{\circ}C$).

¹H NMR (400 MHz, CDCl₃): δ = 1.35 (t, *J* = 7.6 Hz, 3 H), 3.20 (q, *J* = 7.6 Hz, 2 H), 3.95 (s, 3 H), 7.18–7.26 (m, 2 H), 7.31–7.34 (m, 1 H), 8.12–8.14 (m, 1 H), 8.63 (br s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 13.2 (CH₃), 21.3 (CH₂), 50.8 (CH₃), 103.4 (C), 110.7 (CH), 121.4 (CH), 121.7 (CH), 122.3 (CH), 127.2 (C), 134.5 (C), 149.7 (C), 166.4 (C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₂H₁₄NO₂⁺: 204.1019; found: 204.1024.

Paper

Methyl 6-Methoxy-2-phenyl-1*H*-indole-3-carboxylate (3j)

Indole-3-carboxylate 3j was prepared from isoxazole 1j (85 mg, 0.3 mmol) and $FeCl_2$ (16 mg, 0.08 mmol, 26 mol%) in DMSO (1.5 mL) for 4 h.

Yield: 80 mg (94%); colorless solid; mp 143–144 $^\circ C$ (EtOAc) [Lit. 17 147–149 $^\circ C$ (EtOAc)].

¹H NMR (400 MHz, CDCl₃): δ = 3.83 (s, 3 H), 3.86 (s, 3 H), 6.86–6.87 (m, 1 H), 6.93–6.95 (m, 1 H), 7.41–7.48 (m, 3 H), 7.63–7.66 (m, 2 H), 8.07–8.09 (m, 1 H), 8.36 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 50.4 (CH₃), 55.2 (CH₃), 94.5 (CH), 102.6 (C), 111.4 (CH), 121.2 (C), 122.0 (CH), 127.8 (CH), 128.6 (CH), 129.7 (CH), 131.9 (C), 136.3 (C), 143.4 (C), 156.2 (C), 164.9 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₃⁺: 304.0944; found: 304.0945.

Methyl 6-Methyl-2-phenyl-1H-indole-3-carboxylate (3k)

Indole-3-carboxylate **3k** was prepared from isoxazole **1k** (110 mg, 0.42 mmol) and FeCl₂·4H₂O (17 mg, 0.085 mmol, 20 mol%) in DMSO (1.5 mL) for 6.5 h.

Yield: 85 mg (77%); colorless solid; mp 146–147 °C (PE/EtOAc).

¹H NMR (400 MHz, DMSO- d_6): δ = 2.42 (s, 3 H), 3.72 (s, 3 H), 7.01–7.04 (m, 1 H), 7.24 (s, 1 H), 7.44–7.52 (m, 3 H), 7.66–7.69 (m, 2 H), 7.90–7.92 (m, 1 H), 11.96 (s, 1 H).

 13 C NMR (100 MHz, DMSO- d_6): δ = 21.2 (CH₃), 50.4 (CH₃), 102.5 (C), 111.5 (CH), 121.0 (CH), 123.1 (CH), 125.1 (C), 127.8 (CH), 128.7 (CH), 129.8 (CH), 131.8 (C), 131.9 (C), 135.9 (C), 144.0 (C), 164.9 (C).

HRMS-ESI: $m/z \ [M + Na]^+$ calcd for $C_{17}H_{15}NNaO_2^+$: 288.0995; found: 288.0999.

Methyl 6-Fluoro-2-phenyl-1H-indole-3-carboxylate (31)

Indole-3-carboxylate **3I** was prepared from isoxazole **1I** (85 mg, 0.32 mmol) and FeCl₂ (22 mg, 0.11 mmol, 33 mol%) in DMSO (1 mL) for 5 h. Yield: 65 mg (82%); colorless solid; mp 201–202 °C (EtOAc) [Lit.¹⁷ 202–205 °C (EtOAc)].

 ^1H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3 H), 7.02–7.09 (m, 2 H), 7.46–7.50 (m, 3 H), 7.64–7.66 (m, 2 H), 8.13–8.17 (m, 1 H), 8.42 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 50.6 (CH₃), 97.8 (d, *J* = 25.7 Hz, CH), 102.7 (C), 109.8 (d, *J* = 24.0 Hz, CH), 122.5 (d, *J* = 9.9 Hz, CH), 123.8 (C), 127.9 (CH), 129.0 (CH), 129.7 (CH), 131.5 (C), 135.5 (d, *J* = 12.7 Hz, C), 145.2 (d, *J* = 2.5 Hz, C), 159.1 (d, *J* = 237.0 Hz, C), 164.6 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂FNNaO₂⁺: 292.0744; found: 292.0744.

Methyl 6-Chloro-2-phenyl-1H-indole-3-carboxylate (3m)

Indole-3-carboxylate **3m** was prepared from 4-(4-chlorophenyl)-5-methoxy-3-phenylisoxazole **1m** (85 mg, 0.29 mmol) and FeCl₂ (20 mg, 0.10 mmol, 33 mol%) in DMSO (1.5 mL) for 3.5 h.

Yield: 60 mg (70%); colorless solid; mp 229-230 °C (EtOAc).

 1H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3 H), 7.24–7.25 (m, 1 H), 7.39–7.40 (m, 1 H), 7.47–7.50 (m, 3 H), 7.65–7.67 (m, 2 H), 8.12–8.14 (m, 1 H), 8.40 (br s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 50.6 (CH₃), 102.8 (C), 111.4 (CH), 121.7 (C), 122.6 (CH), 125.9 (C), 127.1 (C), 127.9 (CH), 129.1 (CH), 129.8 (CH), 131.3 (C), 135.9 (C), 145.4 (C), 164.5 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂³⁵CINNaO₂⁺: 308.0449; found: 308.0453.

Methyl 6-Bromo-2-phenyl-1*H*-indole-3-carboxylate (3n)

Indole-3-carboxylate 3n was prepared from isoxazole 1n (176 mg, 0.53 mmol) and FeCl_2·4H_2O (21 mg, 0.11 mmol, 20 mol%) in DMSO (2.0 mL) for 4 h.

Yield: 141 mg (80%); colorless solid; mp 235-236 °C (CH₂Cl₂).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.73 (s, 3 H), 7.34 (dd, *J* = 8.6, 1.6 Hz, 1 H), 7.47–7.54 (m, 3 H), 7.60 (d, *J* = 1.6 Hz, 1 H), 7.68–7.70 (m, 2 H), 7.98 (d, *J* = 8.6 Hz, 1 H), 12.27 (s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 50.6 (CH₃), 102.9, 114.3 (CH), 115.1 (C), 123.0 (CH), 124.3 (CH), 126.2 (C), 127.9 (CH), 129.2 (CH), 129.8 (CH), 131.3 (C), 136.4 (C), 145.3 (C), 164.5 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for $C_{16}H_{12}^{79}BrNNaO_2^+$: 351.9944; found: 351.9950.

Methyl 6-Nitro-2-phenyl-1H-indole-3-carboxylate (30)

Indole-3-carboxylate **30** was prepared from isoxazole **10** (85 mg, 0.29 mmol) and FeCl₂ (16 mg, 0.080 mmol, 28 mol%) in DMSO (1.0 mL) for 5 h.

Yield: 33 mg (39%); yellow solid; mp 268-269 °C (EtOAc).

 ^1H NMR (400 MHz, DMSO- d_6): δ = 3.77 (s, 3 H), 7.54–7.56 (m, 3 H), 7.73–7.75 (m, 2 H), 8.08–8.11 (m, 1 H), 8.20–8.22 (m, 1 H), 8.30–8.31 (m, 1 H), 12.84 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 50.9 (CH₃), 103.8 (C), 108.2 (CH), 116.4 (CH), 121.5 (CH), 128.1 (CH), 129.76 (CH), 129.82 (CH), 130.7 (C), 132.1 (C), 134.1 (C), 142.8 (C), 149.6 (C), 164.1 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂N₂NaO₄⁺: 319.0700; found: 319.0689.

Methyl 5-Bromo-2-phenyl-1H-indole-3-carboxylate (3p)

Indole-3-carboxylate 3p was prepared from isoxazole 1p (138 mg, 0.42 mmol) and FeCl_2-4H_2O (17 mg, 0.085 mmol, 20 mol%) in DMSO (2.0 mL) for 8 h.

Yield: 96 mg (71%); colorless solid; mp 175–176 $^\circ C$ (CH $_2 Cl_2).$

¹H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3 H), 7.24 (d, *J* = 8.6 Hz, 1 H), 7.36 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.43–7.46 (m, 3 H), 7.62–7.65 (m, 2 H), 8.34 (d, *J* = 1.8 Hz, 1 H), 8.59 (br s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 51.0 (CH₃), 112.4 (CH), 115.6 (C), 124.8 (CH), 126.2 (CH), 128.3 (CH), 129.2 (C), 129.46 (CH), 129.54 (CH), 131.4 (C), 133.7 (C), 145.5 (C), 165.3 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₆H₁₂⁷⁹BrNNaO₂⁺: 351.9944; found: 351.9951.

Methyl 5-Nitro-2-p-tolyl-1H-indole-3-carboxylate (3q)

Indole-3-carboxylate 3q was prepared from isoxazole 1q (134 mg, 0.43 mmol) and FeCl₂·4H₂O (18 mg, 0.09 mmol, 20 mol%) in DMSO (1.5 mL) for 6 h.

Yield: 83 mg (62%); yellowish solid; mp 258-259 °C (CH₂Cl₂).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.41 (s, 3 H), 3.77 (s, 3 H), 7.34 (d, J = 7.9 Hz, 2 H), 7.59 (dd, J = 8.9, 1.6 Hz, 1 H), 7.63 (d, J = 7.9 Hz, 2 H), 8.09 (dd, J = 8.9, 1.7 Hz, 1 H), 8.87 (d, J = 1.7 Hz, 1 H), 12.68 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 21.0 (CH₃), 50.9 (CH₃), 104.1 (C), 112.4 (CH), 117.6 (CH), 117.9 (CH), 126.6 (C), 127.7 (C), 128.6 (CH), 129.8 (CH), 138.7 (C), 139.4 (C), 142.3 (C), 148.0 (C), 164.1 (C).

HRMS-ESI: $m/z [M + Na]^+$ calcd for $C_{17}H_{14}N_2NaO_4^+$: 333.0846; found: 333.0862.

Methyl 4-Methoxy-2-phenyl-1*H*-indole-3-carboxylate (3r)

Indole-3-carboxylate 3r was prepared from isoxazole 1r (80 mg, 0.28 mmol) and FeCl_2 (15 mg 0.075 mmol, 28 mol%) in DMSO (1 mL) for 7 h.

Yield: 25 mg (31%); yellowish solid; mp 142–143 °C (EtOAc).

 ^1H NMR (400 MHz, DMSO- $d_6):$ δ = 3.74 (s, 3 H), 3.84 (s, 3 H), 6.59–6.61 (m, 1 H), 7.04–7.06 (m, 1 H), 7.10–7.14 (m, 1 H), 7.39–7.42 (m, 1 H), 7.47–7.51 (m, 2 H), 7.61–7.62 (m, 2 H), 11.83 (s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 51.5 (CH_3), 55.5 (CH_3), 101.1 (CH), 104.8 (CH), 104.9 (C), 116.6 (C), 123.5 (CH), 127.7 (CH), 128.3 (CH), 128.6 (CH), 131.4 (C), 136.8 (C), 138.9 (C), 152.9 (C), 167.2 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO₃⁺: 304.0944; found: 304.0945.

Methyl 2-p-Tolyl-1H-benzo[g]indole-3-carboxylate (3s)

Indole-3-carboxylate 3s was prepared from isoxazole 1s (130 mg, 0.60 mmol) and FeCl_2-4H_2O (24 mg, 0.12 mmol, 20 mol%) in DMSO (2 mL) for 4 h.

Yield: 124 mg (95%); colorless solid; mp 217-218 °C (CH₂Cl₂).

 ^1H NMR (400 MHz, DMSO- $d_6):$ δ = 2.41 (s, 3 H), 3.76 (s, 3 H), 7.31–7.37 (m, 2 H), 7.44–7.51 (m, 1 H), 7.56–7.61 (m, 1 H), 7.61–7.68 (m, 3 H), 7.94–8.00 (m, 1 H), 8.16–8.21 (m, 1 H), 8.56–8.62 (m, 1 H), 12.67 (s, 1 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 20.9 (CH₃), 50.5 (CH₃), 104.4 (C), 120.7 (CH), 121.14 (CH), 121.5 (C), 121.9 (CH), 123.5 (C), 124.4 (CH), 125.8 (CH), 128.3 (CH), 128.4 (CH), 129.0 (C), 130.0 (CH), 130.3 (C), 138.2 (C), 142.8 (C), 165.0 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₂₁H₁₇NNaO₂⁺: 338.1151; found: 338.1162.

Methyl 2-Phenyl-3H-benzo[e]indole-1-carboxylate (3t)

Indole-3-carboxylate **3t** was prepared from isoxazole **1t** (203 mg, 0.67 mmol) and FeCl₂·4H₂O (28 mg, 0.14 mmol, 20 mol%) in DMSO (2.5 mL) for 3.5 h.

Yield: 166 mg (82%); yellowish solid; mp 183–184 °C (EtOAc).

 1H NMR (400 MHz, CDCl_3): δ = 3.81 (s, 3 H), 7.37 (m, 7 H), 7.56–7.59 (m, 1 H), 7.63–7.66 (m, 1 H), 7.90–7.92 (m, 1 H), 8.79 (br s, 1 H), 8.90–8.92 (m, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 51.6 (CH₃), 108.3 (C), 112.1 (CH), 121.0 (C), 124.0 (CH), 124.8 (CH), 125.2 (CH), 126.1 (CH), 128.0 (C), 128.4 (CH), 128.54 (CH), 128.56 (CH), 128.8 (CH), 130.5 (C), 132.48 (C), 132.5 (C), 139.8 (C), 168.0 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₂₀H₁₅NNaO₂⁺: 324.0995; found: 324.1010

(2-Phenyl-1H-indol-3-yl)(pyrrolidin-1-yl)methanone (3u)

Indole-3-carboxylate 3u was prepared from isoxazole 1u (113 mg, 0.39 mmol) and FeCl_2-4H_2O (8 mg, 0.04 mmol, 20 mol%) in DMSO (2 mL) for 6 h.

Yield: 84 mg (74%); colorless solid; mp 254–255 °C (EtOAc/CH₂Cl₂).

¹H NMR (400 MHz, DMSO- d_6): δ = 1.61–1.64 (m, 2 H), 1.77–1.81 (m, 1 H), 2.94–2.97 (m, 2 H), 3.52–3.55 (m, 2 H), 7.05–7.09 (m, 1 H), 7.14–7.19 (m, 1 H), 7.36–7.41 (m, 1 H), 7.43–7.50 (m, 4 H), 7.67–7.69 (m, 1 H), 11.69 (s, 1 H).

Paper

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 24.1 (CH₂), 25.4 (CH₂), 45.3 (CH₂), 47.3 (CH₂), 110.0 (C), 111.6 (CH), 119.2 (CH), 120.0 (CH), 122.2 (CH), 126.6 (C), 126.8 (CH), 128.1 (CH), 128.9 (CH), 131.8 (C), 134.9 (C), 135.7 (C), 165.5(C).

HRMS-ESI: m/z [M + H]⁺ calcd for C₁₉H₁₉N₂O⁺: 291.1492; found: 291.1505.

Methyl 5-Phenyl-4H-thieno[3,2-b]pyrrole-6-carboxylate (3v)

Indole-3-carboxylate 3v was prepared from isoxazole 1v (130 mg, 0.50 mmol) and FeCl_2-4H_2O (20 mg, 0.10 mmol, 20 mol%) in DMSO (1.5 mL) for 4 h.

Yield: 95 mg (73%); light brown solid; mp 37-38 °C (EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3 H), 6.95 (d, J = 5.3 Hz, 1 H), 7.19 (d, J = 5.3 Hz, 1 H), 7.38–7.44 (m, 3 H), 7.65–7.67 (m, 2 H), 8.72 (br s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 51.3 (CH₃), 105.6 (C), 111.0 (CH), 125.7 (CH), 126.6 (C), 128.3 (CH), 128.8 (CH), 129.1 (CH), 131.8 (C), 136.9 (C), 142.0 (C), 164.5 (C).

HRMS-ESI: m/z [M + Na]⁺ calcd for C₁₄H₁₁NNaO₂S⁺: 280.0403; found: 280.0415.

Funding Information

We gratefully acknowledge the financial support of the Russian Science Foundation (Grant no. 16-13-10036).

Acknowledgment

This research was carried out using the resources of the Centre for Magnetic Resonance, and the Centre for Chemical Analysis and Materials of St. Petersburg State University.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591576.

References

- (1) Gribble, G. W. Indole Ring Synthesis: From Natural Products to Drug Discovery; John Wiley & Sons: Chichester, **2016**.
- (2) For reviews, see: (a) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. *Beilstein J. Org. Chem.* **2011**, *7*, 442. (b) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. *Molecules* **2013**, *18*, 6620. (c) Zhang, M.-Z.; Chen, Q.; Yang, G.-F. *Eur. J. Med. Chem.* **2015**, *89*, 421. (d) Gale, P. A. *Chem. Commun.* **2008**, 4525.

- (3) For reviews, see: (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875. (b) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469. (c) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195. (d) Bartoli, G.; Dalpozzo, R.; Nardi, M. Chem. Soc. Rev. 2014, 43, 4728. (e) Pozharskii, A. F.; Kachalkina, S. G.; Gulevskaya, A. V.; Filatova, E. A. Russ. Chem. Rev. 2017, 86, 589. (f) Heravi, M. M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. RSC Adv. 2017, 7, 52852.
- (4) Ahluwalia, V. K.; Kidwai, M. New Trends in Green Chemistry 2004.
- (5) Kern, N.; Hoffmann, M.; Blanc, A.; Weibel, J.-M.; Pale, P. Org. Lett. 2013, 15, 836.
- (6) (a) Khlebnikov, A. F.; Novikov, M. S. Top. Heterocycl. Chem. 2016, 41, 143. (b) Huang, C.-Y.; Doyle, A. G. Chem. Rev. 2014, 114, 8153. (c) Khlebnikov, A. F.; Novikov, M. S. Tetrahedron 2013, 69, 3363. (d) Padwa, A. Adv. Heterocycl. Chem. 2010, 99, 1.
- (7) (a) Isomura, K.; Kobayashi, S.; Taniguchi, H. *Tetrahedron Lett.* **1968**, 9, 3499. (b) Isomura, K.; Uto, K.; Taniguchi, H. *J. Chem. Soc., Chem. Commun.* **1977**, 664. (c) Padwa, A.; Carlsen, P. H. J. *J. Org. Chem.* **1978**, 43, 2029. (d) Isomura, K.; Ayabe, G.-I.; Hatano, S.; Taniguchi, H. *J. Chem. Soc., Chem. Commun.* **1980**, 1252. (e) Taber, D. F.; Tian, W. *J. Am. Chem. Soc.* **2006**, *128*, 1058. (f) Chiba, S.; Hattoti, G.; Narasaka, K. *Chem. Lett.* **2007**, 36, 52. (g) Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K. *Org. Lett.* **2009**, *11*, 2643. (h) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N. *Org. Lett.* **2010**, *12*, 3736.
- (8) (a) Galenko, E. E.; Khlebnikov, A. F.; Novikov, M. S. Chem. Heterocycl. Compd. 2016, 52, 637. (b) Auricchio, S.; Bini, A.; Pastormerlo, E.; Truscello, A. M. Tetrahedron 1997, 53, 10911. (c) Mikhailov, K. I.; Galenko, E. E.; Galenko, A. V.; Novikov, M. S.; Ivanov, A. Yu.; Starova, G. L.; Khlebnikov, A. F. J. Org. Chem. 2018, 83, 3177. (d) Galenko, E. E.; Bodunov, V. A.; Galenko, A. V.; Novikov, M. S.; Khlebnikov, A. F. J. Org. Chem. 2017, 82, 8568. (e) Galenko, A. V.; Galenko, E. E.; Shakirova, F. M.; Novikov, M. S.; Khlebnikov, A. F. J. Org. Chem. 2017, 82, 5367. (f) Galenko, E. E.; Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S.; Shakirova, J. R. J. Org. Chem. 2016, 81, 8495. (g) Galenko, E. E.; Tomashenko, O. A.; Khlebnikov, A. F.; Novikov, M. S.; Panikorovskii, T. L. Beilstein J. Org. Chem. 2015, 11, 1732. (h) Galenko, E. E.; Tomashenko, O. A.; Khlebnikov, A. F.; Novikov, M. S. Org. Biomol. Chem. 2015, 13, 9825. (i) Galenko, E. E.; Galenko, A. V.; Khlebnikov, A. F.: Novikov, M. S. RSC Adv. 2015, 5, 18172.
- (9) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.
- (10) Wu, C.; Li, J.; Yan, B. Dalton Trans. 2014, 43, 5364.
- (11) Dannhardt, G.; Laufer, S.; Obergrusberger, I. Synthesis 1989, 275.
- (12) Scarpati, R. Gazz. Chim. Ital. 1959, 89, 1511.
- (13) Davis, F. A. J. Org. Chem. 1999, 64, 8929.
- (14) Zhou, L.; Doyle, M. J. Org. Chem. 2009, 74, 9222.
- (15) Tanimori, S.; Ura, H.; Kirihata, M. Eur. J. Org. Chem. 2007, 3977.
- (16) Kaneko, C.; Fujii, H.; Kawai, S.; Hashiba, K.; Karasawa, Y.; Wakai, M.; Hayashi, R.; Somei, M. Chem. Pharm. Bull. **1982**, 30, 74.
- (17) Zhang, X.; Zhang-Negrerie, D.; Deng, J.; Du, Y.; Zhao, K. J. Org. *Chem.* **2013**, 78, 12750.