Catalytic Enolate Arylation with 3-Bromoindoles Allows the Formation of β -Carbolines

C. Henrique Alves Esteves,^{\dagger} Peter D. Smith,^{\ddagger} and Timothy J. Donohoe^{*, \dagger}^{\bullet}

[†]Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K. [‡]AstraZeneca, Pharmaceutical Sciences, Silk Road Business Park, Macclesfield SK10 2NA, U.K.

S Supporting Information

ABSTRACT: Synthesis of substituted β -carbolines was accomplished by utilizing the catalytic enolate arylation reaction of ketones in conjunction with several 3-bromoindole derivatives. Quenching of the arylation reaction in situ with an electrophile allowed ready incorporation of functionality at the carboline C-4 position in an efficient one-pot protocol.

 β -Carbolines are important *N*-heterocyclic aromatic compounds that have been extensively studied for their wideranging bioactivity.¹ These compounds are also widely found in natural products extracted from various sources such as the dichotomides,² from the roots of *Stellaria dichotoma*; the metatacarbolines,³ from the fruiting bodies of *Mycena metata*; hirsutaside D,⁴ from the leaves of *Uncaria hirsute*, hyrtiocarboline,⁵ from the marine sponge *Hyrtios reticulatus*, and stolonines,⁶ from the marine tunicate *Cnemidocarpa stolonifera*.

Some of the recently reported methodologies to prepare β carbolines involve the metal-catalyzed iminoannulation of alkynes,⁷ the Rh-catalyzed cycloaddition of yne-ynamides with methylcyanoformate,⁸ cascade annulation of alkynols,⁹ photocyclization of anilinohalopyridines,¹⁰ coupling of anilines and halopyridines,¹¹ Pd-catalyzed ring-expansion of azidoalcohols,¹² and cyclization of vinylindoles.¹³ While impressive, the main limitations of these methods lie in the formation of regioisomers or the limited accessibility of a variety of substitution patterns in the heterocyclic ring.

We sought a route to these heterocycles that would allow the introduction of many different groups onto the aromatic nucleus but without the complications arising from the formation of regioisomers. In this regard, our approach to the synthesis of carbolines relies on the use of catalytic enolate arylation reaction of ketones,¹⁴ a powerful catalytic reaction still underused in the synthesis of aromatic heterocycles.¹⁵ Previous work from our group has shown that ketones can be easily arylated by reaction of substituted aryl or vinyl halides so that the products are ideally configured (masked 1,4-dicarbonyls) for an aromatization step to furnish substituted isoquinolines¹⁶ or pyridines¹⁷ (Figure 1a).

Herein, we chose a 3-bromoindole partner **A** for the enolate arylation (Figure 1b).¹⁸ The installation of a protected carbonyl at C-2 of the indole bromide partner would provide the functionality required to aromatize the ring after arylation was complete (see $\mathbf{B} \rightarrow \mathbf{C}$). Moreover, from previous precedent,^{15,19} we anticipated that an ability to add an electrophile directly to the catalytic arylation reaction would allow extra functionalization to be added to the product (see \mathbf{R}^4 in **B**) that

© XXXX American Chemical Society

Figure 1. Catalytic enolate arylation route to β -carbolines.

would ultimately allow derivatization at the C-4 position of the carboline without the addition of extra synthetic steps.

Initially, we selected 1-benzyl-3-bromo-2-(1,3-dioxolan-2-yl)-1*H*-indole (1) and acetophenone (2) for optimization studies using catalytic palladium (Table 1). Compound 1 was made in high yield from the precursor indole-2-carboxaldehyde via reaction with NBS, followed by *N*-benzylation with base and BnBr and then acetal formation with ethylene glycol and pTSA.²⁰

We began our screening by treating 1 and acetophenone (2) with catalytic $Pd(dtbpf)Cl_2^{21}$ and NaOtBu in THF (Table 1), which are conditions previously used for related arylations in our laboratory,¹⁵ and they afforded product 3 in an encouraging 52% yield (entry 1). Pleasingly, compound 3 could be isolated

Received: February 7, 2017

Table 1. Optimization Studies for the Pd-Catalyzed α -Arylation of 1

in 93% yield when the NaOtBu base was replaced by LiHMDS (entry 2).

Further studies showed that the arylation was tolerant of changes to the reaction parameters. For example, lower catalyst loadings and/or ketone equivalents were examined, and these delivered the desired product in good yields (entries 3-5). Moreover, a reasonable yield of **3** (66%) was obtained when the arylation reaction was carried out at room temperature (entry 6). Finally, a different catalyst was screened with Pd(amphos)₂Cl₂, (this was also previously very active in our hands), delivering the product in a disappointing 17% yield (entry 7).

Pleasingly, the reaction of arylated product 3 with ammonium chloride in ethanol/water was sufficiently acidic to deprotect the acetal and allow cyclization to give the corresponding carboline 4 in 94% yield (Scheme 1), thus validating our approach to these aromatic heterocycles. Moreover, the *N*-benzyl group was easily removed from the carboline products using AlCl₃ ($4 \rightarrow 5$ in 88% yield).²²

The next stage involved an exploration of the substrate scope, and to do this, we prepared more substituted indole bromides to be coupled with a selection of commercially available ketones (Scheme 2). Our synthesis of the requisite indole bromides began from readily available compound 6^{23} , which was *N*-benzylated (7) and then derivatized into two different ketones (8 and 9) via reaction with a Grignard reagent. After bromination at C-3 (10 and 11), ketone 10 was protected as an acetal (12) under standard conditions.

With the key compounds in hand, we explored the substrate scope, and Table 2 shows a set of carbolines (4, 14, 16, and 18) that were prepared via this two-step sequence of enolate arylation using the optimized conditions from Table 1, followed

Scheme 2. Synthesis of Substituted Indole Bromides

Table 2. Synthesis of Substituted β -Carbolines in Two

^aReaction conditions: (1) indole (1.0 equiv), $Pd(dtbpf)Cl_2$ (5.0 mol %), LiHMDS (2.5 equiv), ketone (2.0 equiv), THF, 50 °C, 24 h; (2) NH₄Cl (10 equiv); EtOH/H₂O 3:1, 100 °C, 12 h. ^bSolvent: EtOH/H₂O/DMF (3:1:2), 110 °C, 12 h. ^cIsolated yields.

by aromatization. Use of this methodology allowed substitution at the carboline C-1, C-3, and C-4 positions simply by using a substituted ketone or altering the substitution pattern of the ketal protected indole bromide in the arylation step. Note that some groups (e.g., Ph) could be introduced at the carboline C-1 position without the need for ketal protection (see 11 \rightarrow 17 \rightarrow 18); in this case, the conjugated nature of the ketone at C-2 of the indole makes it unreactive to competing aldol type side reactions.

After these positive results, we then developed a one-pot procedure for the arylation/aromatization sequence. This worked well, and starting from 1 and 2, we quenched the arylation reaction directly with acid and then ammonia to furnish carboline 4 in 68% yield for the one-pot process (Table 3). The one-pot sequence was optimal when it began with an

^aReaction conditions: (1) indole (1.0 equiv), $Pd(dtbpf)Cl_2$ (5.0 mol %), NaOtBu (2.5 equiv), ketone (2.0 equiv), THF, 75 °C, 24 h; (2) (aq) 1 M HCl; (3) NaHCO₃ (20 equiv), NH₃ (20 equiv, 7 M in MeOH), EtOH, DMF, 100 °C, 12 h. ^bLiHMDS (2.5 equiv) as base, 50 °C. ^cIsolated yields.

enolate arylation, followed by the sequential addition of acid (to hydrolyze the acetal), neutralization (NaHCO₃), and then addition of ammonia (7 M in MeOH) to perform the aromatization.

However, as we switched to more substituted ketone substrates to expand the methodology, we found the arylation conditions that had proved optimal for acetophenone in Table 1 showed poor conversion (see 19 and 20 with 34 and 42% yield, respectively). Therefore, we examined other conditions from Table 1 that had also delivered arylated product and found that a change of base to NaOtBu, together with an increase in the temperature, delivered an arylation reaction that

was more reliable across a wider range of ketones (for example, compounds **19** and **20** were now formed in 53 and 73% yield, respectively).

With these new arylation conditions, the one-pot synthesis of various carbolines was then possible in excellent yields. Using this approach, alkyl substituents could be incorporated with ease at either the C-3 or C-4 positions on the carboline nucleus (Table 3). Note that attempts at the one-pot synthesis of C-1 substituted carbolines from bromide 11 were unsuccessful.

Next, we examined the direct functionalization of the arylated products in situ, which was accomplished by quenching the arylation reaction of a methyl ketone with an electrophile (see $1 \rightarrow 27$ with the addition of benzyl bromide, Scheme 3). This

protocol works well because the initial arylation reaction requires at least two equivalents of base to reach completion and, therefore, the initial arylation product is actually present in the reaction mixture as an enolate, which can be quenched. As expected, the benzylated compound **27** was then easily aromatized to carboline **28** under standard conditions (Scheme 3).

This precedent then provided the basis for a one-pot arylation/enolate-quench/aromatization sequence starting from 1 and 2, that provided several C-4 derivatized products in good yields (see 14 and 28–31, Table 4). This chemistry represents a particularly convenient and short route to C-3,4-disubstituted carbolines which installs the desired functionality with complete control of regiochemistry.

To conclude, we extended the enolate arylation/aromatization sequence to accomplish the synthesis of carbolines by using indole-based bromides as coupling partners. A variety of (heterocyclic) substitution patterns were compatible with this approach, either by arylation of a functionalized ketone or by a direct enolate arylation and electrophilic quenching sequence. The ability to combine an enolate arylation with a one-pot aromatization sequence is particularly advantageous. This convenient and modular approach allows access to a wide range of carboline derivatives with many potential uses.

EXPERIMENTAL SECTION

General Methods. All reagents were used as purchased. Solvents were dried using standard laboratory techniques. All reactions requiring dry equipment were carried out in flame-dried glassware under argon atmosphere. Flash column chromatography was performed using Geduran silica gel 60 (40–63 μ m). Thin layer chromatography was performed on Merck Kieselgel 60 F254 0.25 mm

Table 4. One-Pot Synthesis of C-4 Functionalized β -Carbolines^{*a*}

^{*a*}Reaction conditions: (1) indole (1.0 equiv), Pd(dtbpf)Cl₂ (5.0 mol %), LiHMDS (2.5 equiv), ketone (2.0 equiv), THF, 50 °C, 24 h; then electrophile, 90 °C. ^{*b*}Isolated yields

precoated aluminum-backed plates. Product spots were visualized under UV light ($\lambda_{max} = 254$ nm) and/or by staining with vanillin, phosphomolybdic acid, or basic potassium permanganate solutions. ¹H NMR spectra were recorded using a Bruker AVII400, AVIII400, or AVII500 instruments at 400 or 500 MHz. ¹³C NMR spectra were recorded at 100 or 125 MHz. ¹⁹F NMR spectrum was recorded at 376 MHz. Chemical shifts, δ , are reported relative to residual solvent peaks and quoted in parts per million (ppm) to the nearest 0.01 for ¹H and to the nearest 0.1 ppm for ¹³C and ¹⁹F. Coupling constants, J, are quoted to the nearest 0.1 Hz. Assignments were based upon DEPT, COSY, HSQC, and HMBC experiments. High-resolution mass spectra were acquired using electrospray ionization (ESI) as ionization source and were recorded on a Fisons Platform II with TOF detector. IR spectra were obtained from evaporated films using a Bruker Tensor 27 spectrometer equipped with a PIKE Miracle Attenuated Total Reflectance (ATR) sampling accessory. Absorption maxima are quoted in wavenumbers (cm⁻¹) for the range 3500-600 cm⁻¹. Melting points (mp) were obtained by using a Leica VMTG heatedstage microscope and are uncorrected.

General Procedure A for α **-Arylation of Ketones.** A fresh solution of LiHMDS was prepared in a dry vial adding sequentially dry THF (2 mL), HMDS (80 μ L, 0.38 mmol, 2.5 equiv), a 2.5 M solution of *n*BuLi (0.15 mL, 0.38 mmol, 2.5 equiv) and stirring at -78 °C for 10 min. The ketone (0.31 mmol, 2.0 equiv) was then added at 0 °C and stirred for 15 min. In a second dry vial were added bromo indole (0.15 mmol) and Pd(dtbpf)Cl₂ (5 mg, 8 μ mol, 5 mol %). The flask was sealed, evacuated, and backfilled with argon. The freshly formed enolate solution was then transferred via syringe to the flask. The mixture was stirred at 50 °C for 24 h in an oil bath. The resulting mixture was filtered through a plug of silica and concentrated in vacuo. The crude product was purified by flash column chromatography (eluted with a mixture of petroleum ether:EtOAc) to afford the ketone product.

General Procedure B for the Cyclization of α -Arylated Ketones. To a reaction flask were added the arylated ketone (4.15

mmol) and a 1 M solution of NH₄Cl (4.1 mL, 10 equiv) in EtOH:H₂O 3:1. The mixture was stirred at 90 °C for 12 h. NH₄HCO₃ (6.97 g, 83.0 mmol, 20 equiv) was then added to the flask, and the solution was stirred at 90 °C for 3 h. The crude product was concentrated in vacuo, redissolved in pure EtOAc, and mixed with water. The aqueous layer was extracted twice with EtOAc; the organic extracts were combined, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting solid was purified by flash column chromatography (eluted with a mixture of petroleum ether:EtOAc) to afford the β -carboline product.

General Procedure C for the Synthesis of Ketones from Weinreb Amide 7. To a dry reaction flask were added indole 7 (2.00 g, 6.79 mmol) and dry THF (68 mL). A 3 M solution of the appropriate Grignard reagent (6.8 mL, 20 mmol, 3 equiv) was slowly added over 30 min at -78 °C and then allowed to stir at 0 °C for 1 h. The mixture was then quenched at 0 °C with NH₄Cl_(aq), and the aqueous layer was extracted twice with EtOAc. The organic extracts were combined, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting solid was purified by flash column chromatography (eluted with a mixture of petroleum ether:EtOAc) to afford the product ketone.

General Procedure D for the One-Pot Synthesis of β -Carbolines. To a dry vial were added bromo indole 1 (110 mg, 307 µmol), Pd(dtbpf)Cl₂ (10 mg, 15 µmol, 5 mol %), and NaOtBu (74 mg, 0.77 mmol, 2.5 equiv). The flask was sealed, evacuated, and backfilled with argon twice and then dry THF (4 mL), and the corresponding ketones (0.61 mmol, 2 equiv) were added in sequence. The mixture was stirred for 24 h at 75 °C. After cooling to room temperature, HCl_(aq) (1 M, 10 equiv) was added, and the mixture was stirred for 12 h at 90 °C. After cooling to room temperature, DMF (2 mL), EtOH (4 mL), NaHCO₃ (516 mg, 6.14 mmol, 20 equiv), and NH₃ (7 M solution in MeOH, 0.88 mL, 6.1 mmol, 20 equiv) were added, and the mixture was stirred at 110 °C for 24 h. The crude product was concentrated in vacuo, redissolved in pure EtOAc, and mixed with water. The aqueous layer was extracted twice with EtOAc, and the organic extracts were combined, dried over MgSO4, filtered, and concentrated in vacuo. The resulting solid was purified by flash column chromatography (eluted with a mixture of petroleum ether:EtOAc) to afford the β -carboline product.

General Procedure E for the Bromination of Keto-Indoles. To a dry reaction flask were added the appropriate ketone (5.45 mmol) and DMF (3.9 mL). A solution of NBS (1.11 g, 6.27 mmol, 1.15 equiv) in DMF (3.9 mL) was added over 30 min at 0 °C, and the resulting mixture was then stirred at room temperature for 2 h. H_2O (70 mL) was added, and the resulting slurry was extracted three times with EtOAc; the organic extracts were combined and washed five times with H_2O , dried over MgSO₄, filtered, and concentrated in vacuo, affording the bromo indole product or, alternatively, were purified by flash column chromatography (eluted with a mixture of petroleum ether:EtOAc) to afford the bromo indole product.

General Procedure F for the One-Pot Synthesis of β -Carboline with Addition of Electrophiles. A fresh solution of LiHMDS was prepared in a dry vial adding sequentially dry THF (4 mL), HMDS (0.16 mL, 0.77 mmol, 2.5 equiv), and a 2.5 M solution of *n*BuLi (0.31 mL, 0.77 mmol, 2.5 equiv) and stirring at -78 °C for 10 min. Acetophenone (72 μ L, 0.61 mmol, 2.0 equiv) was then added at 0 °C and stirred for 15 min. In a second dry vial were added bromo indole 1 (110 mg, 307 μ mol) and Pd(dtbpf)Cl₂ (10 mg, 15 μ mol, 5 mol %). The flask was sealed, evacuated, and backfilled with argon. The freshly formed enolate solution was then transferred via syringe to the flask. The mixture was stirred at 50 °C for 24 h in an oil bath. After cooling to room temperature, the appropriate electrophile (0.77 mmol, 2.5 equiv) was added, and the mixture was stirred at 90 °C for 24 h. After cooling to room temperature, 1 M $HCl_{(aq)}$ (3.1 mL, 10 equiv) was added, and the mixture was stirred for 12 h at 90 °C. After cooling to room temperature, DMF (2 mL), EtOH (4 mL), NaHCO₃ (516 mg, 6.14 mmol, 20 equiv), and NH₃ (7 M solution in MeOH, 0.88 mL, 6.1 mmol, 20 equiv) were added, and the mixture was stirred at 110 °C for 24 h. The crude product was concentrated in vacuo, redissolved in pure EtOAc, and mixed with water. The aqueous layer

was extracted twice with EtOAc and the organic extracts were combined, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting solids were purified by flash column chromatography (eluted with a mixture of petroleum ether:EtOAc) to afford the β -carboline product.

Synthesis of 1-Benzyl-3-bromo-2-(1,3-dioxolan-2-yl)-1H-indole (1). To a dry reaction flask connected to a Dean-Stark apparatus were added 1-benzyl-3-bromo-1H-indole-2-carbaldehyde (330 mg, 1.05 mmol), ethylene glycol (116 µL, 2.09 mmol, 2 equiv), ptoluenesulfonic acid monohydrate (20 mg, 105 μ mol, 10 mol %), and toluene (10 mL). The resulting mixture was heated at reflux for 14 h and then cooled to room temperature and quenched with NaHCO3(aq). The aqueous layer was extracted twice with EtOAc, and the organic extracts combined, dried over MgSO4, filtered, and concentrated in vacuo. The resulting solid was purified by flash column chromatography (eluted with 9:1 petroleum ether:EtOAc), affording 1 (350 mg, 93%) as a yellow solid. Mp: 64–67 °C. IR $\nu_{\rm max}$ (thin film): 3060, 2888, 1075 cm⁻¹. HRMS: calcd for C₁₈H₁₇BrNO₂, 358.04372 $[M + H]^+$, found *m*/*z* 358.04379, $\Delta = 0.20$ ppm. ¹H NMR (400 MHz, $CDCl_3$) δ_{H} : 7.62–7.55 (1H, m, HC_{Ar}), 7.30–7.00 (8H, m, 8 × HC_{Ar}), 6.21 (1H, s, CH(OR)₂), 5.46 (1H, s, PhCH₂R), 4.06–3.86 (4H, m, (OCH₂)₂); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 137.9, 137.4, 129.3 (3 × C_{Ar}), 128.6 (HC_{Ar}), 127.3 (HC_{Ar}), 126.7 (C_{Ar}), 126.3, 124.3, 120.7, 120.0, 110.6 $(5 \times HC_{Ar})$, 98.7 $(CH(OR)_2)$, 94.5 (C(3)), 65.2 ((OCH₂)₂), 48.5 (PhCH₂R).

2-(1-Benzyl-2-(1,3-dioxolan-2-yl)-1H-indol-3-yl)-1-phenylethan-1-one (3). This compound was prepared according to general procedure A, affording 3 (57 mg, 93%) as a brown solid. Mp: 100– 102 °C. IR ν_{max} (thin film): 3368, 3060, 2925, 1613, 1082, 745 cm⁻¹. HRMS: calcd for $C_{26}H_{24}O_3N$, 398.17507 [M + H]⁺, found *m/z* 398.17496, $\Delta = -0.30$ ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 8.15– 8.10 (2H, m, 2 × HC_{Ar}), 7.63–7.54 (2H, m, 2 × HC_{Ar}), 7.48 (2H, t, *J* = 7.4 Hz, 2 × HC_{Ar}), 7.33–7.03 (9H, m, 9 × HC_{Ar}), 6.13 (1H, *s*, CH(OR)₂), 5.54 (1H, *s*, PhCH₂R), 4.65 (2H, *s*, CH₂C(O)), 4.05– 3.90 (4H, m, (OCH₂)₂); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 196.7 (C(O)), 137.1, 136.4, 135.9 (3 × C_{Ar}), 131.8 (HC_{Ar}), 129.8 (C_{Ar}), 127.5, 127.5, 127.4 (3 × HC_{Ar}), 108.2 (C_{Ar}), 97.9 (CH(OR)₂), 63.9 ((OCH₂)₂), 46.7 (RCH₂Ph), 34.0 (CH₂C(O)).

9-Benzyl-3-phenyl-9H-pyrido[3,4-b]indole (4). This compound was prepared according to general procedure B on a 4.15 mmol scale, affording 4 (1.30 g, 94%) as a light brown solid. Mp: 143–146 °C. IR ν_{max} (thin film): 3059, 3030, 1460, 733, 694 cm⁻¹. HRMS: calcd for C₂₄H₁₉N₂, 335.15428 [M + H]⁺, found m/z 335.15350, Δ = -2.3 ppm. ¹H NMR (400 MHz, CDCl₃) δ_H: 8.82 (1H, s, C(1)), 8.33 (1H, s, C(4)), 8.13 (1H, d, J = 7.8 Hz, HC_{Ar}), 8.08 (2H, d, J = 7.5 Hz, HC_{Ar}), 7.55–7.43 (3H, m, 3 × HC_{Ar}), 7.40–7.31 (2H, m, 2 × HC_{Ar}), 5.41 (2H, s, PhCH₂Ar); ¹³C NMR (100 MHz, CDCl₃) δ_C: 147.9, 141.9, 140.6, 136.5, 136.0 (5 × C_{Ar}), 131.9 (HC(1)), 129.8 (C_{Ar}), 129.0, 128.8, 128.6, 127.9, 127.8, 126.9, 126.7, 122.0 (8 × HC_{Ar}), 11.4 and ¹³C NMR data were consistent with those previously reported.^{7c}

Synthesis of 3-Phenyl-9H-pyrido[3,4-b]indole (5). To a dry reaction flask were added freshly sublimed AlCl₃ (287 mg, 2.15 mmol, 6 equiv) and toluene (1.8 mL). A solution of β -carboline 4 (120 mg, 359 μ mol) in toluene (1.8 mL) was added at 0 °C over 10 min and stirred at room temperature for 2 h. The resulting mixture was quenched with $NaHCO_{3(aq)}$, and the aqueous layer was extracted twice with EtOAc. The organic extracts were combined, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting solids were purified by flash column chromatography (eluted with a 19:1 mixture of CHCl₃:MeOH) to afford the β -carboline product 5 (71 mg, 88%) as a white solid. Mp: 226–229 °C. IR $\nu_{\rm max}$ (thin film): 3125, 3018, 2923, 2755, 1137, 738, 696 cm⁻¹. HRMS: calcd for $C_{17}H_{13}N_2$, 245.10732 [M + H]⁺, found m/z 245.10730, $\Delta = -0.10$ ppm. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 8.99 (1H, s, HC_{Ar}), 8.57 (1H, bs, NH), 8.40 (1H, s, HC_{Ar}), 8.20 (1H, d, J = 7.8 Hz, HC_{Ar}), 8.12–8.07 (2H, m, 2 × HC_{Ar}), 7.59–7.46 (4H, m, $4 \times HC_{Ar}$), 7.43–7.36 (1H, m, HC_{Ar}), 7.32 (1H, dd, J = 8.1, 7.0 Hz, HC_{Ar}). ¹H NMR (400 MHz, DMSO- d_6) δ_{H} : 11.69

(1H, s, NH), 9.00 (1H, s, HC(1)), 8.77 (1H, s, HC(4)), 8.36 (1H, d, J = 7.9 Hz, HC_{Ar}), 8.22 (2H, ddd, J = 8.3, 1.2, 1.0 Hz, $2 \times HC_{Ar}$), 7.66–7.60 (1H, m, HC_{Ar}), 7.58 (1H, dd, J = 6.9, 1.2 Hz, HC_{Ar}), 7.54–7.48 (2H, m, $2 \times HC_{Ar}$), 7.41–7.35 (1H, m, HC_{Ar}), 7.28 (1H, ddd, J = 8.0, 6.9, 1.0 Hz, HC_{Ar}); ¹³C NMR (100 MHz, CDCl₃); ¹³C NMR (100 MHz, DMSO-d₆) δ_{C} : 146.0, 141.6, 140.6, 135.9 (4 × C_{Ar}), 134.0 (HC(1)), 129.3 (C_{Ar}), 129.1, 128.7, 127.9, 126.6 122.5, (5 × HC_{Ar}), 121.5 (C_{Ar}), 119.8, 112.5 (2 × HC_{Ar}), 111.6 (HC(4)). ¹H NMR data were consistent with those previously reported.²⁴

Synthesis of 1-Benzyl-N-methoxy-N-methyl-1H-indole-2carboxamide (7). To a dry reaction flask equipped with a reflux condenser were added indole 6 (12.0 g, 58.7 mmol) and dry THF (590 mL). NaH (60% in mineral oil, 2.82 g, 70.5 mmol, 1.2 equiv) was added slowly at 0 °C over 10 min, and the resulting mixture was heated at reflux for 30 min. After cooling to room temperature, benzyl bromide (8.4 mL, 70 mmol, 1.2 equiv) was added, and the solution was heated at reflux for 2 h and then cooled to 0 °C, when it was quenched using NH₄Cl_(aa). The aqueous layer was extracted twice with EtOAc, and the organic extracts were combined, dried over MgSO4, filtered, and concentrated in vacuo. The resulting solid was purified by flash column chromatography (eluted with 4:1 petroleum ether:-EtOAc) to afford protected indole 7 (17.1 g, 99%) as a white solid. Mp: 34–37 °C. IR ν_{max} (thin film): 3060, 3030, 2931, 1632, 1453, 739 cm⁻¹. HRMS: calcd for $C_{18}H_{18}O_2N_2$, 295.14410 [M + H]⁺, found m/z295.14398, $\Delta = -0.41$ ppm. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 7.79– 7.40 (1H, m, HC_{Ar}), 7.44 (1H, dd, J = 8.4, 0.8 Hz, HC_{Ar}), 7.33 (1H, ddd, J = 8.3, 7.0, 1.2 Hz, HC_{Ar}), 7.31–7.19 (5H, m, 6 × HC_{Ar}), 7.13 (2H, d, J = 6.6 Hz, 2 × HC_{AT}), 5.77 (2H, s, PhCH₂R), 3.53 (3H, s, OCH₃), 3.34 (3H, s, NCH₃); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 162.8 (C(O)), 138.6, 138.4, 129.6 $(3 \times C_{Ar})$, 128.6, 127.3, 126.8 $(3 \times HC_{Ar})$, 126.7 (C_{Ar}), 124.4, 122.3, 120.6, 110.6, 108.1 (5 × H C_{Ar}), 61.2 (OCH₃), 47.9 (RCH₂Ph), 33.9 (NCH₃).

1-(1-Benzyl-1H-indol-2-yl)ethan-1-one (8). This compound was prepared according to general procedure *C*, affording 8 (1.28 g, 76%) as a white solid. Mp: 125–126 °C. IR ν_{max} (thin film): 3061, 3031, 2924, 1657, 725 cm⁻¹. HRMS: calcd for C₁₇H₁₆ON, 250.12264 [M + H]⁺, found *m*/*z* 250.12302, Δ = 1.50 ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 7.81–7.77 (1H, m, HC_{Ar}), 7.45–7.36 (3H, m, 3 × HC_{Ar}), 7.32–7.20 (4H, m, 4 × HC_{Ar}), 7.14–7.08 (2H, m, 2 × HC_{Ar}), 5.91 (*s*, 2H, NCH₂Ph), 2.66 (*s*, 3H, C(O)CH₃); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 191.3 (*C*(O)), 140.0, 138.4, 134.4 (3 × C_{Ar}), 128.5, 127.1, 126.5, 126.3 (4 × HC_{Ar}), 126.0 (C_{Ar}), 123.0, 121.1, 113.0, 111.0 (4 × HC_{Ar}), 48.2 (PhCH₂N), 28.1 (C(O)CH₃). ¹H NMR data were consistent with those previously reported.²⁵

(1-Benzyl-1H-indol-2-yl)(phenyl)methanone (9). This compound was prepared according to general procedure C on a 10.2 mmol scale, affording 9 (2.51 g, 79%) as a white solid. Mp: 107–110 °C. IR ν_{max} (thin film): 3060, 3030, 2923, 1633, 718, 694 cm⁻¹. HRMS: calcd for C₂₂H₁₇ONNa, 334.12024 [M + Na]⁺, found *m*/*z* 334.12023, $\Delta = -0.02$ ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 7.95–7.90 (2H, m, 2 × HC_{Ar}), 7.73 (1H, d, *J* = 8.0, HC_{Ar}), 7.65–7.58 (1H, m, HC_{Ar}), 7.54–7.48 (2H, m, 2 × HC_{Ar}), 7.44 (1H, dd, *J* = 8.5, 0.7 Hz, HC_{Ar}), 7.38 (1H, ddd, *J* = 8.4, 6.9, 1.1 Hz, HC_{Ar}), 7.31–7.18 (4H, m, 4 × HC_{Ar}), 7.18–7.14 (2H, m, 2 × HC_{Ar}), 7.12 (1H, d, *J* = 0.6 Hz, C(3)), 5.91 (2H, s, PhCH₂R); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 188.6 (*C*(O)), 140.2, 139.4, 138.4, 134.7 (4 × C_{Ar}), 132.2, 129.8, 128.6, 128.2, 127.2, 126.6, 126.2 (7 × HC_{Ar}), 126.1 (C_{Ar}), 123.1,121.1,115.8, 111.1 (4 × HC_{Ar}), 48.1 (PhCH₂R). ¹H NMR data were consistent with those previously reported.²⁶

1-(1-Bénzyl-3-bromo-1H-indol-2-yl)ethan-1-one (10). This compound was prepared according to general procedure E, affording 10 (1.66 g, 93%) as a white solid. Mp: 118–120 °C. IR ν_{max} (thin film): 3061, 3032, 2921, 16511, 726 cm⁻¹. HRMS: calcd for C₁₇H₁₅ONBr, 328.03315 [M + H]⁺, found m/z 328.03348, Δ = 0.99 ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 7.80–7.74 (1H, m, HC_{Ar}), 7.43–7.39 (2H, m, 2 × HC_{Ar}), 7.32–7.22 (4H, m, 4 × HC_{Ar}), 7.08–7.03 (2H, m, 2 × HC_{Ar}), 5.80 (2H, s, PhCH₂N), 2.83 (3H, s, C(O)CH₃); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 192.0 (C(O)), 138.4, 138.0, 132.6 (3 × C_{Ar}), 128.6, 127.3, 127.1 (3 × HC_{Ar}), 126.8 (C_{Ar}), 126.3, 121.9, 121.8, 111.0 (4 × HC_{Ar}), 100.0 (C_{Ar}), 48.9 (PhCH₂N), 31.9 (C(O)CH₃). (1-Benzyl-3-bromo-1H-indol-2-yl)(phenyl)methanone (11). This compound was prepared according to general procedure E on a 4.17 mmol scale, affording 11 (1.62 g, 99%) as a white solid. Mp: 87–89 °C. IR ν_{max} (thin film): 3060, 3030, 1719, 722, 692 cm⁻¹. HRMS: calcd for C₂₂H₁₇ONBr, 390.04880 [M + H]⁺, found *m*/*z* 390.04959, Δ = 2.02 ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 7.82–7.78 (2H, m, 2 × HC_{Ar}), 7.68 (1H, d, *J* = 8.0 Hz, HC_{Ar}), 7.62–7.56 (1H, m, HC_{Ar}), 7.46–7.34 (4H, m, 4 × HC_{Ar}), 7.27 (1H, ddd, *J* = 8.0, 6.6, 1.3 Hz, HC_{Ar}), 7.24–7.14 (3H, m, 3 × HC_{Ar}), 7.08–7.03 (2H, m, HC_{Ar}), 5.60 (2H, s, PhCH₂R); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 189.4 (C(O)), 138.0, 137.5, 133.5 (4 × C_{Ar}), 133.3, 130.2, 128.7, 128.5, 127.6 (5 × HC_{Ar}), 126.8 (C_{Ar}), 126.7, 126.2, 121.6, 121.3, 110.9 (5 × HC_{Ar}), 98.1 (C_{Ar}), 48.3 (PhCH₂R).

Synthesis of 1-Benzyl-3-bromo-2-(2-methyl-1,3-dioxolan-2yl)-1H-indole (12). To a dry reaction flask connected to a Dean-Stark apparatus were added bromo indole 10 (3.00 g, 9.14 mmol), ethylene glycol (5.1 mL, 91 mmol, 10 equiv), p-toluenesulfonic acid monohydrate (175 mg, 914 µmol, 10 mol %), and toluene (91 mL). The resulting mixture was heated at 120 °C for 60 h and then cooled to room temperature and quenched with $NaHCO_{3(aq)}$. The aqueous layer was extracted twice with EtOAc, and the organic extracts combined, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting solid was purified by flash column chromatography (eluted with 1:0.8 petroleum ether: CHCl₃), affording 12 (2.14 g, 63%) as a white solid. Mp: 89–90 °C. IR $\nu_{\rm max}$ (thin film): 3031, 2990, 2892 cm⁻¹. HRMS: calcd for $C_{19}H_{18}O_2NBr$, 372.05937 [M + H]⁺, found m/ z 372.05930, $\Delta = -0.19$ ppm. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 7.59– 7.53 (1H, m, HC_{Ar}), 7.20–7.05 (6H, m, 6 × HC_{Ar}), 7.85–6.79 (2H, m, 2 × HC_{Ar}), 5.60 (2H, s, PhCH₂N), 3.95–3.83 (2H, m $CH_aH_bCH_aH_b$, 3.65–3.53 (2H, m, $CH_aH_bCH_aH_b$); 1.60 (3H, s, CCH_3); ¹³C NMR (100 MHz, CDCl₃) δ_C : 138.4, 137.1, 135.4 (3 × C_{Ar}), 128.6 (HC_{Ar}), 127.4 (C_{Ar}), 127.0, 125.7, 123.6, 120.7, 119.8, 110.3 (6 × HC_{Ar}), 106.4, 89.6 (2 × C_{Ar}), 64.6 (OCH₂)₂), 48.6 (PhCH₂N), 26.4 (CCH₂).

2-(1-Benzyl-2-(1,3-dioxolan-2-yl)-1H-indol-3-yl)-1-phenylpropan-1-one (13). This compound was prepared according to general procedure A, affording 13 (47 mg, 74%) as a yellow solid. Mp: 159-164 °C. IR $\nu_{\rm max}$ (thin film): 3061, 2974, 2930, 2890, 1680, 1079, 745 cm⁻¹. HRMS: calcd for $C_{27}H_{25}O_3N$, 412.19072 [M + H]⁺, found m/z412.19196, $\Delta = 3.0$ ppm. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 8.01 (2H, d, J = 7.40 Hz, $2 \times HC_{Ar}$), 7.64 (1H, d, J = 7.6 Hz, HC_{Ar}), 7.34 (1H, t, J = 7.4 Hz, HC_{Ar}), 7.24 (2H, t, J = 7.4 Hz, 2 × HC_{Ar}), 7.21–7.13 (3H, $m_{3} \times HC_{Ar}$, 7.08–6.99 (3H, m, 3 × HC_{Ar}), 6.90–6.84 (2H, m, 2 × HC_{Ar}), 6.18 (1H, s, $CH(OR)_2$), 5.42 (1H, s, $PhCH_aH_bR$), 5.41 (1H, s, PhCH_aH_bR), 5.15 (1H, q, J = 6.8, CHCH₃), 4.12–3.92 (4H, m, $(OCH_2)_2$, 1.66 (3H, d, CH₃CH); ¹³C NMR (100 MHz, CDCl₃) δ_C : 201.1 (C(O)), 138.1, 137.64, 137.0 (3 × CAr), 132.4, 128.8 (2 × HC_{Ar}), 128.7 (C_{Ar}), 128.6, 128.2, 127.1, 125.9 (4 × HC_{Ar}), 125.8 (C_{Ar}) , 123.1, 120.2, 119.9 (3 × H C_{Ar}), 116.7 (C_{Ar}), 110.1 (H C_{Ar}), 98.6 (CH(OR₂)₂), 65.2 (CHO₂C_aH₂C_bH₂), 65.0 (CHO₂C_aH₂C_bH₂), 47.7 (PhCH₂R), 39.8 (CHCH₃), 18.0 (CHCH₃).

9-Benzyl-4-methyl-3-phenyl-9H-pyrido[3,4-b]indole (14). This compound was prepared according to general procedure B on a 0.15 mmol scale, affording 14 (50 mg, 94%) as a yellow solid. Mp: 164–167 °C. IR ν_{max} (thin film): 3055, 3030, 2924, 1454, 737, 701 cm⁻¹. HRMS: calcd for C₂₅H₂₁N₂, 349.16993 [M + H]⁺, found *m*/*z* 349.16946, Δ = -1.3 ppm. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 8.82 (1H, s, HC(1)), 8.33 (1H, d, *J* = 8.0 Hz, HC_{Ar}), 7.65–7.60 (2H, m, 2 × HC_A), 7.59 (1H, ddd, *J* = 8.3, 7.1, 1.2 Hz, HC_A), 7.54–7.47 (3H, m, 3 × HC_A), 7.45–7.39 (1H, m, HC_{Ar}), 7.34 (1H, t, *J* = 8.0 Hz, HC(6)), 7.32–7.25 (3H, m, 3 × HC_A), 7.22–7.17 (2H, m, 2 × HC_{Ar}), 5.58 (2H, s, PhCH₂R), 2.91 (3H, s, RCH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 149.2, 141.7, 141.2, 136.6, 135.6 (5 × C_{Ar}), 130.0, 129.3 (2 × HC_{Ar}), 129.0 (C(1)), 128.4 (C_{Ar}), 128.1, 127.8, 127.8, 127.2, 126.6 (5 × HC_{Ar}), 124.9 (C_{Ar}), 124.2 (C(5)), 122.4 (C_{Ar}), 119.9 (C(6)), 109.6 (HC_{Ar}), 46.9 (PhCH₂R), 17.6 (RCH₃).

2-(1-Benzyl-2-(2-methyl-1,3-dioxolan-2-yl)-1H-indol-3-yl)-1-phenylethan-1-one (15). This compound was prepared according to general procedure A on 0.15 mmol scale, affording 15 (50 mg, 84%) as an off-white solid. Mp: 128–131 °C. IR ν_{max} (thin film): 3058, 3029, 2989, 2891, 1691, 1197, 742 cm⁻¹. HRMS: calcd for $C_{27}H_{25}O_3NNa$, 434.17266 [M + Na]⁺, found *m*/*z* 434.17270, $\Delta = 0.08$ ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 8.15–8.11 (2H, m, 2 × HC_{Ar}), 7.63–7.56 (1H, m, HC_{Ar}), 7.55–7.46 (3H, m, 3 × HC_{Ar}), 7.30–7.12 (6H, m, 6 × HC_{Ar}), 6.98–6.93 (2H, m, 2 × HC_{Ar}), 5.67 (2H, s, PhCH₂N), 4.72 (2H, s, ArCH₂C(O)), 3.88–3.80 (2H, m CH_aH_bCH_aH_b), 3.68–3.62 (2H, m, CH_aH_bCH_aH_b), 1.65 (3H, s, CCH₃); ¹³C NMR (100 MHz, CDCl₃) δ_C : 198.2 (C(O)), 139.0,137.5, 137.4, 136.6 (4 × C_{Ar}), 132.8, 128.6, 128.5 (3 × HC_{Ar}), 128.4 (C_{Ar}), 128.3, 126.7, 125.8, 122.5, 119.8, 118.6, 110.3 (7 × HC_{Ar}), 107.3, 106.8 (C_{Ar} + CCH₃), 64.8 (OCH₂)₂), 48.0 (PhCH₂N), 35.2 (ArCH₂C(O)), 27.2 (CCH₃).

9-Benzyl-1-methyl-3-phenyl-9H-pyrido[3,4-b]indole (16). This compound was prepared according to a modification of general procedure B on a 85 μmol scale, affording 16 (28 mg, 94%) as a brown solid. A mixture of EtOH:H₂O:DMF (3:1:2) was used as solvent, and the temperature was kept at 110 °C for this cyclization. Mp: 127–129 °C. IR ν_{max} (thin film): 3060, 3030, 1472, 734, 694 cm⁻¹. HRMS: calcd for C₂₅H₂₁N₂, 349.16993 [M + H]⁺, found *m*/*z* 349.16943, Δ = -1.41 ppm. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.31 (1H, s, HC(4)), 8.22 (1H, d, *J* = 7.7 Hz, HC_{Ar}), 8.16–8.12 (2H, m, 2 × HC_{Ar}), 7.56–7.48 (3H, m, 3 × HC_{Ar}), 7.41–7.35 (2H, m, 2 × HC_{Ar}), 7.34–7.22 (4H, m, 5 × HC_{Ar}), 7.05–7.00 (2H, m, 2 × HC_{Ar}), 5.81 (2H, s, PhCH₂N), 2.95 (3H, s, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ_{C} : 145.9, 141.3, 140.2, 139.4, 137.0, 133.9, 129.2 (7 × C_{Ar}), 127.9, 127.6, 127.3, 126.5, 126.5, 125.7, 124.4 (7 × HC_{Ar}), 120.7 (C_{Ar}), 120.4, 119.0, 108.9 (3 × HC_{Ar}), 108.5 (C(4)), 47.2 (PhCH₂N), 22.4 (CH₃).

2-(2-Benzoyl-1-benzyl-1H-indol-3-yl)-1-phenylethan-1-one (17). This compound was prepared according to general procedure A on a 6.36 mmol scale, affording 17 (1.75 g, 64%) as a yellow solid. Mp: 132–134 °C. IR ν_{max} (thin film): 3059, 3030, 1689, 1637, 745, 729 cm⁻¹. HRMS: calcd for $C_{30}H_{23}O_2NNa$, 452.16210 [M + Na]⁺, found m/z 452.16183, $\Delta = -0.59$ ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 7.78 (2H, ddd, J = 8.0, 1.3, 0.9 Hz, $2 \times HC_{Ar}$), 7.74–7.69 (2H, m, $2 \times HC_{Ar}$), 7.58 (1H, d, J = 8.0 Hz, HC_{Ar}), 7.54–7.48 (1H, m, HC_{Ar}), 7.43–7.13 (11H, m, 11 × HC_{Ar}), 7.05–7.00 (2H, m, $2 \times HC_{Ar}$), 5.59 (2H, s, PhCH₂Ar), 4.26 (2H, s, $CH_2C(O)$); ¹³C NMR (100 MHz, CDCl₃) δ_C : 196.4, 190.2 ($2 \times C(O)$), 139.6, 138.8, 138.0, 136.6, 134.5 ($5 \times C_{Ar}$), 133.0, 132.8, 129.4, 128.6, 128.6, 128.5, 128.1 ($7 \times HC_{Ar}$), 127.5 (C_{Ar}), 127.3, 126.5, 125.6, 121.1, 120.9 ($5 \times HC_{Ar}$), 116.1 (C_{Ar}), 110.9 (HC_{Ar}), 48.1 (PhCH₂Ar), 36.0 ($CH_2C(O)$).

9-Benzyl-1,3-diphenyl-9H-pyrido[3,4-b]indole (18). This compound was prepared according to a modification of general procedure B on a 0.17 mmol scale, affording 18 (61 mg, 85%) as a yellow solid. A mixture of EtOH:H2O:DMF (3:1:2) was used as solvent, and the temperature was kept at 110 °C for this cyclization. Mp: 170-174 °C. IR ν_{max} (thin film): 3058, 3031, 1468, 1450, 737, 694 cm⁻¹. HRMS: calcd for $C_{30}H_{22}N_2$, 411.18558 [M + H]⁺, found m/z 411.18452, $\Delta =$ -2.57 ppm. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 8.48 (1H, s, HC(4)), 8.30 (1H, ddd, J = 7.8, 1.2, 0.8 Hz, HC_{Ar}), 8.23–8.18 (2H, m, 2 × HC_{Ar}), 7.58–7.47 (5H, m, 5 × HC_{Ar}), 7.45–7.30 (6H, m, 6 × HC_{Ar}), 7.20–7.10 (3H, m, $3 \times HC_{Ar}$), 6.68–6.62 (2H, m, $2 \times HC_{Ar}$), 5.25 (2H, s, PhCH₂N); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 147.1, 144.0, 143.2, 140.3, 139.9, 137.1, 134.0, 131.8 (8 × C_{Ar}), 129.6, 128.7, 128.6, 128.4, 128.3, 128.0, 127.8, 127.1, 127.0, 125.8 $(10 \times HC_{Ar})$, 122.0 (C_{Ar}) , 121.6, 120.3 (2 × H C_{Ar}), 110.8 (C(3)), 110.2 (H C_{Ar}), 48.2 $(PhCH_2N)$

9-Benzyl-3-(tert-butyl)-9H-pyrido[3,4-b]indole (19). This compound was prepared according to general procedure D, affording 19 (51 mg, 53%) as a brown solid. Mp: 132–134 °C. IR ν_{max} (thin film): 3030, 2956, 2864, 1468, 740, 698 cm⁻¹. HRMS: calcd for C₂₂H₂₃N₂, 315.18558 [M + H]⁺, found *m*/*z* 315.18530, Δ = -0.86 ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 8.82 (1H, d, *J* = 0.9 Hz, *H*C(1)), 8.19 (1H, d, *J* = 7.8 Hz, *H*C_{Ar}), 8.19 (1H, d, *J* = 0.9 Hz, *H*C(4)), 7.55 (1H, ddd, *J* = 8.3, 7.1, 1.2 Hz, *H*C_{Ar}), 7.43 (1H, d, *J* = 8.3 Hz, *H*C_{Ar}), 7.32–7.18 (6H, m, 6 × *H*C_{Ar}), 5.53 (2H, s, PhCH₂N), 1.51 (9H, s, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 159.0, 141.8, 136.7, 135.0 (4 × C_{Ar}), 130.8 (*C*(1)), 129.3 (*C*_{Ar}), 128.9, 128.2, 127.8, 126.7, 121.8 (5 × HC_{Ar}), 121.6 (*C*_{Ar}), 119.6, 109.6 (2 × H_{Ar}), 109.4 ((4)), 47.1 (PhCH₂N), 37.2 ((CH₃)₃C).

9-Benzyl-4-isopropyl-3-phenyl-9H-pyrido[3,4-b]indole (20). This compound was prepared according to general procedure D, affording 20 (84 mg, 73%) as a brown solid. Mp: 170–171 °C. IR ν_{max} (thin film): 3055, 3030, 2990, 2958, 2929, 2872, 1439, 741, 701 cm⁻¹. HRMS: calcd for C₂₇H₂₄N₂, 377.20123 [M + H]⁺, found *m*/*z* 377.20139, Δ = 0.42 ppm. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.89 (1H, s, HC(1)), 7.62–7.53 (3H, m, 3 × HC_{Ar}), 7.46–7.37 (4H, m, 4 × HC_{Ar}), 7.33–7.23 (5H, m, 5 × HC_{Ar}), 6.95 (1H, dd, *J* = 8.0, 6.9 Hz, HC_{Ar}), 6.83 (1H, d, *J* = 8.0 Hz, HC_{Ar}), 5.53 (2H, s, PhCH₂N), 3.18 (1H, hept, *J* = 6.8 Hz, CH(CH₃)₂), 1.29 (6H, d, *J* = 6.8 Hz, CH(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 153.9, 141.8, 138.6, 136.7, 134.9 (5 × C_{Ar}), 130.9, 129.3, 128.9, 128.9 (4 × HC_{Ar}), 128.9 128.8 (2 × C_{Ar}), 127.8, 127.8, 127.8, 126.8, 123.5 (5 × HC_{Ar}), 121.6 (C_{Ar}), 119.4, 109.3 (2 × HC_{Ar}), 47.0 (PhCH₂N), 30.9 (CH(CH₃)₂), 23.2 (CH(CH₃)₂).

9-Benzyl-3-(furan-2-yl)-4-methyl-9H-pyrido[3,4-b]indole (21). This compound was prepared according to general procedure D, affording $\frac{1}{21}$ (78 mg, 75%) as a brown solid. Mp: 156–159 °C. IR ν_{max} (thin film): 3141, 2918, 1488, 1301, 733, 696 cm⁻¹. HRMS: calcd for $C_{23}H_{19}ON_{2}$, 339.14919 [M + H]⁺, found m/z 339.14883, $\Delta = -1.05$ ppm. ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$: 8.63 (1H, s, HC(1)), 8.19 $(1H, d, J = 8.0 Hz, HC_{Ar})$, 7.50 (1H, dd, J = 1.9, 0.7 Hz, OCH), 7.44 $(1H, ddd, J = 8.2, 7.2, 1.1 Hz, HC_{Ar}), 7.33 (1H, d, J = 8.3 Hz, HC_{Ar}),$ 7.20 (1H, ddd, J = 8.0, 7.3, 0.6 Hz, HC_{Ar}), 7.16–7.09 (3H, m, 3 × HC_{Ar}), 7.03–6.99 (2H, m, 2 × HC_{Ar}), 6.67 (1H, dd, J = 3.3, 0.7 Hz, OCCH), 6.46 (1H, dd, J = 3.3, 1.9 Hz, OCHCH), 5.39 (2H, s, PhCH₂N), 2.89 (3H, s, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ_{C} : 154.1 $(C_{\rm Ar})$, 142.2 (OCH), 141.6, 139.1, 136.4, 135.3 (4 × $C_{\rm Ar})$, 129.6 (C(1)), 128.9 (HC_{Ar}) , 128.3 (C_{Ar}) , 127.8, 127.8, 126.5 $(3 \times HC_{Ar})$, 125.4 (C_{Ar}), 124.2 (H C_{Ar}), 122.4 (C_{Ar}), 120.1 (H C_{Ar}), 111.2 (OCHCH), 109.7 (HCAr), 109.6 (OCCH), 46.8 (PhCH2N), 16.8 $(CH_3).$

9-Benzyl-4-ethyl-3-phenyl-9H-pyrido[3,4-b]indole (22). This compound was prepared according to general procedure D, affording 22 (76 mg, 68%) as a brown solid. Mp: 136–138 °C. IR ν_{max} (thin film): 3056, 2969, 2933, 2873, 1441, 730, 700 cm⁻¹. HRMS: calcd for C₂₆H₂₃N₂, 363.18558 [M + H]⁺, found *m*/*z* 363.18530, Δ = -0.75 ppm. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.81 (1H, s, C(1)), 8.28 (1H, d, *J* = 8.0 Hz, HC_{Ar}), 7.61–7.55 (3H, m, 3 × HC_{Ar}), 7.52–7.46 (3H, m, 3 × HC_{Ar}), 7.34–7.39 (1H, m, HC_{Ar}), 7.35 (1H, ddd, *J* = 8.0, 7.1, 1.0 Hz, HC_{Ar}), 7.32–7.26 (3H, m, 3 × HC_{Ar}), 7.24–7.20 (2H, m, 2 × HC_{Ar}), 5.60 (2H, s, PhCH₂N), 3.26 (2H, q, *J* = 7.5 Hz, CH₂CH₃), 1.44 (3H, t, *J* = 7.5 Hz, CH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ_{C} : 149.1, 141.7, 141.5, 136.6, 136.2 131.2 (6 × C_{Ar}), 129.5 (C(1)), 129.4, 129.0, 128.1, 127.8, 127.8 (5 × HC_{Ar}), 127.4 (C_{Ar}), 127.2, 126.6, 124.2 (3 × HC_{Ar}), 121.5 (C_{Ar}), 120.1, 109.7 (2 × HC_{Ar}), 46.9 (PhCH₂N), 23.4 (CH₂CH₃), 14.5 (CH₂CH₃).

9-Benzyl-3-(2-methoxyphenyl)-9H-pyrido[3,4-b]indole (23). This compound was prepared according to general procedure D, affording 23 (83 mg, 74%) as a yellow solid. Mp: 95–97 °C. IR ν_{max} (thin film): 3030, 2935, 2834, 1491, 727, 700 cm⁻¹. HRMS: calcd for C₂₅H₂₀N₂O, 365.16484 [M + H]⁺, found *m*/z 365.16464, Δ = -0.54 ppm. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.94 (1H, d, *J* = 1.0 Hz, *H*C(1)), 8.51 (1H, d, *J* = 1.0 Hz, HC(4)), 8.22 (1H, ddd, *J* = 7.8, 1.2, 0.7 Hz, *H*C_{Ar}), 7.84, (1H, dd, *J* = 7.6, 1.8 Hz, *H*C_{Ar}), 7.57 (1H, ddd, *J* = 8.3, 7.1, 1.2 Hz, *H*C_{Ar}), 7.34–7.18 (6H, m, 6 × *H*C_{Ar}), 7.14–7.09 (1H, m, *H*C_{Ar}), 7.06 (1H, dd, *J* = 8.3, 1.0 Hz, *H*C_{Ar}), 5.58 (2H, s, PhCH₂N), 3.91 (3H, s, CH₃O); ¹³C NMR (125 MHz, CDCl₃) δ_{C} : 156.8, 146.0, 141.8, 136.6, 135.7 (5 × C_{Ar}), 131.6 (HC_{Ar}), 131.5 (C(1)), 130.2, 129.0 (2 × C_{Ar}), 128.9, 128.9, 128.4, 127.8, 126.7, 122.0 (6 × HC_{Ar}), 121.7 (C_{Ar}), 121.1, 119.8 (2 × HC_{Ar}), 115.9 (C(4)), 111.5, 109.7 (2 × HC_{Ar}), 55.8 (CH₃O), 47.0 (PhCH₂N).

3-((3r, 5r, 7r)-Adamantan-1-yl)-9-benzyl-9H-pyrido[3,4-b]indole (24). This compound was prepared according to general procedure D, affording 24 (73 mg, 61%) as a brown solid. Mp: 241–243 °C. IR ν_{max} (thin film): 2901, 2846, 1464, 1452, 738, 698 cm⁻¹. HRMS: calcd for C₂₈H₃₀N₂, 393.23253 [M + H]⁺, found *m*/*z* 393.23257, Δ = 0.12 ppm. ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$: 8.82 (1H, d, *J* = 1.0 Hz, *H*C(1)), 8.17 (1H, d, *J* = 7.8 Hz, *H*C_{Ar}), 7.96 (1H, d, *J* = 1.0 Hz, *H*C(4)), 7.54 (1H, ddd, J = 8.3, 7.2, 1.1 Hz, HC_{Ar}), 7.43 (1H, d, J = 8.3 Hz, HC_{Ar}), 7.30–7.23 (4H, m, 4 × HC_{Ar}), 7.22–7.18 (2H, m, 2 × HC_{Ar}), 5.53 (2H, s, PhCH₂N), 2.19–2.15 (3H, m, 3 × CH), 2.14 (6H, d, J = 2.9 Hz, RC(CH₂)₃), 1.84 (6H, t, $J = 3.1, 3 × CH_2$); ¹³C NMR (125 MHz, CDCl₃) δ_{C} : 158.0, 140.7, 135.7, 134.0 (4 × C_{Ar}), 129.9 (C(1)), 128.3 (C_{Ar}), 127.8, 127.1, 126.7, 125.7, 120.7 (5 × HC_{Ar}), 120.6 (C_{Ar}), 118.5 (HC_{Ar}), 108.5 (C(4)), 108.2 (HC_{Ar}), 46.0 (PhCH₂N), 41.6 (RC-(CH₂)₃), 37.6 (RC(CH₂)₃), 35.9 (CH₂), 28.0 (CH).

9-Benzyl-3-(4-fluorophenyl)-4-methyl-9H-pyrido[3,4-b]indole (25). This compound was prepared according to general procedure D, affording 25 (58 mg, 52%) as a brown solid. Mp: 183–185 °C. IR $\nu_{\rm max}$ (thin film): 3056, 1455 1219, 731, 699 cm⁻¹. HRMS: calcd for $C_{25}H_{19}FN_2$, 367.16050 [M + H]⁺, found m/z 367.16034, $\Delta = -0.45$ ppm. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.78 (1H, s, HC(1)), 8.32 (1H, d, J = 7.8 Hz, HC_{Ar}), 7.62–7.54 (3H, m, 3 × HC_{Ar}), 7.49 (1H, d, $J = 8.2, HC_{Ar}$, 7.35 (1H, t, J = 7.6 Hz, HC_{Ar}), 7.37–7.24 (3H, m, 3 × HC_{Ar}), 7.21–7.14 (4H, m, 4 × HC_{Ar}), 5.59 (2H, s, PhCH₂N), 2.89 $(3H_1 s, CH_3)$; ¹³C NMR (125 MHz, CDCl₃) δ_C : 161.2 (d, J = 246 Hz, CF), 147.0, 140.6 (2 × C_{Ar}), 136.1 (d, J = 3.3 Hz, CCHCHCF), 135.4, 134.6 $(2 \times C_{Ar})$ 130.5 (d, J = 8.1 Hz, CHCF), 128.2 (HC_{Ar}), 127.9 (HC(1)), 127.4 (C_{Ar}) , 126.8 (d, J = 6.2 Hz, CHCHF), 125.5 (HC_{Ar}) , 123.8 (C_{Ar}), 123.1 (H C_{Ar}), 121.2 (C_{Ar}), 118.9, 114.0, 113.8, 108.6 (4 × HC_{Ar}), 45.8 (PhCH₂N), 16.5 (CH₃); ¹⁹F NMR (376 MHz, CDCl₂) δ _F: 115.4 (tt, J = 8.8, 5.5 Hz).

3-(Benzo[d][1,3]dioxol-5-yl)-9-benzyl-4-methyl-9H-pyrido[3,4-b]indole (26). This compound was prepared according to general procedure D, affording 26 (71 mg, 61%) as a brown solid. Mp: 152– 155 °C. IR ν_{max} (thin film): 2890, 1459, 725 cm⁻¹. HRMS: calcd for $C_{25}H_{19}N_2$, 379.14410 [M + H]⁺, found m/z 379.14352, $\Delta = -1.53$ ppm. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.84 (1H, d, J = 0.9 Hz, HC(1)), 8.30 (1H, d, J = 0.9 Hz, HC(4)), 8.20 (1H, d, J = 7.8 Hz, HC_{Ar}), 7.64–7.54 (3H, m, 3 × HC_{Ar}), 7.43 (1H, d, J = 8.3 Hz, HC_{Ar}), 7.34–7.22 (4H, m, 4 × HC_{Ar}), 7.20–7.16 (2H, m, 2 × HC_{Ar}), 6.94 (1H, d, J = 8.1 Hz, HC_{Ar}), 6.01 (2H, s, O₂CH₂), 5.54 (2H, s, PhCH₂N); ¹³C NMR (125 MHz, CDCl₃) δ_{C} : 148.2, 147.5, 147.5, 141.9, 136.5, 135.8, 135.1 (7 × C_{Ar}), 131.6 (HC(1)), 129.8 (C_{Ar}), 129.0, 128.6, 127.9, 126.6, 121.9 (5 × HC_{Ar}), 121.6 (C_{Ar}), 120.4, 120.0 (2 × HC_{Ar}), 110.8 (HC(4)), 109.8, 108.5, 107.4 (3 × HC_{Ar}), 101.2 (O₂CH₂), 47.0 (PhCH₃N).

Synthesis of 2-(1-Benzyl-2-(1,3-dioxolan-2-yl)-1H-indol-3yl)-1,3-diphenylpropan-1-one (27). A fresh solution of LiHMDS was prepared in a dry vial, adding sequentially dry THF (7.3 mL), HMDS (290 μ L, 1.39 mmol, 2.5 equiv), and a 2.5 M solution of *n*BuLi (1.39 mmol, 558 μ L, 2.5 equiv) and stirring at -78 °C for 10 min. Acetophenone (130 μ L, 1.07 mmol, 2 equiv) was then added at 0 °C and stirred for 15 min. In a second dry vial were added bromo indole 1 (200 mg, 558 µmol) and Pd(dtbpf)Cl₂ (18 mg, 27.9 µmol, 5 mol %). The flask was sealed, evacuated, and backfilled with argon twice. The freshly formed enolate solution was then transferred via syringe to the flask. The mixture was stirred at 50 °C for 24 h in an oil bath. After cooling to room temperature, benzyl bromide (166 μ L, 1.39 mmol, 2.5 equiv) was added, and the mixture was stirred at 90 $^\circ\text{C}$ for 24 h. The resulting mixture was filtered through a plug of silica and concentrated in vacuo. The crude product was purified by flash column chromatography (eluted with 9:1 petroleum ether:EtOAc) to afford product 27 (177 mg, 65%) as a brown solid. Mp: 134–135 °C. IR $\nu_{\rm max}$ (thin film): 3060, 3027, 2924, 1679, 1083, 742, 697 cm⁻¹. HRMS: calcd for $C_{33}H_{30}O_3N$, 488.22202 [M + H]⁺, found m/z 488.22195, Δ = -0.14 ppm. ¹H NMR (400 MHz, C_6D_6) δ_{H} : 8.24 (2H, ddd, J = 8.2, 1.9, 1.5 Hz, HC_{Ar}), 8.05 (1H, d, J = 8.05 Hz, HC_{Ar}), 7.17–7.14 (1H, m, HC_{Ar}), 7.12–6.89 (12H, m, HC_{Ar}), 6.86 (1H, d, J = 8.2 Hz, HC_{Ar}), 6.72 (2H, ddd, J = 7.6, 1.9, 1.3 Hz, 2 × HCAr), 5.92 (1H, s, $CH(OR)_2$, 5.39 (1H, dd, J = 8.4, 6.0 Hz, $CH_2CHC(O)$), 5.15 (1H, d, $J = 17.1 \text{ Hz}, \text{ PhCH}_{a}\text{H}_{b}\text{Ar}), 5.09 (1\text{H}, \text{d}, J = 17.1 \text{ Hz}, \text{ PhCH}_{a}\text{H}_{b}\text{Ar}),$ 3.99 (1H, dd, J = 13.5, 6.0 Hz, PhCH_aH_bCH), 3.59 (1H, dd, J = 13.5, 8.4 Hz, PhCH_aCH_bCH), 3.36–3.13 (4H, m, $(OCH_2)_2$); ¹³C NMR (100 MHz, C_6D_6) δ_C : 198.9 (C(O)), 140.8, 138.3, 137.6, 137.3 (4 × C_{Ar}), 132.0 (HC_{Ar}), 129.9, (C_{Ar}), 129.4, 128.8, 128.3, 128.0, 128.0, 126.7 (6 \times HC_{Ar}), 126.3 (C_{Ar}), 125.9, 125.8, 123.1, 120.5, 120.3 (5 \times HC_{Ar}), 113.9 (C_{Ar}), 110.3 (HC_{Ar}), 99.5 ($CH(OR)_2$), 64.6 $(O_2C_aH_2C_bH_2)$, 64.3 $(O_2C_aH_2C_bH_2)$, 48.0 $(CH_2CHC(O))$, 47.5 $(PhCH_2Ar)$, 38.2 (CH_2CH)

4,9-Dibenzyl-3-phenyl-9H-pyrido[3,4-b]indole (28). This compound was prepared according to general procedure B on a 0.18 mmol scale, affording 28 (75 mg, 96%) as an off-white solid. Mp: 201–204 °C. IR ν_{max} (thin film): 3056, 3026, 1448, 740, 728, 699 cm⁻¹. HRMS: calcd for C₃₁H₂₅N₂, 425.20123 [M + H]⁺, found *m*/*z* 425.20102, $\Delta = -0.48$ ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 8.95 (1H, s, HC(1)), 7.89 (1H, d, *J* = 8.0 Hz, HC_{Ar}), 7.55–7.44 (4H, m, 4 × HC_{Ar}), 7.42–7.10 (14H, m, 14 × HC_{Ar}), 5.64 (2H, s, PhCH₂N), 4.68 (2H, s, PhCH₂Ar); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 150.3, 141.8, 141.0, 139.7, 136.5, 136.0 (6 × C_{Ar}), 130.3 (HC(1)), 129.5, 129.0 (2 × HC_{Ar}), 128.9 (C_{Ar}), 128.7, 128.2, 128.0, 128.0, 127.9, 127.4, 126.7, 126.1 (8 × HC_{Ar}), 47.0 (PhCH₂N), 36.4 (PhCH₂Ar).

4-Allyl-9-benzyl-3-phenyl-9H-pyrido[3,4-b]indole (29). This compound was prepared according to general procedure F, affording 29 (62 mg, 54%) as an off-white solid. Mp: 156–158 °C. IR ν_{max} (thin film): 3056, 2926, 1487, 739, 700 cm⁻¹. HRMS: calcd for C₂₇H₂₃N₂, 375.18558 [M + H]⁺, found m/z 375.18552, $\Delta = -0.16$ ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 8.75 (1H, s, HC(1)), 8.09 (1H, d, J = 8.0 Hz, HC_{Ar}), 7.52 (2H, d, J = 7.0 Hz, 2 × HC_{Ar}), 7.44 (1H, t, J = 7.5Hz, HC_{Ar}), 7.39–7.25 (4H, m, 4 × HC_{Ar}), 7.23–7.05 (6H, m, 6 × HC_{Ar}), 6.23–6.10 (1H, m, ArCH₂CHCH₂), 5.48 (2H, s, PhCH₂N), 5.08 (1H, dd, J = 10.3, 1.3 Hz, $CH_{cis}H_{trans}CHAr$), 4.87 (1H, dd, J = 17, 1.3 Hz, CH_{cis}H_{trans}CHAr), 3.92–3.84 (2H, m, ArCH₂CHCH₂); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 149.8, 141.8, 141.1, 136.5, 135.9 (5 × C_{Ar}), 135.6 (ArCH₂CHCH₂), 130.0, 129.5, 129.0 (3 × HC_{Ar}), 128.4 (C_{Ar}) , 128.0, 128.0, 127.9, 127.4, 126.6 (5 × HC_{Ar}), 125.9 (C_{Ar}), 124.6 (HC_{Ar}), 121.4 (C_{Ar}), 120.0 (HC_{Ar}), 116.8 (ArCH₂CHCH₂), 109.7 (HC_{Ar}), 47.0 (PhCH₂N), 34.5 (ArCH₂CHCH₂)

9-Benzyl-4-(4-methoxybenzyl)-3-phenyl-9H-pyrido[3,4-b]indole (**30**). This compound was prepared according to general procedure F, affording **30** (74 mg, 53%) as a yellow solid. Mp: 208–209 °C. IR ν_{max} (thin film): 3058, 2932, 2835, 1244, 735, 699 cm⁻¹. HRMS: calcd for C₃₂H₂₆N₂O, 455.21179 [M + H]⁺, found *m*/*z* 455.21158, Δ = -0.46 ppm. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 8.80 (1H, *s*, HC(1)), 7.78 (1H, d, *J* = 8.0 Hz, HC_{Ar}), 7.42–7.30 (4H, m, 4 × HC_{Ar}), 7.28–7.08 (8H, m, 8 × HC_{Ar}), 7.05–6.98 (1H, m, HC_{Ar}), 6.94 (2H, d, *J* = 8.6 Hz, 2 × HC_{Ar}), 6.70–6.65 (2H, m, 2 × HC_{Ar}), 5.49 (2H, s, PhCH₂N), 4.47 (2H, s, PMBCH₂Ar), 3.63 (3H, s, CH₃O); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 157.9, 150.2, 141.8, 141.0, 136.5, 136.0, 131.7 (7 × C_{Ar}), 130.3 (C(1)), 129.5, 129.1, 129.0 (3 × HC_{Ar}), 128.9 (C_{Ar}), 128.0, 127.9, 127.4, 126.7 (5 × HC_{Ar}), 126.4 (C_{Ar}), 124.5 (HC_{Ar}), 121.5 (C_{Ar}), 120.1, 114.1, 109.6 (3 × HC_{Ar}), 55.2 (CH₃O), 47.0 (PhCH₂N), 35.6 (PMBCH₂Ar).

9-Benzyl-4-(naphthalen-2-ylmethyl)-3-phenyl-9H-pyrido[3,4-b]indole (**31**). This compound was prepared according to general procedure F, affording **31** as a brown solid (70 mg, 48%). Mp: 181– 183 °C. IR ν_{max} (thin film): 3052, 734, 699 cm⁻¹. HRMS: calcd for C₃₅H₂₇N₂, 475.21688 [M + H]⁺, found *m*/*z* 475.21644, Δ = -0.91 ppm. ¹H NMR (500 MHz, CDCl₃) δ_{H} : 9.01 (1H, *s*, HC(1)), 7.88 (1H, d, *J* = 8.1 Hz, HC_{Ar}), 7.85–7.81 (2H, m, 2 × HC_{Ar}), 7.61 (1H, d, *J* = 7.8 Hz, HC_{Ar}), 7.57–7.52 (2H, m, 2 × HC_{Ar}), 7.51–7.46 (3H, m, 3 × HC_{Ar}), 7.45–7.25 (11H, m, 11 × HC_{Ar}), 7.09–7.03 (1H, m, HC_{Ar}), 5.66 (2H, *s*, PhCH₂N), 4.84 (2H, *s*, C₁₀H₇CH₂Ar); ¹³C NMR (125 MHz, CDCl₃) δ_C : 150.3, 141.9, 140.9, 137.4, 136.5, 136.1, 133.8, 132.2 (8 × C_{Ar}), 130.5 (C(1)), 129.5, 129.0 (2 × HC_{Ar}), 129.0 (C_{Ar}), 128.5, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 127.0, 126.7, 126.3, 126.0 (11 × HC_{Ar}), 125.8 (C_{Ar}), 125.4, 124.4 (2 × HC_{Ar}), 121.5 (C_{Ar}), 120.5, 109.6 (2 × HC_{Ar}), 47.1 (PhCH₂N), 36.8 (C₁₀H₇CH₂Ar).

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b00299.

Spectroscopic data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: timothy.donohoe@chem.ox.ac.uk.

ORCID 6

Timothy J. Donohoe: 0000-0001-7088-6626

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil and AstraZeneca for supporting this project.

REFERENCES

(1) (a) Freedland, C. S.; Mansbach, R. S. Drug Alcohol Depend. 1999, 54, 183. (b) Hassani, M.; Cai, W.; Koelsch, K. H.; Holley, D. C.; Rose, A. S.; Olang, F.; Lineswala, J. P.; Holloway, W. G.; Gerdes, J. M.; Behforouz, M.; Beall, H. D. J. Med. Chem. 2008, 51, 3104. (c) Dai, J.-K.; Dan, W.-J.; Li, N.; Du, H.-T.; Zhang, J.-W.; Wang, J.-R. Bioorg. Med. Chem. Lett. 2016, 26, 580. (d) Frédérick, R.; Bruyère, C.; Vancraeynest, C.; Reniers, J.; Meinguet, C.; Pochet, L.; Backlund, A.; Masereel, B.; Kiss, R.; Wouters, J. J. Med. Chem. 2012, 55, 6489.

(2) Sun, B.; Morikawa, T.; Matsuda, H.; Tewtrakul, S.; Wu, L. J.; Harima, S.; Yoshikawa, M. J. Nat. Prod. 2004, 67, 1464.

(3) Jaeger, R. J. R.; Lambshöft, M.; Gottfried, S.; Spiteller, M.; Spiteller, P. J. Nat. Prod. 2013, 76, 127.

(4) Xin, W.-B.; Chou, G.-X.; Wang, Z.-T. Phytochem. Lett. 2011, 4, 380.

(5) Inman, W. D.; Bray, W. M.; Gassner, N. C.; Lokey, R. S.; Tenney, K.; Shen, Y. Y.; TenDyke, K.; Suh, T.; Crews, P. *J. Nat. Prod.* **2010**, *73*, 255.

(6) Tran, T. D.; Pham, N. B.; Ekins, M.; Hooper, J. N. A.; Quinn, R. J. *Mar. Drugs* **2015**, *13*, 4556.

(7) (a) Too, P. C.; Chua, S. H.; Wong, S. H.; Chiba, S. J. Org. Chem.
2011, 76, 6159. (b) Ding, S.; Shi, Z.; Jiao, N. Org. Lett. 2010, 12, 1540.
(c) Zhang, H.; Larock, C. J. Org. Chem. 2002, 67, 9318.

(8) Nissen, F.; Richard, V.; Alayrac, C.; Witulski, B. Chem. Commun. 2011, 47, 6656.

(9) Dhiman, S.; Mishra, U. K.; Ramasastry, S. S. V. Angew. Chem., Int. Ed. 2016, 55, 7737.

(10) Laha, J. K.; Barolo, S. M.; Rossi, R. A.; Cuny, G. D. J. Org. Chem. 2011, 76, 6421.

(11) Namjoshi, O. A.; Gryboski, A.; Cook, J. M. J. Org. Chem. 2011, 76, 4721.

(12) Chiba, S.; Xu, Y.-J.; Wang, Y.-F. J. Am. Chem. Soc. 2009, 131, 12886.

(13) Kamlah, A.; Lirk, F.; Bracher, F. Tetrahedron 2016, 72, 837–845.

(14) (a) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382. (b) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108. (c) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740–1742. For reviews, see: (d) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082. (e) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.

(15) Potukuchi, H. K.; Spork, A. P.; Donohoe, T. J. Org. Biomol. Chem. 2015, 13, 4367.

(16) (a) Donohoe, T. J.; Pilgrim, B. S.; Jones, C. R.; Bassuto, J. A. *Proc. Natl. Acad. Sci. U. S. A.* 2012, *109*, 11605. (b) Pilgrim, B.; Gatland, A. E.; McTernan, C.; Procopiou, P.; Donohoe, T. J. Org. Lett. 2013, *15*, 6190. (c) Gatland, A. E.; Pilgrim, B. S.; Procopiou, P. A.; Donohoe, T. J. Angew. Chem., Int. Ed. 2014, *53*, 14555. (d) Pilgrim, B. S.; Esteves, C. H. A.; McTernan, C. T.; Jones, G. R.; Tatton, M. R.; Procopiou, P. A.; Donohoe, T. J. Org. Lett. 2015, *17*, 3222.

(18) Solé, D.; Bennasar, M.-L.; Jiménez, I. Org. Biomol. Chem. 2011, 9, 4535–4544.

- (19) (a) Beare, N. A.; Hartwig, J. F. J. Org. Chem. 2002, 67, 541.
 (b) Si, C.; Myers, A. G. Angew. Chem., Int. Ed. 2011, 50, 10409.
- (20) Biswas, S.; Batra, S. Adv. Synth. Catal. 2011, 353, 2861-2867.
- (21) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 1473.

(22) Suzuki, H.; Iwata, C.; Sakurai, K.; Tokumoto, K.; Takahashi, H.; Hanada, M.; Yokoyama, Y.; Murakami, Y. *Tetrahedron* **1997**, *53*, 1593–1606.

(23) Kolhatkar, R. B.; Ghorai, S. K.; George, C.; Reith, M. E. A.; Dutta, A. K. J. Med. Chem. 2003, 46, 2205-2215.

(24) Benson, S. C.; Gross, J. L.; Snyder, J. K. J. Org. Chem. 1990, 55, 3257-3269.

(25) Sechi, M.; Derudas, M.; Dallocchio, R.; Dessì, A.; Bacchi, A.; Sannia, L.; Carta, F.; Palomba, M.; Ragab, O.; Chan, C.; Shoemaker, R.; Sei, S.; Dayam, R.; Neamati, N. *J. Med. Chem.* **2004**, *47*, 5298– 5310.

(26) Miki, Y.; Hachiken, H.; Yoshikawa, I. *Heterocycles* **1997**, *45*, 1143–1150.