ORIGINAL PAPER

Synthesis and Crystal Structure Determination of 3-Phenyl-2-(2-phenylhydrazino)-4*H*-1-benzothiopyran-4-one

Clyde R. Metz · John D. Knight · Stefan J. Pastine · William T. Pennington · Charles F. Beam

Received: 12 July 2008/Accepted: 7 January 2010/Published online: 30 January 2010 © Springer Science+Business Media, LLC 2010

Abstract A new type of substituted benzothiopyranone, 3-phenyl-2-(2-phenylhydrazino)-4H-1-benzothiopyran-4one, has been prepared by the condensation-acid cyclization of polylithiated phenylacetic acid phenylhydrazide with lithiated methyl thiosalicylate. Absorption spectra, especially ¹³C NMR, provided good indication of its structure, which was conclusively established with X-ray crystal structure analysis. In comparison to the few benzothiopyran X-ray reports documented, the benzothiopyranone ring of the molecule was found to be essentially planar, with the 3-phenyl ring nearly perpendicular to the benzothiopyranone fused-ring system. Crystals of $C_{21}H_{16}N_2OS$ are orthorhombic, $P2_12_12_1$, a = 10.140(4) Å, b = 10.432(4) Å, c = 16.228(7) Å, Z = 4, V = 1717(1) $Å^3$, $R_1 = 0.0267$ and $wR_2 = 0.0725$ for reflections with $I > 2\sigma(I)$. The molecular packing in the crystal is the result of N-H···O hydrogen bonding.

Keywords Phenylhydrazino-benzothiopyranone synthesis \cdot X-ray analysis

Introduction

In comparison to benzopyranones, benzothiopyranones (BTP-4-ones or BTP-2-ones) have received minimal study

C. R. Metz · J. D. Knight · S. J. Pastine · C. F. Beam (⊠) Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA e-mail: beamc@cofc.edu

W. T. Pennington Department of Chemistry, Clemson University, Clemson, SC 29634, USA (Fig. 1). BTP-4-ones ($R_2 = H$, alkyl, other; $R_3 = aryl$) have been studied for their synthetic approaches such placing substituted aryl moieties in the 3-position of the thiopyranone ring by condensation *via* diazonium salts, or by select oxidation of dihydrobenzothiopyranones [1–5], for their use in other syntheses such as select oxidation of the ring sulfur to sulfone or sulfoxides [6, 7], for their spectrophotometric determination study of basicity [8, 9], for their biological potential in medicine (e.g., aromatase inhibition in select cancer studies) [10, 11], and for theoretical studies (e.g., Hückel MO and LCAO calculations) [12, 13]. Two somewhat related benzothiopyranones have received limited X-ray structural analysis [14–16], while other BTP-4-ones ($R_3 = Ar$) have not.

Strong-base monoanion and multiple anion syntheses from this laboratory have resulted in several benzothiopyranone preparations: BTP-2-one 4 and BTP-4-ones 6 and 8 (Scheme 1). They involved a Claisen type condensationacid cyclization of lithiated methyl thiosalicylate 2 with a variety of reactive but selective lithiated nucleophiles 3, 5, or 7, where the condensation occurred at the carboalkoxy carbon atom of 2. For example, (1) lithiated ethyl propionate 3 was condensed-cyclized with lithiated thiosalicylate 2 to afford BTP-2-one 4 [17]; (2) trilithiated acetoacetanilide 5 was condensed-cyclized with 2 to give BTP-4-one 6 [18]; (3) dilithiated carbomethoxyhydrazones 7 were condensed-cyclized with 2 to afford BTP-4-ones 8 [19]. Each of these studies was straightforward, and structure confirmation was made from absorption spectra, comparison of melting points with a known compound in a few instances, and a reaction path described with a straightforward mechanism. This was evident in the third project cited for BTP-4-ones 8 [19], where carbomethoxyhydrazine, initially part of the carbomethoxyhydrazones functional group were displaced by the sulfur of the thiophenol of a

4*H*-1-benzothiopyran-4-ones abbreviation, BTP-4-ones

2*H*-1-benzothiopyran-2-ones abbreviation, BTP-2-ones

Fig. 1 Benzothiopyranones

C-acylated intermediate, not isolated, to form BTP-4-ones **8** instead of thiophenol-pyrazole (not illustrated).

While an X-ray crystal structural analysis would have been an attractive addition in each of the projects illustrated in 4, 6, and 8 cited, they were not essential for absolute structural verification.

An earlier strong base preparation of 3*H*-pyrazol-3-ones **12** (Scheme 2) resulted from the condensation–cyclization of polylithiated phenylacetic acid phenylhydrazides **10** (from **9**) with aromatic esters including lithiated methyl salicylate, but the condensation–cyclization of lithiated thiosalicylate **2** with lithiated hydrazide **10** gave products that were later determined to be BTP-4-ones **13**. Spectral properties of **13** did not correlate with other pyrazolone **12** products [20]. Other potential cyclization products, in addition to BTP-4-ones **13**, include BTP-2-ones **14** (related to **4**) [17], or other pyrazolones **15**.

Experimental Section

Materials and Characterization

Fourier transform infrared spectra were obtained on a Nicolet Impact 410 FT-IR. Proton and ¹³C NMR spectra were obtained with a Varian Associates Mercury Oxford 300 MHz nuclear magnetic resonance spectrometer, and chemical shifts were recorded in δ ppm downfield from an internal tetramethylsilane standard. Combustion analyses were performed by Quantitative Technologies, Inc., P.O. Box 470, Salem Industrial Park, Whitehouse, NJ 08888 USA. The tetrahydrofuran (THF) was distilled from sodium (benzophenone ketyl as an indicator of dryness) prior to use, and organic chemicals were obtained from Aldrich Chemical Co.

Entry compounds, phenylacetic acid phenylhydrazides 9, were prepared from a phenylacetic acid (or 4-methoxyphenylacetic acid for 13a) condensation with phenylhydrazine [21]. The preparation 3-phenyl-2-(2-phenylhydrazino) -4*H*-1-benzothiopyran-4-one (BTP-4-one) 13 involved the following reagents and procedure. Lithium diisopropylamide (LDA) (0.079 mol) was prepared by the addition of 49 mL of 1.6 *M n*-butyllithium in hexanes (0.079 mol) to a three-neck round-bottomed flask (e.g., 500 mL), equipped with a nitrogen inlet tube, a side-arm addition funnel (e.g., 125 mL), and a magnetic stir bar. The flask was cooled in an

ice water bath and 8.02 g (0.079 mol) of diisopropylamine, dissolved in 25-30 mL of dry tetrahydrofuran (THF), was added from the addition funnel at a fast drop wise rate during a 5 min period (0 °C, nitrogen). The solution was stirred for an additional 15-20 min, and then rapidly treated via a powder funnel, with a slurry of 3.39 g (0.015 mol) of 9 and 50 mL of dry THF. After 2 h of polylithiation, 2.91 g (0.016 mol) of methyl thiosalicylate 1 (97%), dissolved in 25-35 mL of THF was added, during 5 min, to the polylithiated intermediate 10 (Scheme 2), and the solution was stirred and condensed for 2 h. Finally, 100 mL of 3M hydrochloric acid was added quickly, and the two-phase mixture was well stirred and heated under reflux for approximately 60 min. At the end of this period, the mixture was poured into a large flask containing ice (ca., 100 g), followed by the addition of 100 mL of solvent grade ether. The mixture was then neutralized with solid sodium bicarbonate, and the liquid layers or solid materials separated. If a solid appeared at this point, the biphasic mixture could be filtered using a large Buchner funnel. The aqueous layer was extracted with ether or THF $(2 \times 75 \text{ mL})$, and the organic fractions were combined, dried (MgSO₄), filtered, evaporated, and recrystallized. Yield of 13, 2.84 g (55%); mp 229-232 °C (ethanol/benzene). IR (KBr) 3456, 1646 and 1599 cm⁻¹. ¹H NMR (DMSO-d₆): δ (ppm) 6.80–6.84, 7.20–7.70, 8.25–8.28 (m, 14H, ArH), and 8.81 (s broad, 1H); ¹³C NMR (DMSO-d₆): δ (ppm) 110.1, 112.8, 119.9, 126.4, 126.7, 127.0, 127.6, 128.7, 128.9 [possible isochronous], 130.5, 131.2, 133.2, 135.3, 148.1, 161.7, and 176.2. Anal. calcd. for C₂₁H₁₆N₂OS: C, 73.23; H, 4.68; N, 8.13. found: C, 72.98; H, 4.60; N, 7.96. 3-(4-Methoxyphenyl-2-(2-phenylhydrazino)-4*H*-1-benzothiopyran-4-one **13a** ($R_3 = 4$ -CH₃OC₆H₄) was prepared in 45% yield by the procedure above from

the condensation-cyclization of trilithiated 4-methoxyphenylacetic phenylhydrazide **10** and **2** [22].

Single Crystal X-Ray Structure Determination

Colorless crystals of $C_{21}H_{16}N_2OS$ **13** were recrystallized from ethanol/benzene in order to give satisfactory crystals for X-ray determination. Crystal data for X-ray studies were collected at room temperature on a Siemens R3mV diffractometer at Clemson University using the $\omega/2\theta$ scan mode. Details of the data collection are reported in Table 1 [23].

The unit cell dimensions were determined by a leastsquares refinement based on the setting angles of 50 carefully centered reflections in the range 31.91° $< 2\theta < 44.98^{\circ}$. Diffraction data were collected for 3068 unique reflections with -12 < h < 12, -12 < k < 0, and -19 < l < 0. A total of 2939 reflections with $I > 2.0\sigma(I)$ were used in the structure determination. Weights based on counting statistics were applied to the data. No correction was made for absorption.

The non-hydrogen atoms were refined anisotropically. The positions for all hydrogen atoms were obtained from difference maps; the hydrogen atoms were refined with isotropic thermal parameters. The final least-squares refinement on F^2 converged with $R_1 = 0.0278$ and $wR_2 = 0.0733$ (all data). The final Fourier map had no hole deeper than -0.169 e Å⁻³ and no peak greater than 0.127 e Å⁻³. Structure solution, refinement, and the calculation of derived results were performed using the *SHELX-*97 [24] package of computer programs and the analysis of the crystal packing results was performed using *Mercury* [25]. Neutral atom scattering factors were those of Cromer and Waber [26], and the real and imaginary anomalous dispersion corrections were those of Cromer [27].

 Table 1
 Crystallographic data, 3-phenyl-2-(2-phenylhydrazino)-4H

 1-benzothiopyran-4-one
 13

CCDC deposit number [23]	689210	
Color/shape	Colorless/parallelopiped	
Crystal dimensions (mm)	$0.44\times0.56\times0.82$	
Formula	$C_{21}H_{16}N_2OS$	
Formula mass	344.43	
<i>T</i> (°C)	22(1)	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
a (Å)	10.140(4)	
b (Å)	10.432(4)	
c (Å)	16.228(7)	
V (Å ³)	1716(1)	
Ζ	4	
$d_{\text{calc}} (\text{g cm}^{-3})$	1.333	
λ (Å)	0.71073	
$\mu (\mathrm{mm}^{-1})$	0.199	
F(000)	720	
θ range (°)	2.32-25.14	
Reflections collected	3542	
Independent reflections	3068	
Independent reflections $I > 2\sigma(I)$	2939	
Max and min transmission	0.9174, 0.8537	
Data, restraints, parameters	3068, 0, 290	
Final <i>R</i> indices $I > 2\sigma(I)$	$R_1 = 0.0267, wR_2 = 0.0725$	
R indices all data	$R_1 = 0.0278, wR_2 = 0.0733$	
Goodness of fit on F^2	1.044	
Largest diff peak and hole (e $Å^{-3}$)	0.127, -0.169	

Results and Discussion

During the current investigation (Scheme 2) phenylacetic acid phenylhydrazide **7** was trilithiated to **10** with excess LDA followed by condensation with lithiated methyl thiosalicylate **2**, and acid cyclization of *C*-acylated intermediate **11**. Intermediate compound **11** was not isolated, and an acid cyclization with dilute hydrochloric acid (3*M*) was implemented. BTP-4-one **13** ($R_2 = NHNHPh$, $R_3 = Ph$), was isolated in 55% yield, and indicative but inconclusive absorption spectra (IR, ¹H-NMR and ¹³C-NMR) plus X-ray crystal analysis confirmed that **13** was an isomer of the originally targeted product, a substituted 3*H*pyrazol-3-one **12**. It also ruled out the possibility of the product being a 4-hydroxy 2*H*-1-benzothiopyran-2-one **14**.

Additional spectral data was obtained by the preparation of another benzothiopyranone **13a** from 4-methoxyphenylacetic hydrazide **9a**. Its preparation also indicated that the preparation of **13** was not an isolated single result.

Fig. 2 Thermal ellipsoid plot, 3-phenyl-2-(2-phenylhydrazino)-4H-1-benzothiopyran-4-one 13 (50% ellipsoids for non-hydrogen atoms)

Table 2 Selected bond distances (Å), bond angles (°), and dihedralangles (°), 3-phenyl-2-(2-phenylhydrazino)-4H-1-benzothiopyran-4-one 13

S1-C3	1.731(2)	S1-C4	1.739(2)
O1-C1	1.235(2)	N1-N2	1.387(2)
N1-C3	1.348(2)	N1-H1	0.84(2)
N2-C10	1.402(2)	N2-H2	0.84(2)
C1-C2	1.428(2)	C1–C9	1.477(2)
C2–C3	1.365(2)	C2-C16	1.488(2)
C4–C5	1.397(2)	C4–C9	1.388(2)
C3-S1-C4	101.72(7)	N2-N1-C3	118.7(1)
N1-N2-C10	116.4(2)	O1C1C2	121.2(1)
O1–C1–C9	118.8(1)	C2C1C9	120.0(1)
C1C2C3	124.3(1)	C1C2C16	117.6(1)
C3-C2-C16	118.0(1)	S1-C3-N1	112.1(1)
S1-C3-C2	125.9(1)	N1-C3-C2	122.1(1)
S1-C4-C5	115.2(1)	S1-C4-C9	124.9(1)
C1-C9-C8	118.6(1)	C1C9C4	123.0(1)
N2-C10-C11	122.5(1)	N2-C10-C15	117.6(2)

The molecular structure of $C_{21}H_{16}N_2OS$ **13** is shown in Fig. 2 and selected bond distances and angles are listed in Table 2. The bond lengths agree with the assignment of the double bond shown in **13** between C2 and C3 and the single bonds shown for C1–C9, C1–C2, C3–S1, and S1–C4.

The least squares best planes representing the fused rings are nearly coplanar with an angle of 3.38° between them. The two phenyl groups are nearly perpendicular to the heterocyclic ring containing S1 with angles of 86.35° and 88.75° for the rings containing C10 and C16, respectively.

The packing of the molecules in the unit cell results from the formation of N–H…O intermolecular hydrogen bonding between each molecule and two additional molecules. Each O1 forms two hydrogen bonds with a second molecule with bond lengths of 2.128 Å and 2.651 Å for O1…H1–N1 and O1…H2–N2, respectively.

Conclusions

X-ray analysis is important for the conclusive structure determination of 3-phenyl-2-(2-phenylhydrazino)-4H-1-benzothiopyran-4-one **13**, which unexpectedly resulted from the condensation–cyclization of trilithiated phenylacetic acid phenylhydrazide **10** with lithiated methyl thiosalicylate **2**. The product **13** resulted from an anionic nucleophile **10** and an anionic electrophile **2** condensation, involving the carbanion-type center of the dilithiated phenylhydrazide **10** with the carbomethoxy carbon of the lithiated thiosalicylate **2**, followed by a selective cyclization. It is not an isolated result.

Acknowledgements We wish to thank the following sponsors: the Research Corporation, the National Science Foundation grants CHE # 9708014 and # 0212699 for Research at Undergraduate Institutions, the United States Department of Agriculture, NRICGP # 2003-35504-12853, and the Petroleum Research Fund, Administered by the American Chemical Society. The College of Charleston awarded summer grants through its Summer Undergraduate Research Forum (SURF-2006) to J. D. Knight.

References

- 1. Nakazumi H, Endo T, Sonoda H, Kitao T (1985) J Heterocycl Chem 22:821
- Baker W, Clarke GG, Harborne JB (1954) J Chem Soc, Abstracts 998; Chem Abstr 49:20054
- Patonay T, Cavaleiro JAS, Levai A, Silva AMS (1997) Heterocycl Commun 3:223
- 4. Katekar GF, Thomson RM (1972) Aust J Chem 25:647
- Volovenko YM, Litenko VA, Dashkovskaya EV, Babichev FS (1982) Khimiya Geterotsiklicheskikh Soedinenii 1047; Chem Abstr 97:182164
- Szabo V, Borda J, Vegh V (1979) Acta Chimica Academiae Scientiarum Hungaricae 98:457; Chem Abstr 91:20258

- 7. Patonay T, Adam W, Levai A, Kover P, Nemeth M, Peters EM, Peters K (2001) J Org Chem 66:2275
- Tolmachev AI, Shulezhko LM, Kisilenko AA (1967) Zhurnal Obshchei Khimii 37:367; Chem Abstr 67:53984
- David RD, Sabo V, Rakosh M (1967) Visnik Kiivs'kogo Universitetu, Seriya Fiziki ta Khimii 176; Chem Abstr 69:72439
- 10. Kim Y-W, Hackett JC, Brueggemeier RW (2004) J Med Chem 47:4032
- Bargagna A, Longobardi M, Mariani E, Schenone P, Losasso C, Esposito G, Falzarano C, Marmo E (1990) Farmaco 45:405
- Tolmachev AI, Dyadyusha GG, Shulezhk LM (1970) Teoreticheskaya i Eksperimental'naya Khimiya 6:185; Chem Abstr 73: 55511
- Volovenko YM, Litenko VA, Zamkovoi VI, Babichev FS (1988) Ukrainskii Khimicheskii Zhurnal 54:1294; Chem Abstr 111:77193
- 14. Nakazumi H (1993) Senryo to Yakuhin 38:269; Chem Abstr 120:163828
- 15. Nakazumi H, Watanabe S, Kitao T (1992) J Chem Res Synop 212
- 16. Nelson A (2003) Sci Syn 14:787
- Davis SE, Church AC, Tummons RC, Beam CF (1997) J Heterocycl Chem 34:1159
- Angel AJ, Finefrock AE, French KL, Hurst DR, Williams AR, Rampey ME, Studer-Martinez SL, Beam CF (1999) Can J Chem 77:94
- French KL, Angel AJ, Williams AR, Hurst DR, Beam CF (1998) J Heterocycl Chem 35:45
- Downs JR, Pastine SJ, Townsend JD, Greer HA, Kelley W Jr, Schady DA, Lentz-McConaughy T, Metz CR, Beam CF, Almquist CD, Pennington WT, Walsch RDB (2001) J Heterocycl Chem 38:695
- Downs JR, Grant SP, Townsend JD, Schady DA, Pastine SJ, Embree MC, Metz CR, Pennington WT, Walsch RDB, Beam CF (2004) Can J Chem 82:659
- 22. 3-(4-Methoxyphenyl-2-(2-phenylhydrazino)-4*H*-1-benzothiopyran-4-one **13a** mp 178–180 °C (ethanol/benzene). IR 3377 and 3317, and 1658 cm^{-1.} ¹H NMR (CDCl₃): δ (ppm) 3.90 (s, 3H, ArOCH₃), 6.98–702, 7.25–7.78, 8.53–8.56 (m, 13H, ArH); ¹³C NMR (CDCl₃): δ (ppm) 55.6, 113.0, 124.2, 126.6, 127.5, 127.7, 129.6, 129.8, 131.6, 132.5, 133.1, 133.7, 136.1, 139.9, 152.0, 157.1, 159.9, and 182.5. Anal. calcd. for C₂₂H₁₈N₂O₂S: C, 70.57; H, 4.85; N, 7.48. found: C, 70.97; H, 4.37; N, 7.88
- 23. CCDC 689210 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif
- 24. Sheldrick GM (1997) SHELX-97, crystallographic computing system—Windows version. University of Gottingen, Germany
- 25. Cambridge Crystallographic Data Centre (CCDC) (2005) Mercury, Cambridge, England
- International Tables for X-Ray Crystallography (1974) Vol IV, Tables 2.2 B and 2.3.1. Kluwer Acadmenic Publisher, Dordrecht
- 27. Farrugia LJ (1997) J Appl Cryst 30:565