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One-pot cascade ring enlargement of isatin-3-oximes to 2,4-dichloroquinazolines
mediated by bis(trichloromethyl)carbonate and triarylphosphine oxide

Jinjing Qin, Zhenhua Li , Shengzhe Ma, Lixian Ye, Guoqiang Jin, and Weike Su

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China

ABSTRACT
An efficient and convenient one-pot cascade synthesis of 2,4-dichloroquinazolines directly from
isatin-3-oximes with the addition of bis(trichloromethyl)carbonate and triarylphosphine oxide was
developed, leading to substituted quinazolines in moderate to excellent yields. The efficiency of
this transformation was demonstrated by compatibility with a range of functional groups. Thus,
the method represents a convenient and practical strategy for the synthesis of substituted 2,4-
dichloroquinazolines.
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Introduction

Quinazolines are a privileged class of nitrogen heterocyclic
scaffolds, which are present in a wide variety of pharmaceut-
ical products and biological molecules that might be clinical
drug candidates.[1,2] Quinazoline derivatives have shown
diverse biological activities such as anti-cancer,[3–5] anti-
inflammatory[6,7] and antihypertensive activities.[7,8] The
huge sales of commercial drugs (e.g., Gefitinib,[9]

Erlotinib,[10] Prazosin,[11] Doxazosin[12]) highlight the
importance of the quinazoline pharmacophore (Figure 1).

Generally, biological quinazoline derivatives have been syn-
thesized from 2,4-dichloroquinazolines via nucleophilic substi-
tution,[13–15] metal-catalysed coupling[16,17] and/or
hydrogenolysis reactions.[18–20] Although novel synthetic strat-
egies for quinazoline derivatives have been proposed and
attempted in recent years,[21] 2,4-dichloroquinazolines still play
an important role as key intermediates for the synthesis of
2,4-substituted quinazolines. The classical synthetic approach
to 2,4-dichloroquinazolines started from the corresponding
quinazolinedones or 2,4-dihydroxyquinazolines generated by o-
aminobenzoic acid derivatives and ureas, chlorinated by phos-
phoryl chloride (POCl3).

[22–26] This chlorination suffers from a
long reaction time caused by the poor solubility of the sub-
strates and economic and environmental problems caused by

the use of POCl3. 2,4-Dichloroquinazolines can also be pre-
pared in one step from o-aminobenzonitrile with diphos-
gene.[27] However, this method involves toxic diphosgene,
harsh reaction conditions and relatively low yields.
Coincidentally, we previously reported a method targeting 2,4-
dichloroquinazoline from o-aminobenzonitrile and triphosgene
(Figure 2).[28] On this basis, the development of convenient
synthetic methods under eco-friendly reaction conditions for
the rapid and straightforward assembly of 2,4-dichloroquinazo-
lines is still highly desirable.

Organophosphorus compounds have been widely
employed in organic transformations such as Wittig,[29–31]

Mitsunobu,[32] and Appel reactions[33] and the ligands of
various transition metal catalysts.[34–37] The generation of
phosphine oxide, however, remains the major limitation of
this family of chemical reactions as stoichiometric by-prod-
ucts are especially inherent in the separation.[38] Although
many strategies have been developed to remove phosphine
oxide,[39–42] this basic problem remains. Therefore, new
phosphorus-mediated reactions that convert phosphine
oxides into phosphorus(V) reagents are desirable.[43]

Bis(trichloromethyl)carbonate (BTC), also known as tri-
phosgene or solid phosgene, has been considered an easily
handled alternative to highly toxic phosgene, which has
been employed in chlorination, acylation, rearrangement
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and cyclization.[44–48] During our continuous efforts to
expand the chemistry of BTC, we developed an eco-friendly
system of BTC and triphenylphosphine oxide (TPPO) which
generated a versatile chlorination reagent triphenylphos-
phine dichloride (TPPDC), and applied it in the construc-
tion of biologically relevant heterocyclic compounds.[28,49–51]

Herein, we report a convenient and efficient one-pot cascade
synthesis of 2,4-dichloroquinazolines directly from isatin-3-
oximes with the addition of BTC and triarylphos-
phine oxide.

Results and discussion

In our previous work,[28] we explored the reaction between
o-aminobenzonitrile and the BTC/TPPO system and pro-
posed 2-isocyanatobenzonitrile as the key intermediate.
Subsequently, we hypothesized that isatin-3-oximes might
replace o-aminobenzonitrile in completing this reaction as
o-aminobenzonitrile could be conveniently generated from
isatin-3-oximes where 2-isocyanatobenzonitriles were the

intermediate during the procedure.[52,53] As a result, we
chose isatin-3-oxime 1a (1 equiv.) to perform the model
reaction with the addition of BTC (2 equiv.)/TPPO (1 equiv.)
at 120 �C (Table 1, entry 1). Surprisingly, we obtained a 68%
yield of 2,4-dichloroquinazoline. It is reported that electron-
deficient or –rich triarylphosphine oxides greatly influence
TPPDC formation.[38] Thus, we began a series of optimiza-
tion studies with a view to increasing the yield to more
practical levels.

The substituents on the TPPO showed a critical effect on
the reaction. As listed in Table 1, electron-withdrawing
groups on the TPPO exhibited lower yields and longer reac-
tion times (Table 1, entry 2). However, those TPPO with
electron-donating groups afforded excellent yields in a short
time (Table 1, entries 3, 4). There seemed to be some steric
effect in this reaction because tris(1,10-biphenyl)-4-yl)phos-
phine oxide (3e) caused a significant decline in the out-
comes (Table 1, entry 5). Tri(4-methoxyphenyl)phosphine
oxide (3d) showed better reactivity providing 2,4-dichloro-
quinazoline with 92% yield (Table 1, entry 4).

The reaction conditions were optimized further. The yield
remained excellent when the quantity of triarylphosphine
oxides decreased, although a longer reaction time was
required (Table 2, entries 1–3). Remarkably, the reaction
result was unsatisfactory using 0.2 equiv 3d, which gener-
ated a moderate yield of 2a after heating for 24 h (Table 2,
entry 4). These results indicated the importance of the
amount of triarylphosphine oxides. Moreover, they sug-
gested that decreasing BTC might inhibit this transformation
(Table 2, entry 5).

With the optimized conditions established, a series of isa-
tin-3-oximes was exposed to the developed conditions, and
the results are presented in Table 3. Functional groups were
tolerated and the desired products 2 were afforded in mod-
erate to excellent yields. Generally, electron-withdrawing

Figure 1. Current medical applications of quinazolines.

Figure 2. Synthesis of 2,4-dichloroquinazolines.
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groups (Table 3, entries 6–13) exert a greater influence than
electron-donating groups (Table 3, entries 1–5). Halogen
atoms are preferred at the para-position of the nitrogen
atom (Table 3, entries 6–8), as opposed to the meta-position
(Table 3, entries 9, 12). Different halogen atoms might have
diverse effects, as the presence of bromine atoms but not
chlorine atoms reinstated the reaction efficiency (Table 3,
entries 6, 7 vs 10, 13). Although the nitro group was toler-
ated, this reaction gave the lowest yield in these experiments
at 63% (Table 3, entry 11). Interestingly, when both elec-
tron-donating and -withdrawing groups substituted the isa-
tin-3-oxime, the electron-withdrawing group played the
leading role in the electronic effect (Table 3, entry 14).

In order to demonstrate the reaction mechanism, aniline
was added into the reaction mixture to capture the key
intermediate 6. 1-(2-Cyanophenyl)-3-phenylurea 8 was
obtained, indicating the formation of 2-isocyanatobenzoni-
trile as the intermediate. On the basis of the above and the
previous literature,[28,50,53,54] a plausible mechanism was
proposed (Scheme 1). With the mixture of the reactant,
oxime 1 reacted with BTC rapidly generating the intermedi-
ate 4. Then, under an acidic atmosphere, decarboxylation
was carried out together with the leaving of chlorine leading
to intermediate 5. Next, cleavage took place with the nucleo-
philic attack of the chlorine anion, and the key intermediate
2-isocyanatobenzonitrile 6 was rearranged and formed.
Partially, the intermediate 6 could also be generated by

simple heating of isatin-3-oxime 1. Meanwhile with the tem-
perature increase, BTC suffered a nucleophilic attack from
triarylphosphine oxide 3 and generated chlorophosphonium
salt 9 by CO2 extrusion. The intermediate 6 was captured by
the chlorophosphonium salt 9, affording intermediate 7.
Finally, the product 2 was afforded by the SNAr mechanism,
replacing the oxygen atom by a chloride anion.

Conclusion

In summary, an efficient one-pot synthesis of 2,4-dichloro-
quinazolines in moderate to excellent yields from isatin-3-
oximes with the addition of BTC and triarylphosphine oxide
has been developed. This operationally simple protocol pro-
vides an alternative 2,4-dichloroquinazolines synthetic path-
way to the classical chlorination reaction of
quinazolinedones. Further efforts to extend this BTC system
to the preparation of other useful heterocyclic compounds
are currently underway in our laboratories.

Experimental

All reagents were purchased from commercial sources and
used without further purification unless otherwise indicated.
Caution! BTC will release phosgene in a moist environment,
especially at elevated temperatures; it is highly not recom-
mended to add BTC over 80 �C. Analytical TLC (thin-layer
chromatography) was performed with 0.25mm silica gel G
with a 254 nm fluorescent indicator. Melting points (mp) were
obtained on digital melting point apparatus WRS-1B and are
uncorrected. 1H NMR, 13C NMR were recorded at VARAIN-
400 on a 400MHz and 100MHz, respectively. Spectra were
referenced internally to the residual proton resonance in
CDCl3 or tetramethylsilane as the internal standard. Chemical
shifts (d) were reported as part per million in d scale

Table 2. Optimization of reaction conditions.a

Entry 1a:BTC:3d Time (h) Yieldb (%)

1 1:2:1 1 92
2 1:2:0.5 2 92
3 1:2:0.3 3 92
4 1:2:0.2 24 60
5 1:0.7:0.3 3 75
aReaction conditions: BTC in PhCl was dropped into 3d at -5–0 �C followed by
reacting at room temperature for 30min, then 1a was added and the tem-
perature was increased to 120 �C.

bIsolated yields based on 1a.

Table 3. Synthesis of 2,4-dichloroquinazolines 2 from isatin-3-oximes 1.a

Entry Product R (2a–2n) Time (h) Yieldb (%)

1 2a H 3 93
2 2b 6-OMe 3 94
3 2c 6-Me 3 93
4 2d 6,7-diOMe 4 92
5 2e 5,7-diMe 4 92
6 2f 6-Cl 4 88
7 2g 8-Cl 4 87
8 2h 7-F 6 74
9 2i 6-F 6 85
10 2j 6-Br 6 71
11 2k 6-NO2 6 63
12 2l 5,7-Cl2 6 66
13 2m 8-Br 6 71
14 2n 6-Cl-8-Me 6 82
aReaction conditions: BTC (2.2mmol) in PhCl was dropped into 3d (0.9mmol)
at �50 �C followed by reacting at room temperature for 30min, then 1a–1n
(3mmol) was added and the temperature was increased to 120 �C.

bIsolated yields based on 1a–1n.

Table 1. Optimization of triarylphosphine oxides.a

Entry Reagent R (Ar¼ R-Ph) Time (h) Yieldb (%)

1 3a H 2 68
2 3b 4-CH3 1.5 87
3 3c 3,4,5-triF 3 62
4 3d 4-OCH3 1 92
5 3e 4-Ph 4 38
aReaction conditions: 1a (3mmol), Ar3PO (3mmol), BTC (2mmol) were used.
bIsolated yields based on 1a.
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downfield from TMS. EI-MS were recorded on a
ThermoFisher ITQ1100 Ion Trap Mass Spectrometer.
Purification of products was accomplished by column chro-
matography on silica gel. The Supplemental Materials con-
tains full characterization data and sample 1H and 13C NMR
spectra of the known products (supporting information
Figures S1–S32).

General procedure for the synthesis of 2,4-
dichloroquinazolines (2)

BTC (0.65 g, 2.2mmol in 6mL of PhCl) was added to a
stirred solution of tris(4-methoxyphenyl)phosphine oxide 3d
(0.33 g, 0.9mmol in 5mL PhCl) dropwise in a round bott-
tom flask placed on an ice bath. After complete addition,
the mixture was stirred for 30min at room temperature.
Then isatin-3-oximes 1 (3mmol) were added, and the mix-
ture was heated to 120 �C until completion of the reaction
(followed by TLC, n-hexane/ethyl acetate ¼ 10:1). After
cooling, the mixture was then poured into 50mL ice water
and extracted with ethyl acetate (3� 20mL). The organic
layer was dried over anhydrous Na2SO4 and concentrated in
vacuo. The crude product was purified over column chro-
matography (n-hexane/ethyl acetate ¼ 10:1) to afford the
pure produce 2,4-dichloroquinazolins 2. Tris(4-methoxyphe-
nyl)phosphine oxide 3d was recovered by column chroma-
tography (n-hexane/ethyl acetate ¼ 1:1).

General procedure for the synthesis of triarylphosphine
oxide (3)

Magnesium splints (0.96 g, 40mmol) and iodine were mixed
under an argon atmosphere in a 100mL dry flask.
Bromobenzene derivatives (66mmol) were dissolved in dry

tetrahydrofuran (20mL), and then a 5mL portion was added
until the reaction started. The reaction mixture was cooled
to 0 �C followed by addition of the residual bromobenzene
derivatives dropwise. After complete addition, the mixture
was heated to refluxing for 1 h. The mixture was cooled to
0 �C again and POCl3 (1.53 g, 10mmol) was added dropwise
slowly. Further refluxing was employed for 1 h, and the mix-
ture was cooled to room temperature. After cooling down,
the mixture was then poured into ice water and extracted
with dichloromethane. The organic layer was washed by
aqueous NaHCO3, NaCl and NaOH, respectively, and then
dried over anhydrous MgSO4 and concentrated. The crude
reaction product was recrystallized using ethanol.
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