

pubs.acs.org/JACS

Enantioselective Total Synthesis of (+)-Stephadiamine through Bioinspired Aza-Benzilic Acid Type Rearrangement

Minami Odagi,* Taisei Matoba, Keisuke Hosoya, and Kazuo Nagasawa*

Cite This: J. A	m. Chem. Soc. 2021, 143, 2699–2704	Read Online	
ACCESS	III Metrics & More	E Article Recommendations	s Supporting Information

ABSTRACT: We report the first enantioselective total syntheses of the hasubanan alkaloid (-)-metaphanine and the norhasubanan alkaloid (+)-stephadiamine. Key features of these syntheses include diastereoselective oxidative phenolic coupling reaction and subsequent regioselective intramolecular aza-Michael reaction, which efficiently construct the hasubanan skeleton with the all-carbon quaternary stereogenic center at C13. Based on our hypothesis regarding the biosynthetic pathway of (+)-stephadiamine, we found that (-)-metaphanine is easily converted to (+)-stephadiamine via aza-benzilic acid type rearrangement reaction.

P lants of the genus *Stephania*, which grow naturally in the Southeast Asia-Pacific region and have been widely used in traditional Chinese medicines, contain bioactive alkaloids known as hasubanans.¹ More than 40 congeners of these alkaloids have been identified to date, and they show a wide range of biological activities, including antiviral, antimicrobial, and cytotoxic activities.^{1c} Hasubanan alkaloids, exemplified by compounds **2**–**5**, commonly possess a characteristic tetracyclic aza[4,4,3]propellane core **1** (Figure 1a).^{1,2} Owing to the synthetically challenging structures of these alkaloids as well as their important biological activities, numerous synthetic studies have been reported.^{3–5}

In 1984, Ibuka and co-workers isolated a (+)-stephadiamine (6) from Stephania japonica.⁶ This norhasubanan alkaloid has an uncommon structure that differs from those of hasubanan alkaloids. It contains an aza[4,3,3]propellane scaffold with a five-membered C-ring, and four stereogenic centers, including an α -tertiary amine at C14 and an all-carbon quaternary stereogenic center at C13. The unique caged-type structure of 6 and its absolute configuration were established by X-ray crystallography analysis of the bromobenzoate derivative. The biological activity of 6 has not yet been investigated, because only a limited supply is available from nature. Furthermore, despite the interesting structure of 6, only one report of its total synthesis has appeared to date. In 2018, Trauner and coworkers reported a total synthesis of stephadiamine (6) in racemic form based upon an elegant cascade reaction of a β tetralone derivative for the construction of the characteristic aza[4,3,3]propellane core, which corresponds to the B,C,Drings in 6.⁷ As a part of their synthesis, they described enantioselective access to a key intermediate by means of Pdcatalyzed asymmetric allylation with chiral phosphoric acid.

The biosynthetic pathway of the hasubanan alkaloids has been explored in part, although it is still not fully established.⁸ We envisaged that the five-membered C-ring of the norhasubanan 6 might be formed biosynthetically from the six-membered hasubanan C-ring, e.g., by reconstruction of the hemiacetal in 5 to δ -lactone (Figure 1b). That is, we hypothesized that (+)-stephadiamine (6) would be formed biosynthetically from (-)-metaphanine (5) through an azabenzilic acid type rearrangement reaction via intermediate 7, which would be generated by condensation of 5 with ammonia.⁹ Based on this hypothesis, we considered that this aza-benzilic acid-type rearrangement might be applied to synthesize (+)-stephadiamine (6) from its putative biosynthetic precursor, (-)-metaphanine (5). In this report, we describe enantioselective total syntheses of (-)-metaphanine (5) and (+)-stephadiamine (6), featuring a diastereoselective oxidative phenolic coupling reaction and subsequent regioselective intramolecular aza-Michael reaction, as well as the bioinspired aza-benzilic acid type rearrangement.

Our synthetic analysis for the primary target, (-)-metaphanine (5), is depicted in Figure 1c. We envisaged that 5 would be obtained by selective oxidation at C8 in enone 8, which would be synthesized by successive construction of the B and D rings through a diastereoselective oxidative phenolic coupling reaction of phenol 10, followed by regioselective intramolecular aza-Michael reaction of the resulting dienone 9. In the synthesis of the B ring in 9, the stereochemistry at C13 with the all-carbon quaternary stereogenic center was expected to be controlled by C10 in 10. According to this synthetic plan, all of the stereochemistry in the hasubanan skeleton would be controlled by the stereocenter at C10. We planned to synthesize phenol 10 by coupling of 11 and 12, which correspond to the A- and C-rings in 5, respectively.

Our synthesis commenced with the construction of the stereocenter at C10 in (-)-metaphanine (5) (Scheme 1). First, the coupling reaction of TMS cyanohydrin 11 and mesylate 12,¹⁰ which correspond to the A- and C-rings, respectively, was carried out with LiHMDS followed by

Received: January 3, 2021 Published: February 15, 2021

Figure 1. (a) Structures of representative hasubanan alkaloids. (b) Proposed biosynthetic pathway leading to stephadiamine (6) from 5. (c) Retrosynthetic analysis of metaphanine (5) and stephadiamine (6).

treatment with TBAF to give 13 in 78% yield. We next investigated control of the stereochemistry at C10 of the ketone in 13 under various asymmetric reduction conditions. using CBS reduction¹¹ and Noyori's hydrogenation-transfer conditions,^{12,13} but only moderate selectivity was obtained (see Supporting Information). Thus, we examined various acylative kinetic resolution (KR) conditions with racemic alcohol rac-14, obtained by reduction of 13 with sodium borohydride, using chiral isothiourea catalysts.¹⁴ The desired alcohol (-)-14 was obtained with excellent enantioselectivity (over 99% ee) by employing a catalytic amount of (2S,3R)-HyperBTM (15) in the presence of isobutyric anhydride as an acylating reagent.^{15,16} Isobutyric ester 16 obtained in this process was recyclable to the ketone 13 almost quantitatively by removal of the acyl group under basic conditions, followed by oxidation of the resulting alcohol.

Then, we shifted our attention to the construction of the allcarbon quaternary stereogenic center at C13 by means of oxidative dearomative coupling reaction. The substrate phenol 20 for this conversion was synthesized as follows. Protection of the alcohol in (-)-14 with silvl ether followed by ozonolysis and reduction of the allyl group gave alcohol 18. The hydroxyl group in 18 was converted into azide by mesylation followed by treatment with sodium azide to give 19 in 72% yield. The azide group in 19 was then reduced to amine under the Staudinger conditions, and the resulting amine was protected with a Boc group, followed by deprotection of the MOM group with a catalytic amount of terabromomethane in 2propanol to give phenol 20.¹⁷ With the phenol 20 in hand, oxidative dearomative phenolic coupling reaction was investigated.¹⁸ Thus, phenol 20 was treated with PIDA in hexafluoro-2-propanol (HFIP) at 0 °C in the presence of methanol as an additive.¹⁹ Under these conditions, the coupling reaction proceeded to afford the dienone 21 in 34% yield as a single diastereomer.²⁰ In this reaction, two possible transition states, TS-1 and TS-2, can be considered regarding the configuration at C10, and the reaction would preferentially proceed from the sterically less hindered transition state TS-1 to predominantly form 21 having the desired configuration at C13.

With the tricyclic hasubanan framework (A,B,C-rings) of 21 in place, construction of the D-ring was investigated by means of regioselective intramolecular aza-Michael reaction. After debromination of 21 with sodium formate in the presence of $Pd(PPh_3)_{4}$, the resulting dienone 9 was subjected to intramolecular aza-Michael reaction (Table 1). First, we examined the reaction with Brønsted acids (entries 1, 2). In the case of trifluoroacetic acid, the sterically less hindered C5 adduct 23 was obtained as the major product (8/23 = 1:4.4)ratio). On the other hand, the adducts at C5 and C14, 23 and 8, were obtained in 68% total yield with an approximately 1:1 ratio upon reaction with hydrochloric acid. Thus, we focused on basic conditions. In the case of DBU in THF at rt, no reaction took place, presumably due to the weak basicity, and the substrate 9 was recovered quantitatively (entry 3). Stronger bases such as sodium hydride or sodium tert-butoxide gave mixtures of 8 and 23 in 67% and 60% yields, respectively, with no selectivity (entries 4, 5). Interestingly, tetracyclic C14 adduct 8 was obtained predominantly (8/23 = 1.9:1 ratio) in 59% yield with potassium tert-butoxide in THF at 0 °C, and the selectivity was drastically increased to 7.3:1 (8/23) in a mixed solvent system (THF/HMPA = 9:1) at 0 °C. The desired 8 was obtained in 51% yield after separation on a silica gel column (entry 7).

With tetracyclic 8 in hand, we moved on to the syntheses of (-)-metaphanine (5) and (+)-stephadiamine (6) (Scheme 2). First, we examined selective oxidation at C8 of enone 8. After several attempts, we found that the Davis oxaziridine oxidant *rac*-24 was effective, affording α -hydroxy ketone 25 in 71% yield. After oxidation of the hydroxyl group with DMP in 25, the TIPS ether in the resulting 26 was deprotected with HF- Et_3N to give the hemiacetal 27 in 77% yield from 25. Then, the double bond in 27 was reduced under hydrogenation conditions to give 28 in 80% yield. Finally, (-)-metaphanine (5) was synthesized from 28 by deprotection of the Boc group with hydrochloric acid followed by reductive methylation of the resulting amine with formaldehyde and cyanoborohydride in 45% yield. The structure of the synthetic (-)-metaphanine (5) was confirmed by X-ray crystallography analysis and comparison of the spectral data of ¹H and ¹³C NMR with previously reported values.^{21,22}

As already mentioned, we had hypothesized that stephadiamine (6) would be biosynthetically generated from metaphanine (5). To test this idea, we examined the transformation of (-)-metaphanine (5) into (+)-stephadiamine (6). As we had hoped, aza-benzilic acid type rearrangement proceeded upon treatment of 5 with ammonia

pubs.acs.org/JACS

Scheme 1. Synthesis of Pivotal Intermediate 8^{a}

^aReagents and conditions: (a) **12** (1.0 equiv), LiHMDS (1.3 equiv), THF, -78 to 0 °C, 45 min; (b) TBAF (1.0 equiv), THF, 0 °C, 5 min (78%, 2 steps); (c) NaBH₄ (1.5 equiv), MeOH, 0 °C, 10 min (99%); (d) **15** (10 mol %), (*i*-PrCO)₂O (0.6 equiv), *i*-Pr₂NEt (0.6 equiv), toluene, -60 °C, 8 h ((-)-**14**, 39%, 99% ee), (**16**, 51%, 74% ee); (e) NaOH (12 equiv), MeOH, rt, 10 min; (f) DMP (1.5 equiv), CH₂Cl₂, rt, 1 h (95%, 2 steps); (g) TIPSCl (2.0 equiv), imidazole (4.0 equiv), DMF, 65 °C, 12 h (95%); (h) O₃ (gas), MeOH, -78 °C, 5 min, then NaBH₄ (3.0 equiv), 0 °C, 30 min (76%); (i) MsCl (1.2 equiv), Et₃N (1.5 equiv), DMF, 0 °C, 10 min, then NaN₃ (2.0 equiv), 65 °C, 6 h (92%); (j) PPh₃ (2.0 equiv), H₂O (10.0 equiv), THF, 65 °C, 6 h, then Boc₂O (2.0 equiv), rt, 1 h; (k) CBr₄ (0.2 equiv), *i*-PrOH, 65 °C, 3 h (74%, 2 steps); (l) PIDA (1.0 equiv), MeOH (100 equiv), HFIP, 0 °C, 5 min (34%), (m) HCO₂Na (1.5 equiv), Pd(PPh₃)₄ (10 mol %), DMF, 100 °C, 2 h (99% yield); (n) KOt-Bu (5.0 equiv), THF/HMPA, 0 °C, 5 min (51%). LiHMDS = Lithium bis(trimethylsilyl)amide, THF = tetrahydrofuran, TBAF = tetra-*n*-butylammonium fluoride, DMP = Dess-Martin periodinane, DMF = *N*,*N*-dimethylformamide, MsCl = methanesulfonyl chloride, Boc₂O = di-*tert*-butyl dicarbonate, PIDA = iodobenzene diacetate, HFIP = 1,1,3,3,3-hexafluoro-2-propanol, HMPA = hexamethylphosphoric triamide.

in methanol at room temperature, affording exclusively (+)-stephadiamine (6) via an imine intermediate 7. Although purification was difficult because of the instability of 6 on an ODS or a silica gel column under acidic or basic conditions, as already reported,^{6,7} we were able to obtain satisfactory analytical data, including ¹H and ¹³C NMR spectra, for identification of the structure of 6 without purification of the reaction mixture.

In summary, we have achieved the first enantioselective total syntheses of (-)-metaphanine (5) and (+)-stephadiamine (6). Based on our hypothesis that (+)-stephadiamine (6) would be formed biosynthetically from (-)-metaphanine (5), we investigated this bioinspired aza-benzilic acid-type rearrangement and excitingly found that the reaction proceeds as expected simply upon treatment with ammonia. The present

syntheses also feature diastereoselective oxidative phenolic coupling and subsequent regioselective intramolecular aza-Michael reaction for the construction of the hasubanan skeleton of (-)-metaphanine (5), and this strategy is expected to provide access to a variety of hasubanan alkaloids.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c00047.

Experimental Procedures, spectroscopic date for all compounds, and HPLC analysis (PDF)

Table 1. Investigation of Regioselective Aza-MichaelReaction with Dienone 9

^{*a*}Total yield of 8 and 23. ^{*b*}Determined from the ¹H NMR spectrum of the crude material, ^{*c*}1.0 equiv. ^{*d*}5.0 equiv. ^{*c*}Isolated yield of 8.

AUTHOR INFORMATION

Corresponding Authors

- Minami Odagi Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Email: odagi@ cc.tuat.ac.jp
- Kazuo Nagasawa Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; ⊙ orcid.org/0000-0002-0437-948X; Email: knaga@cc.tuat.ac.jp

Authors

- Taisei Matoba Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Keisuke Hosoya Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c00047

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Prof. Dr. Keiichi Noguchi (Tokyo University of Agriculture and Technology) for his support in X-ray crystallographic analysis. This research was funded by Grants-in-Aid for Scientific Research on Innovative Areas "Middle Molecular Strategy" (18H04387 to K.N.), Grants-in-Aid for Scientific Research (B) (17H03052 to K.N.), and the A3-foresight program from the Japan Society for the Promotion of Science (JSPS). M.O. is grateful for JSPS KAKENHI Grant Number 20K05488. T.M. thanks the Support 21 Social Welfare Foundation and pp Scholarship for financial support. K.H. was supported by Grants-in-Aid for a JSPS fellowship (19J13325). This work was inspired by the international and interdisciplinary environment of the JSPS Asian CORE Program of ACBI (Asian Chemical Biology Initiative).

Scheme 2. Completion of the Syntheses of Metaphanine (5) and Stephadiamine $(6)^a$

"Reagents and conditions: (a) rac-24 (2.0 equiv), KHMDS (3.0 equiv), THF, -78 °C to rt, 6 h (71%); (b) DMP (3.0 equiv), NaHCO₃ (6.0 equiv), CH₂Cl₂, rt, 3 h (98%); (c) 3HF·Et₃N (50 equiv), MeCN, rt, 6 h (77%); (d) H₂ (balloon), Pd/C (10 wt %), THF, rt, 30 min (80%); (e) HCl (4 M in 1,4-dioxane, 100 equiv), CH₂Cl₂, 0 °C to rt, 30 min; (f) HCHO (12.3 M in H₂O, 3.0 equiv), NaBH₃CN (1.5 equiv), MeCN, 0 °C, 30 min (45%, 2 steps); (g) NH₃ (2 M in MeOH, 200 equiv), rt, 6 h (>90%).

REFERENCES

(1) (a) Matsui, M. In *The Alkaloids: Chemistry and Pharmacology*; Brossi, A., Ed.; Academic Press: New York, 1988; Vol. 33, pp 307– 347. (b) Semwal, D. K.; Badoni, R.; Semwal, R.; Kothiyal, S. K.; Singh, G. J. P.; Rawat, U. The genus *Stephania* (Menispermaceae): Chemical and pharmacological perspectives. *J. Ethnopharmacol.* 2010, *132*, 369–383. (c) King, S. M.; Herzon, S. B. In *The Alkaloids: Chemistry and Biology*; Knölker, H.-J., Ed.; Academic Press: Burlington, MA, 2014; Vol. 73, pp 161–222.

(2) Pihko, A. J.; Koskinen, M. P. Synthesis of propellane-containing natural product. *Tetrahedron* 2005, *61*, 8769–8807.

(3) For synthetic studies of hasubanan alkaloids, see: (a) Ibuka, T.; Kitano, M. Studies on the alkaloids of menispermaceous plants. CCXXXIX. Synthesis of hasubanan derivative from sinomenine.

Journal of the American Chemical Society

Chem. Pharm. Bull. 1967, 15, 1944-1947. (b) Tomita, M.; Kitano, M.; Ibuka, T. Synthesis of ring system related to hasubanan alkaloid. Tetrahedron Lett. 1968, 9, 3391-3393. (c) Evans, D. A. An approach to the synthesis of the hasubanan carbocyclic system. Tetrahedron Lett. 1969, 10, 1573-1576. (d) Evans, D. A.; Bryan, C.; Wahl, G. Total synthesis of naturally occurring substances. II. The synthesis of the hasubanan carbocyclic system. J. Org. Chem. 1970, 35, 4122-4127. (e) Evans, D. A.; Bryan, C. A.; Sims, C. L. Complementarity of (4 + 2) cycloaddition reactions and [2,3] sigmatropic rearrangements in synthesis. New synthesis of functionalized hasubanan derivatives. J. Am. Chem. Soc. 1972, 94, 2891-2892. (f) Kametani, T.; Kobari, T.; Fukumoto, K. Synthesis of the hasubanan ring system from the alkaloid reticuline. J. Chem. Soc., Chem. Commun. 1972, 288-289. (g) Kametani, T.; Kobari, T.; Shishido, K.; Fukumoto, K. Studies on the syntheses of heterocyclic compounds-DXLVIII. Tetrahedron 1974, 30, 1059-1064. (h) Shiotani, S.; Kometani, T. A novel synthesis of hasubanan skeleton. Tetrahedron Lett. 1976, 17, 767-770. (i) Bruderer, H.; Knopp, D.; Daly, J. J. Synthese und Röntgenstruktur von 3-Hydroxy-N-methyl-hasubanan. Helv. Chim. Acta 1977, 60, 1935-1941. (j) Schwartz, M. A.; Wallace, R. A. Synthesis of morphine alkaloid analogs. Hasubanans and 9,17-secomorphinans. Tetrahedron Lett. 1979, 20, 3257-3260. (k) Trauner, D.; Porth, S.; Opatz, T.; Bats, J. W.; Giester, G.; Mylzer, J. New ventures in the construction of complex heterocycles: Synthesis of morphine and hasubanan alkaloids. Synthesis 1998, 1998, 653-664. (1) Nguyen, T. X.; Kobayashi, Y. Synthesis of the common propellane core structure of the hasubanan alkaloids. J. Org. Chem. 2008, 73, 5536-5541. (m) Nielsen, D. K.; Nielsen, L. L.; Jones, S. B.; Toll, L.; Asplund, M. C.; Castle, S. L. Synthesis of isohasubanan alkaloids via enantioselective ketone allylation and discovery of an unexpected rearrangement. J. Org. Chem. 2009, 74, 1187-1199.

(4) For total synthesis of hasubanan alkaloids in racemic form, see: (a) Tomita, M.; Ibuka, T.; Kitano, M. Synthesis of hasubanan from morphinan. Tetrahedron Lett. 1966, 7, 6233-6236. (b) Ibuka, T.; Tanaka, K.; Inubushi, Y. The total synthesis of dl-hasubanonine. Tetrahedron Lett. 1970, 11, 4811-4814. (c) Keely, S. L.; Martinez, A. J.; Tahk, F. C. The 3-arylpyrrolidine alkaloid synthon. Tetrahedron 1970, 26, 4729-4742. (d) Inubushi, Y.; Kitano, M.; Ibuka, T. Total synthesis of dl-cepharamine. Chem. Pharm. Bull. 1971, 19, 1820-1841. (e) Ibuka, T.; Tanaka, K.; Inubushi, Y. Total synthesis of dlmetaphanine. Tetrahedron Lett. 1972, 13, 1393-1396. (f) Belleau, B.; Wong, H.; Monković, I.; Perron, Y. G. Total synthesis of 3,14dihydroxyisomophinans and 9α -hydroxy-3-methoxyhasubanans. J. Chem. Soc., Chem. Commun. 1974, 603-604. (g) Ibuka, T.; Tanaka, K.; Inubushi, Y. Total synthesis of the alkaloid, (\pm) -hasubanonine. Chem. Pharm. Bull. 1974, 22, 782-798. (h) Ibuka, T.; Tanaka, K.; Inubushi, Y. Total synthesis of the alkaloid (±)-metaphanine. Chem. Pharm. Bull. 1974, 22, 907-921. (i) Achmatowicz, O. J.; Bukowski, P. Total synthesis of monosaccharides. Synthesis of methyl DLpentopyranosides with α -and β -lyxo, β -ribo, α -xylo, and α -arabino configurations from furfuryl alcohol. Can. J. Chem. 1975, 53, 2524-2529. (j) Monković, I.; Wong, H. Synthetic morphinans and hasubanans. VI. Total synthesis of 3-hydroxyisomorphinans, 3hydroxyhasubanans, and 3,9-dihydroxyhasubanans. Can. J. Chem. 1976, 54, 883-891. (k) Jones, S. B.; He, L.; Castle, S. L. Total synthesis of (±)-hasubanonine. Org. Lett. 2006, 8, 3757-3760. (m) Magnus, P.; Seipp, C. Concise synthesis of the hasubanan alkaloid (±)-cepharatine A using a Suzuki coupling reaction to effect o,p-phenolic coupling. Org. Lett. 2013, 15, 4870-4871.

(5) For asymmetric total synthesis of hasubanan alkaloids, see: (a) Schultz, A. G.; Wang, A. First asymmetric synthesis of a hasubanan alkaloid. Total synthesis of (+)-cepharamine. *J. Am. Chem. Soc.* **1998**, *120*, 8259–8260. (b) Chuang, K. V.; Navarro, R.; Reisman, S. E. Short, enantioselective total syntheses of (-)-8-demethoxyrunanine and (-)-cepharatines A, C, and D. Angew. Chem., Int. Ed. **2011**, *50*, 9447–9451. (c) Herzon, S. B.; Calandra, N. A.; King, S. M. Efficient entry to the hasubanan alkaloids: first enantioselective total syntheses of (-)-hasubanonine, (-)-runanine, (-)-delavayine, and (+)-periglaucine B. Angew. Chem., Int. Ed. **2011**, *50*, 8863–8866. (d) Calandra, N. A.; King, S. M.; Herzon, S. B. Development of enantioselective synthetic routes to the hasubanan and acutumine alkaloids. *J. Org. Chem.* **2013**, *78*, 10031–10057. (e) Tan, S.; Li, F.; Park, S.; Kim, S. Memory of chirality in bromoalkyne carbocyclization: Applications in asymmetric total synthesis of hasubanan alkaloids. *Org. Lett.* **2019**, *21*, 292–295. (f) Li, G.; Wang, Q.; Zhu, J. Unified divergent strategy towards the total synthesis of the three sub-classes of hasubanan alkaloids. *Nat. Commun.* **2021**, *12*, Article number: 36. DOI: 10.1038/s41467-020-20274-1.

(6) Taga, T.; Akimoto, N.; Ibuka, T. Stephadiamine, a new skeletal alkaloid from *Stephania japonica*: The first example of a C-norhasubanan alkaloid. *Chem. Pharm. Bull.* **1984**, 32, 4223–4225.

(7) Hartrampf, N.; Winter, N.; Pupo, G.; Stoltz, B. M.; Trauner, D. Total synthesis of the norhasubanan alkaloid stephadiamine. *J. Am. Chem. Soc.* **2018**, *140*, 8675–8680.

(8) (a) Battersby, A. R.; Jones, R. C. F.; Kazlauskas, R.; Poupat, C.; Thornber, C. W.; Ruchirawat, S.; Staunton, J. The biosynthesis of hasubanonine and protostephanine. *J. Chem. Soc., Chem. Commun.* **1974**, 773–775. (b) Battersby, A. R.; Jones, R. C. F.; Kazlauskas, R.; Ottridge, A. P.; Poupat, C.; Staunton, J. Biosynthesis. Part 23. Degradative studies on the alkaloids hasubanonine and protostephanine from Stephania japonica. *J. Chem. Soc., Perkin Trans.* 1 **1981**, 2010–2015. (c) Battersby, A. R.; Jones, R. C. F.; Kazlauskas, R.; Thornber, C. W.; Ruchirawat, S.; Staunton, J. Biosynthesis. Part 24. Speculative incorporation experiments with 1-benzylisoquinolines and a logical approach via C6–C2and C6–C3precursors to the biosynthesis of hasubanonine and protostephanine. *J. Chem. Soc., Perkin Trans.* 1 **1981**, 2016–2029. (d) Sugimoto, Y. In Vitro Culture and the Production of Secondary Metabolites in *Stephania. Biotechnol. Agric. For.* **2002**, *51*, 281–305.

(9) For related reactions, see: (a) Yang, T.-F.; Chen, L.-H.; Kao, L.-T.; Chuang, C.-H.; Chen, Y.-Y. Condensation-ring expansion reaction of formyl[2.2.1]bicyclic carbinols with para-substituted phenyl amines: Application to the preparation of [3.2.1]bicyclic N-aryl-1,2,3-oxathiazolidine-2-oxide agents. *J. Chin. Chem. Soc.* **2012**, *59*, 378–388. (b) Rao, H. S. P.; Vijjapu, S. The Voight reaction on tertiary α -hydroxy ketones. *Tetrahedron* **2015**, *71*, 8391–8406.

(10) For details of the synthesis of 11 and 12, see Supporting Information.

(11) For reviews, see: (a) Corey, E. J.; Helal, C. J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: A new paradigm for enantioselective catalysis and a powerful new synthetic method. *Angew. Chem., Int. Ed.* **1998**, *37*, 1986–2012. (b) Helal, C. J.; Meyer, M. P. The Corey–Bakshi–Shibata reduction: Mechanistic and synthetic considerations – Bifunctional Lewis base catalysis with dual activation. In *Lewis Base Catalysis in Organic Synthesis*; Vedejs, E., Denmark, S. E., Eds.; Wiley: 2016; Chapter 11, p 387.

(12) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II) complexes. *J. Am. Chem. Soc.* **1995**, *117*, 7562–7563.

(13) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H_2 hydrogenation. *J. Am. Chem. Soc.* **2011**, *133*, 14960–14963.

(14) Merad, J.; Pons, J.; Chuzel, O.; Bressy, C. Enantioselective catalysis by chiral isothioureas. *Eur. J. Org. Chem.* **2016**, 2016, 5589–5610.

(15) Joannesse, C.; Johnston, C. P.; Concellon, C.; Simal, C.; Philp, D.; Smith, A. D. Isothiourea-catalyzed enantioselective carboxy group transfer. *Angew. Chem., Int. Ed.* **2009**, *48*, 8914–8918.

(16) The absolute configuration of the stereogenic center at C10 in (-)-14 was determined by X-ray analysis of compound S5. For details, see Supporting Information.

(17) Shih-Yuan Lee, A.; Hu, Y.-J.; Chu, S.-F. A simple and highly efficient deprotecting method for methoxymethyl and methoxyethoxymethyl ethers and methoxyethoxymethyl esters. *Tetrahedron* **2001**, *57*, 2121–2126.

Journal of the American Chemical Society

(18) For detailed conditions for oxidative phenolic coupling reaction, see Supporting Information.

(19) Uyanik, M.; Yasui, T.; Ishihara, K. Hydrogen bonding and alcohol effects in asymmetric hypervalent iodine catalysis: Enantio-selective oxidative dearomatization of phenols. *Angew. Chem., Int. Ed.* **2013**, *52*, 9215–9218.

(20) Para-para coupling product S1 was obtained as a major side product. For details, see Supporting Information. (21) Since detailed 1 H and 13 C NMR spectral data were not

(21) Since detailed ¹H and ¹³C NMR spectral data were not available from the original publication, we decided to confirm the structure of **5** by X-ray analysis. For details, see Supporting Information.

(22) Tomita, T.; Ibuka, T.; Inubuahi, Y.; Takeda, K. Structure of metaphanine. *Tetrahedron Lett.* **1964**, *5*, 3605–3616.