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ABSTRACT: We report the first enantioselective total syntheses of the hasubanan alkaloid (−)-metaphanine and the norhasubanan
alkaloid (+)-stephadiamine. Key features of these syntheses include diastereoselective oxidative phenolic coupling reaction and
subsequent regioselective intramolecular aza-Michael reaction, which efficiently construct the hasubanan skeleton with the all-carbon
quaternary stereogenic center at C13. Based on our hypothesis regarding the biosynthetic pathway of (+)-stephadiamine, we found
that (−)-metaphanine is easily converted to (+)-stephadiamine via aza-benzilic acid type rearrangement reaction.

Plants of the genus Stephania, which grow naturally in the
Southeast Asia-Pacific region and have been widely used

in traditional Chinese medicines, contain bioactive alkaloids
known as hasubanans.1 More than 40 congeners of these
alkaloids have been identified to date, and they show a wide
range of biological activities, including antiviral, antimicrobial,
and cytotoxic activities.1c Hasubanan alkaloids, exemplified by
compounds 2−5, commonly possess a characteristic tetracyclic
aza[4,4,3]propellane core 1 (Figure 1a).1,2 Owing to the
synthetically challenging structures of these alkaloids as well as
their important biological activities, numerous synthetic studies
have been reported.3−5

In 1984, Ibuka and co-workers isolated a (+)-stephadiamine
(6) from Stephania japonica.6 This norhasubanan alkaloid has
an uncommon structure that differs from those of hasubanan
alkaloids. It contains an aza[4,3,3]propellane scaffold with a
five-membered C-ring, and four stereogenic centers, including
an α-tertiary amine at C14 and an all-carbon quaternary
stereogenic center at C13. The unique caged-type structure of
6 and its absolute configuration were established by X-ray
crystallography analysis of the bromobenzoate derivative. The
biological activity of 6 has not yet been investigated, because
only a limited supply is available from nature. Furthermore,
despite the interesting structure of 6, only one report of its
total synthesis has appeared to date. In 2018, Trauner and co-
workers reported a total synthesis of stephadiamine (6) in
racemic form based upon an elegant cascade reaction of a β-
tetralone derivative for the construction of the characteristic
aza[4,3,3]propellane core, which corresponds to the B,C,D-
rings in 6.7 As a part of their synthesis, they described
enantioselective access to a key intermediate by means of Pd-
catalyzed asymmetric allylation with chiral phosphoric acid.
The biosynthetic pathway of the hasubanan alkaloids has

been explored in part, although it is still not fully established.8

We envisaged that the five-membered C-ring of the
norhasubanan 6 might be formed biosynthetically from the
six-membered hasubanan C-ring, e.g., by reconstruction of the
hemiacetal in 5 to δ-lactone (Figure 1b). That is, we
hypothesized that (+)-stephadiamine (6) would be formed

biosynthetically from (−)-metaphanine (5) through an aza-
benzilic acid type rearrangement reaction via intermediate 7,
which would be generated by condensation of 5 with
ammonia.9 Based on this hypothesis, we considered that this
aza-benzilic acid-type rearrangement might be applied to
synthesize (+)-stephadiamine (6) from its putative biosyn-
thetic precursor, (−)-metaphanine (5). In this report, we
describe enantioselective total syntheses of (−)-metaphanine
(5) and (+)-stephadiamine (6), featuring a diastereoselective
oxidative phenolic coupling reaction and subsequent regiose-
lective intramolecular aza-Michael reaction, as well as the
bioinspired aza-benzilic acid type rearrangement.
Our synthetic analysis for the primary target, (−)-meta-

phanine (5), is depicted in Figure 1c. We envisaged that 5
would be obtained by selective oxidation at C8 in enone 8,
which would be synthesized by successive construction of the
B and D rings through a diastereoselective oxidative phenolic
coupling reaction of phenol 10, followed by regioselective
intramolecular aza-Michael reaction of the resulting dienone 9.
In the synthesis of the B ring in 9, the stereochemistry at C13
with the all-carbon quaternary stereogenic center was expected
to be controlled by C10 in 10. According to this synthetic plan,
all of the stereochemistry in the hasubanan skeleton would be
controlled by the stereocenter at C10. We planned to
synthesize phenol 10 by coupling of 11 and 12, which
correspond to the A- and C-rings in 5, respectively.
Our synthesis commenced with the construction of the

stereocenter at C10 in (−)-metaphanine (5) (Scheme 1).
First, the coupling reaction of TMS cyanohydrin 11 and
mesylate 12,10 which correspond to the A- and C-rings,
respectively, was carried out with LiHMDS followed by
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treatment with TBAF to give 13 in 78% yield. We next
investigated control of the stereochemistry at C10 of the
ketone in 13 under various asymmetric reduction conditions,
using CBS reduction11 and Noyori’s hydrogenation-transfer
conditions,12,13 but only moderate selectivity was obtained
(see Supporting Information). Thus, we examined various
acylative kinetic resolution (KR) conditions with racemic
alcohol rac-14, obtained by reduction of 13 with sodium
borohydride, using chiral isothiourea catalysts.14 The desired
alcohol (−)-14 was obtained with excellent enantioselectivity
(over 99% ee) by employing a catalytic amount of (2S,3R)-
HyperBTM (15) in the presence of isobutyric anhydride as an
acylating reagent.15,16 Isobutyric ester 16 obtained in this
process was recyclable to the ketone 13 almost quantitatively
by removal of the acyl group under basic conditions, followed
by oxidation of the resulting alcohol.
Then, we shifted our attention to the construction of the all-

carbon quaternary stereogenic center at C13 by means of
oxidative dearomative coupling reaction. The substrate phenol
20 for this conversion was synthesized as follows. Protection of
the alcohol in (−)-14 with silyl ether followed by ozonolysis
and reduction of the allyl group gave alcohol 18. The hydroxyl
group in 18 was converted into azide by mesylation followed
by treatment with sodium azide to give 19 in 72% yield. The

azide group in 19 was then reduced to amine under the
Staudinger conditions, and the resulting amine was protected
with a Boc group, followed by deprotection of the MOM
group with a catalytic amount of terabromomethane in 2-
propanol to give phenol 20.17 With the phenol 20 in hand,
oxidative dearomative phenolic coupling reaction was inves-
tigated.18 Thus, phenol 20 was treated with PIDA in
hexafluoro-2-propanol (HFIP) at 0 °C in the presence of
methanol as an additive.19 Under these conditions, the
coupling reaction proceeded to afford the dienone 21 in 34%
yield as a single diastereomer.20 In this reaction, two possible
transition states, TS-1 and TS-2, can be considered regarding
the configuration at C10, and the reaction would preferentially
proceed from the sterically less hindered transition state TS-1
to predominantly form 21 having the desired configuration at
C13.
With the tricyclic hasubanan framework (A,B,C-rings) of 21

in place, construction of the D-ring was investigated by means
of regioselective intramolecular aza-Michael reaction. After
debromination of 21 with sodium formate in the presence of
Pd(PPh3)4, the resulting dienone 9 was subjected to
intramolecular aza-Michael reaction (Table 1). First, we
examined the reaction with Brønsted acids (entries 1, 2). In
the case of trifluoroacetic acid, the sterically less hindered C5
adduct 23 was obtained as the major product (8/23 = 1:4.4
ratio). On the other hand, the adducts at C5 and C14, 23 and
8, were obtained in 68% total yield with an approximately 1:1
ratio upon reaction with hydrochloric acid. Thus, we focused
on basic conditions. In the case of DBU in THF at rt, no
reaction took place, presumably due to the weak basicity, and
the substrate 9 was recovered quantitatively (entry 3). Stronger
bases such as sodium hydride or sodium tert-butoxide gave
mixtures of 8 and 23 in 67% and 60% yields, respectively, with
no selectivity (entries 4, 5). Interestingly, tetracyclic C14
adduct 8 was obtained predominantly (8/23 = 1.9:1 ratio) in
59% yield with potassium tert-butoxide in THF at 0 °C, and
the selectivity was drastically increased to 7.3:1 (8/23) in a
mixed solvent system (THF/HMPA = 9:1) at 0 °C. The
desired 8 was obtained in 51% yield after separation on a silica
gel column (entry 7).
With tetracyclic 8 in hand, we moved on to the syntheses of

(−)-metaphanine (5) and (+)-stephadiamine (6) (Scheme 2).
First, we examined selective oxidation at C8 of enone 8. After
several attempts, we found that the Davis oxaziridine oxidant
rac-24 was effective, affording α-hydroxy ketone 25 in 71%
yield. After oxidation of the hydroxyl group with DMP in 25,
the TIPS ether in the resulting 26 was deprotected with HF·
Et3N to give the hemiacetal 27 in 77% yield from 25. Then, the
double bond in 27 was reduced under hydrogenation
conditions to give 28 in 80% yield. Finally, (−)-metaphanine
(5) was synthesized from 28 by deprotection of the Boc group
with hydrochloric acid followed by reductive methylation of
the resulting amine with formaldehyde and cyanoborohydride
in 45% yield. The structure of the synthetic (−)-metaphanine
(5) was confirmed by X-ray crystallography analysis and
comparison of the spectral data of 1H and 13C NMR with
previously reported values.21,22

As already mentioned, we had hypothesized that stephadi-
amine (6) would be biosynthetically generated from
metaphanine (5). To test this idea, we examined the
transformation of (−)-metaphanine (5) into (+)-stephadi-
amine (6). As we had hoped, aza-benzilic acid type
rearrangement proceeded upon treatment of 5 with ammonia

Figure 1. (a) Structures of representative hasubanan alkaloids. (b)
Proposed biosynthetic pathway leading to stephadiamine (6) from 5.
(c) Retrosynthetic analysis of metaphanine (5) and stephadiamine
(6).
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in methanol at room temperature, affording exclusively
(+)-stephadiamine (6) via an imine intermediate 7. Although
purification was difficult because of the instability of 6 on an
ODS or a silica gel column under acidic or basic conditions, as
already reported,6,7 we were able to obtain satisfactory
analytical data, including 1H and 13C NMR spectra, for
identification of the structure of 6 without purification of the
reaction mixture.
In summary, we have achieved the first enantioselective total

syntheses of (−)-metaphanine (5) and (+)-stephadiamine (6).
Based on our hypothesis that (+)-stephadiamine (6) would be
formed biosynthetically from (−)-metaphanine (5), we
investigated this bioinspired aza-benzilic acid-type rearrange-
ment and excitingly found that the reaction proceeds as
expected simply upon treatment with ammonia. The present

syntheses also feature diastereoselective oxidative phenolic

coupling and subsequent regioselective intramolecular aza-

Michael reaction for the construction of the hasubanan

skeleton of (−)-metaphanine (5), and this strategy is expected

to provide access to a variety of hasubanan alkaloids.
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compounds, and HPLC analysis (PDF)

Scheme 1. Synthesis of Pivotal Intermediate 8a

aReagents and conditions: (a) 12 (1.0 equiv), LiHMDS (1.3 equiv), THF, −78 to 0 °C, 45 min; (b) TBAF (1.0 equiv), THF, 0 °C, 5 min (78%, 2
steps); (c) NaBH4 (1.5 equiv), MeOH, 0 °C, 10 min (99%); (d) 15 (10 mol %), (i-PrCO)2O (0.6 equiv), i-Pr2NEt (0.6 equiv), toluene, −60 °C, 8
h ((−)-14, 39%, 99% ee), (16, 51%, 74% ee); (e) NaOH (12 equiv), MeOH, rt, 10 min; (f) DMP (1.5 equiv), CH2Cl2, rt, 1 h (95%, 2 steps); (g)
TIPSCl (2.0 equiv), imidazole (4.0 equiv), DMF, 65 °C, 12 h (95%); (h) O3 (gas), MeOH, −78 °C, 5 min, then NaBH4 (3.0 equiv), 0 °C, 30 min
(76%); (i) MsCl (1.2 equiv), Et3N (1.5 equiv), DMF, 0 °C, 10 min, then NaN3 (2.0 equiv), 65 °C, 6 h (92%); (j) PPh3 (2.0 equiv), H2O (10.0
equiv), THF, 65 °C, 6 h, then Boc2O (2.0 equiv), rt, 1 h; (k) CBr4 (0.2 equiv), i-PrOH, 65 °C, 3 h (74%, 2 steps); (l) PIDA (1.0 equiv), MeOH
(100 equiv), HFIP, 0 °C, 5 min (34%), (m) HCO2Na (1.5 equiv), Pd(PPh3)4 (10 mol %), DMF, 100 °C, 2 h (99% yield); (n) KOt-Bu (5.0
equiv), THF/HMPA, 0 °C, 5 min (51%). LiHMDS = Lithium bis(trimethylsilyl)amide, THF = tetrahydrofuran, TBAF = tetra-n-butylammonium
fluoride, DMP = Dess-Martin periodinane, DMF = N,N-dimethylformamide, MsCl = methanesulfonyl chloride, Boc2O = di-tert-butyl dicarbonate,
PIDA = iodobenzene diacetate, HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, HMPA = hexamethylphosphoric triamide.
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