

Tetrahedron Letters 42 (2001) 6083-6085

TETRAHEDRON LETTERS

A short synthetic route to nordihydroguaiaretic acid (NDGA) and its stereoisomer using Ti-induced carbonyl-coupling reaction

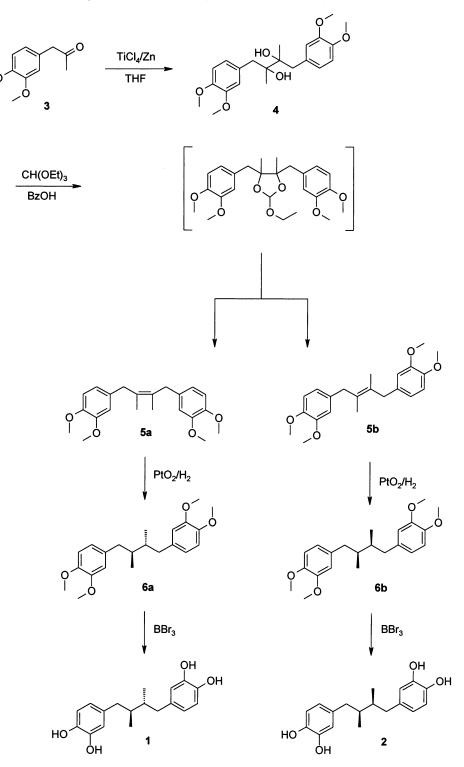
Mikail H. Gezginci and Barbara N. Timmermann*

Department of Pharmacology and Toxicology, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA

Received 30 May 2001; revised 26 June 2001; accepted 27 June 2001

Abstract—A rapid synthetic approach to natural *meso*-nordihydroguaiaretic acid (NDGA) and its non-*meso* isomer is described from (3,4-dimethoxyphenyl)acetone using as a key step the low-valent Ti-induced carbonyl-coupling reaction of the ketone. The method involves a simple separation of the *E*- and *Z*-isomers that result from the dehydroxylation of the diol product of the coupling. The present approach allows the preparation of various analogs of NDGA. \bigcirc 2001 Elsevier Science Ltd. All rights reserved.

Nordihydroguaiaretic acid (NDGA, 1) is a product of the creosote bush or chaparral, Larrea tridentata Cav. (Zygophyllaceae), that is widely distributed throughout the arid regions of the southwestern US and northern Mexico.¹ This lignan is a well-studied inhibitor of lipoxygenase² and is also associated with a wide range of pharmacological activities, including the inhibition of the human papillomavirus,³ herpes simplex⁴ and HIV,⁵ as well as having hyperglycemic activity.^{6,7} NDGA was approved by the FDA (Food and Drug Administration) for the treatment of multiple actinic keratoses and was available on the market for a short time before it was withdrawn due to dermatologic side effects.⁸ As we were interested in screening 1 and a number of structurally related compounds as inhibitors of relevant signaling and cell cycle targets involved in cancer growth and development, we needed to have a rapid and versatile synthetic method that would allow us to make structural modifications on various parts of the molecule.


A literature search on the synthesis of **1** revealed only a handful of research articles scattered for the past 60 years. The first account on the subject reported by Liebermann et al. was published in 1947⁹ describing the dimerization of 1-piperonyl-1-bromoethane by reacting it with its Grignard derivative to produce methylene-

dioxy-NDGA. In the following half-century, a few patent applications and scientific papers appeared utilizing the same principle but using different reagents. For example, 1 was obtained by the dimerization of 1-(3,4-dihydroxyphenyl)-1-bromopropane in the presence of Mg and I_2 ,¹⁰ or the condensation of dimethoxypropiophenone with the corresponding bromo derivative.¹¹ Most of these methods produced one or the other stereoisomer or a mixture of both. Carbonyl-coupling reactions using low-valent titanium,¹² which have evolved since as powerful tools in the synthesis of complex natural products, appeared to be an attractive alternative route to both 1 and its non-meso isomer 2. This approach also offers many possibilities to produce a wide variety of derivatives of 1, since carbonyl containing compounds are easily accessible. In this communication, we wish to report a simple and stereoselective approach to the synthesis of 1 and 2 using as a key step the low-valent Ti-induced carbonyl-coupling reaction of (3,4-dimethoxyphenyl)acetone (3). The resulting butanediol intermediate 4 may be dehydroxylated to give the corresponding Zand E-butenes 5a and 5b, which in turn may be individually subjected to catalytic hydrogenation to afford 1 and 2, respectively, after demethylation of the methoxyderivatives 6a and 6b (Scheme 1).

The key carbonyl-coupling reaction of the phenylacetone **3** was carried out using TiCl_4 as the source of the low-valent Ti, and Zn dust as the reducing agent. Slow addition of the Zn dust into the solution of **3** and TiCl_4 in anhydrous THF under an atmosphere of N₂ appeared to be critical for the formation of the butane-

Keywords: (3,4-dimethoxyphenyl)acetone; natural products synthesis; nordihydroguaiaretic acid; NDGA; carbonyl coupling; Ti.

^{*} Corresponding author. Fax: +(520)626-4063; e-mail: btimmer@ pharmacy.arizona.edu

Scheme 1.

diol 4. A relatively faster addition of the Zn resulted in the reduction of the ketone 3 to the corresponding benzyl alcohol.¹³ Surprisingly, the formation of the expected McMurry type olefinic products was never observed in our study, even upon prolonged heating of the reaction mixture. The dehydroxylation of 4 was accomplished by heating a mixture of 4 and triethyl orthoformate in the presence of benzoic acid as a catalyst first at 100°C for 2 h followed by 180°C for 4 h. A flash column-chromatographic purification of the crude product gave a 4:6 mixture of **5a** and **5b** in 65% yield. Simple recrystallization of the mixture from EtOH afforded **5b**, whereas **5a** was obtained by evaporation of the mother liquor. The structure of **5a** was assigned based on the ¹H NMR spectrum of its hydrogenation product **6a**, which was identical to that of the product obtained by the methylation of the naturally-occurring **1**. These data, therefore, allowed us to also

assign the structure of **5b** as the other possible isomer. Attempts to hydrogenate 5b using Pd/C in AcOH or EtOAc resulted in the formation of a mixture of 6a and **6b.** No reaction was observed when the dissolving catalyst (Ph₃P)₃RhCl was used in thiophene-free benzene. Finally, hydrogenation of **5b** in the presence of Pt black in EtOAc for 1 h led to a quantitative conversion to 6b according to HPLC analysis of an aliquot. Similarly, hydrogenation of 5a with the same catalyst for 2.5 h produced **6a** quantitatively according to HPLC. It was observed that a longer exposure of the starting materials to the catalyst resulted in a complex, UVinactive mixture. Compounds 6a and 6b were demethylated to 1 and 2, respectively, with BBr_3 in anhydrous CH₂Cl₂ at -78°C by slowly warming up the reaction mixture to reach room temperature. Synthetic 1 was spectroscopically identical to an authentic sample of the natural product.14

In summary, we have succeeded in developing a rapid and versatile synthetic route to the naturally-occurring nordihydroguaiaretic acid and its non-*meso* isomer starting from the commercially available (3,4dimethoxyphenyl)acetone. The use of this method in the synthesis of a series of diverse analogs of NDGA for biological studies is currently in progress and will be reported in due course.

Acknowledgements

The authors thank John McPherson for technical assistance. This study was funded by the Arizona Disease Control Research Commission contract number 20009.

References

- Turner, R. M.; Bowers, J. E.; Burgess, T. L. Sonoran Desert Plants, An Ecological Atlas; The University of Arizona Press: Tucson, 1995; pp. 255–259.
- Steele, V. E.; Holmes, C. A.; Hawk, E. T.; Kopelovich, L.; Lubet, R. A.; Crowell, J. A.; Sigman, C. C.; Kelloff, G. J. Expert Opin. Investig. Drugs 2000, 9, 2121–2138.
- Craigo, J.; Callahan, M.; Huang, R. C.; DeLucia, A. L. Antivir. Res. 2000, 47, 19–28.
- Chen, H.; Teng, L.; Li, J. N.; Park, R.; Mold, D. E.; Gnabre, J.; Hwu, J. R.; Tseng, W. N.; Huang, R. C. J. Med. Chem. 1998, 41, 3001–3007.
- Hwu, J. R.; Tseng, W. N.; Gnabre, J.; Giza, P.; Huang, R. C. J. Med. Chem. 1998, 41, 2994–3000.

- Reed, M. J.; Meszaros, K.; Entes, L. J.; Claypool, M. D.; Pinkett, J. G.; Brignetti, D.; Luo, J.; Khandwala, A.; Reaven, G. M. *Diabetologia* 1999, 42, 102–106.
- Luo, J.; Chuang, T.; Cheung, J.; Quan, J.; Tsai, J.; Sullivan, C.; Hector, R. F.; Reed, M. J.; Meszaros, K.; King, S. R.; Carlson, T. J.; Reaven, G. M. *Eur. J. Pharm.* 1998, 34, 677–679.
- Barnaby, J. W.; Styles, A. R.; Cockerell, C. J. Drugs & Aging 1997, 11, 186–205.
- Liebermann, S. V.; Mueller, G. P.; Eric, T. J. Am. Chem. Soc. 1947, 69, 1540–1541.
- Gerchuck, M. P.; Ivanova, V. M. Masloboino-Zhirovaya Prom. 1958, 24, 44–45.
- 11. Perry, C. W. US Patent 3,769,350, 1975.
- 12. McMurry, J. E. Chem. Rev. 1989, 89, 1513-1524.
- 13. A typical procedure for the preparation of **4** is as follows: A 100-mL three-neck round-bottom flask equipped with a solid addition funnel, a reflux condenser, and a rubber septum with a stirring bar inside, and a N₂ inlet on top of the condenser was charged with 1 g (5.14 mmol) phenylacetone 3 and 50 mL anhydrous THF under an atmosphere of N₂. TiCl₄ (1.46 g, 7.71 mmol) was transferred and 1.01 g (15.42 mmol) Zn dust that had been placed in the addition funnel was added in small portions over 0.5 h. At the end of the addition, the resulting mixture was refluxed for 3 h, cooled to room temperature and hydrolyzed using 10 mL 10% K₂CO₃ solution and stirring for 2 h. The solids were separated by filtration and washed with 50 mL THF. The filtrate and the washings were combined and diluted with 50 mL H₂O. The clear solution was concentrated to about 50 mL and extracted with 50 mL EtOAc. The organic layer was washed with 50 mL H₂O, dried over anhydrous Na₂SO₄ and the solvent was evaporated to yield 0.96 g of a white solid. Recrystallization of the solid from a mixture of hexanes and EtOAc gave 0.74 g 4 as white crystals (73%). ¹H NMR (300 MHz) (DMSO-d₆): 0.89 (6H, s), 2.62 (2H, d, J = 13.5 Hz, 2.72 (2H, d, J = 13.3 Hz), 3.71 (6H, s), 3.72 (6H, s), 4.02 (1H, s), 4.04 (1H, s), 6.74 (2H, d, J=8.1Hz), 6.83 (2H, d, J=8.1 Hz), 6.89 (2H, s).
- NMR data for 1: ¹H NMR (600 MHz) (acetone-d₆): 0.82 (6H, d, J=6.6 Hz), 1.72 (2H, m), 2.20 (2H, dd, J=9.0 and 4.2 Hz), 2.68 (2H, dd, J=8.4 and 4.8 Hz), 6.52 (2H, dd, J=6.0 and 1.8 Hz), 6.68 (2H, d, J=1.8 Hz), 6.73 (2H, d, J=7.8 Hz), 7.56 (4H, br. s). ¹³C NMR (150 MHz) (acetone-d₆): 16.5, 39.2, 40.1, 115.8, 116.9, 121.2, 134.4, 143.7, 145.6. NMR data for 2: ¹H NMR (600 MHz) (acetone-d₆): 0.79 (6H, d, J=7.2 Hz), 1.75 (2H, m), 2.29 (2H, dd, J=8.4 and 4.8 Hz), 2.52 (2H, dd, J=7.8 and 6.0 Hz), 6.45 (2H, dd, J=6.0 and 1.8 Hz), 6.62 (2H, d, J=1.8 Hz), 6.70 (2H, d, J=7.8 Hz), 7.53 (2H, s), 7.57 (2H, s). ¹³C NMR (150 MHz) (acetone-d₆): 14.2, 39.1, 41.5, 115.8, 116.8, 121.1, 134.1, 143.8, 145.6.