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Abstract
Background Prostate cancer (PCa) is the most common malignancy in men and in the absence of any effective treatments 
available.
Methods For the development of potential anticancer agents, 24 kinds of naftopidil-based arylpiperazine derivatives contain-
ing the bromophenol moiety were synthesized and characterized by using spectroscopic methods. Their pharmacological 
activities were evaluated against human PCa cell lines (PC-3 and LNCaP) and  a1-adrenergic receptors  (a1-ARs; α1a, α1b, 
and α1d-ARs). The structure–activity relationship of these designed arylpiperazine derivatives was rationally explored and 
discussed.
Results Among these derivatives, 3c, 3d, 3h, 3k, 3o, and 3s exhibited the most potent activity against the tested cancer cells, 
and some derivatives with potent anticancer activities exhibited better  a1-AR subtype selectivity than others did (selectivity 
ratio > 10).
Conclusion This work provided a potential lead compound for the further development of anticancer agents for PCa therapy.
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Introduction

Prostate cancer (PCa) is the most common malignancy and 
the second leading cause of cancer mortality in men [1]. 
In Europe, around 416,700 new PCa cases are diagnosed 
annually [2]. In the U.S. alone, 161,300 new cases of PCa 
and 26,730 deaths due to this disease were reported in 2017. 
Approximately one of six males in the U.S. may be afflicted 
with this type of cancer, and the risk is increased remarkably 
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for older males. Genetics, age, race, diet, family history, and 
even lifestyle may contribute to the risk of PCa [3]. Cur-
rent therapies (radical prostatectomy, chemotherapy, local 
radiotherapy, or hormonotherapy) are successful in treat-
ing localized diseases (androgen-dependent PCa) [4]. How-
ever, for nonorgan-confined diseases, especially metastatic 
PCa (androgen-independent PCa), no significantly effective 
therapies exist [5–8], and androgen ablation therapy has 
been the major therapeutic modality for advanced PCa [9]. 
Consequently, novel anticancer drugs are needed to stop the 
progression of PCa at later stages.

Piperazines and substituted piperazines are key pharma-
cophores that are crucial in many marketed drugs, such as 
the Merck HIV protease inhibitor Crixivan and other drugs 
under development [10]. Piperazine derivatives also exhibit 
receptor-blocking properties [11–15] and antiproliferative 
properties [16–23]. Naftopidil (Fig. 1), an arylpiperazine 
derivative, is an α1-adrenoceptor blocker used for treat-
ing lower urinary tract symptoms associated with benign 
prostatic hyperplasia (BPH) [24], which is a widely used 
α1-adrenergic receptor antagonist for the treatment of BPH 
in Japan. Other studies have demonstrated that naftopidil 
inhibits cell proliferation and causes cell cycle arrest in PC-3 
and LNCaP cells [25]. It also induces apoptosis in malignant 
mesothelioma cell lines independent of α1-adrenoceptor 
blocking [26]. These findings indicate that naftopidil may 
be useful as an anticancer drug. Recently, we investigated 
compounds with a piperazine moiety as anticancer drugs for 
the site-directed chemotherapy of PCa. These new hybrids 
show a moderate to strong cytotoxic activity in PCa cell 
lines [27–31]. In vitro and in vivo evidence has shown that 
piperazine derivatives may be promising anticancer com-
pounds. Hence, we further designed and synthesized a new 
naftopidil-based class of piperazine derivatives as potential 
anticancer agents.

Bromophenols, which are natural marine products iso-
lated from marine organisms, such as algae, ascidian, 
sponges, jellyfish, and mollusks, possess various potent 
activities, including antioxidation; α-glucosidase inhibi-
tion; protein tyrosine kinase inhibition; protein tyrosine 
phosphatase 1B inhibition; antithrombosis; antimicrobial, 
anti-inflammatory, antibacterial, antifungal, and antiviral 
properties; free radical scavenging; aldose reductase inhibi-
tion; and anticancer activities [32–39]. Such products have 
been widely investigated in the fields of functional foods 

and pharmaceutical agents because of their potent activities 
and unique structures. Other studies have also shown that 
various bromophenols isolated from marine organisms, as 
well as synthesized derivatives from natural bromophenol, 
demonstrate an excellent anticancer activity against a panel 
of cancer cell lines [40–46].

Based on previous results, our current hypothesis is that 
the introduction of the bromophenol moiety into the pip-
erazine skeleton might favor the pharmacological activity 
of piperazine derivatives. Herein, we designed and syn-
thesized a series of novel naftopidil-based arylpiperazine 
derivatives containing the bromophenol moiety (Scheme 1). 
The design strategy of naftopidil-based arylpiperazine 
derivatives containing the bromophenol moiety is shown in 
Fig. 2. All of the derivatives were bioassayed against the 
PCa cell lines PC-3 and LNCaP and the normal prostate 
epithelial cell line WPMY-1. The antagonistic activities of 
the representative compounds with potent anticancer activi-
ties toward  a1-adrenergic receptors  (a1-ARs) were further 
evaluated through dual-luciferase reporter assays. A simple 
structure–activity relationship (SAR) study was also con-
ducted to facilitate the further development of arylpiperazine 
derivatives. As expected, some arylpiperazine derivatives 
exhibited significant cytotoxic activities against the PC-3 
and LNCaP cells. Some of these derivatives also showed a 
better  a1-AR subtype selectivity than others did.

Materials and methods

Apparatus and analysis

All chemicals and reagents used in the current study were 
of analytical grade. Melting points (uncorrected) were 
measured on a SGW X-4 micro melting point apparatus. 
NMR spectra were obtained on a Bruker AVANCE-400 
spectrometer in  CDCl3, with TMS as an internal standard, 
and chemical shift values were reported in δ (ppm) and cou-
pling constants in Hertz. HRMS spectra were recorded on 
the AB Sciex X500R QTOF mass spectrometer (Foster, CA, 
USA). The completion of all reactions was monitored by 
TLC on precoated silica-gel 60  F254 TLC plates (VWR). 
The chromatograms were viewed under UV light at 254 and/
or 365 nm.

Synthesis of 2‑bromo‑1‑(3‑bromo‑4‑methoxyphenyl)
ethan‑1‑one (1) [47]

To a stirred solution of acetophenones 3-bromo-4-methoxy-
acetophenone (5 g, 21.9 mmol) in THF (80 mL) was added 
trimethylphenylammonium tribromide (9.07 g, 24.1 mmol) 
at 0 °C. The reaction mixture was stirred at room tempera-
ture for 12 h. The solid was filtered, and to the filtrate was 
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Fig. 1  Structures of naftopidil
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added EtOAc (150 mL). The organic layer was washed 
successively with  H2O (50 mL) and brine (50 mL). The 
organic layer was then dried over  Na2SO4, filtered and con-
centrated in vacuo. The crude residue was then purified by 
chromatography on silica-gel column (petroleum ether: ethyl 

acetate = 10:1, v/v) to obtain the intermediates 1. White solid 
(ethanol); Yield: 82%; Mp 112–113 °C; 1H NMR (400 MHz, 
 CDCl3) δ 8.19 (d, J = 2.2 Hz, 1H), 7.94 (dd, J = 8.6, 2.2 Hz, 
1H), 6.95 (d, J = 8.6 Hz, 1H), 4.37 (s, 2H), 3.98 (s, 3H). 
HRMS (ESI) m/z [M + 1]+: Calcd for  C9H9Br2O2, 306.8964, 
found, 306.8962.

General synthetic procedure of intermediates (2)

Arylpiperazines (1.2 equiv) and potassium carbonate (4.0 
equiv) were added to a solution of 1 (1 equiv) in acetonitrile 
 (CH3CN, 20 mL). The reaction mixture was heated to 85 °C 
and stirred for 12 h. Afterward the mixture was cooled to 
room temperature. The reaction mixture was filtered, and the 
filtrate was concentrated in vacuo. The residue was extracted 
with ethyl acetate (60 mL) and water (20 mL). After drying 
the organic layer with anhydrous  Na2SO4 and evaporating 
the solvent under reduced pressure, a solid was appeared. 
The solid was recyrstallized from ethanol to obtain inter-
mediates 2.
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Scheme 1  Reagents and conditions are as follows: (i) 1.1 times of  PhN+Me3·Br3
−, THF, rt. (ii) 1.2 times of arylpiperazines, 4.0 times of  K2CO3, 

 CH3CN, reflux; (iii) 2.0 times of  NaBH4, EtOH, rt
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Fig. 2  Design strategy for naftopidil-based arylpiperazine derivatives 
containing the bromophenol moiety 3a–3x 
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General synthetic procedure of target compounds 
3a–3x

NaBH4 (2 equiv) was added to a stirred solution of the 
intermediates 2 (1 equiv) in ethanol (20 mL). The reaction 
mixture was left overnight at room temperature. The sol-
vent was removed in vacuo. Then the residue was purified 
by chromatography on silica-gel column (petroleum ether: 
ethyl acetate = 1:1, v/v) to obtain the corresponding products 
3a–3x, and the solid was further recyrstallized from ethanol.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑phenylpiperazin‑1‑yl)
ethan‑1‑ol (3a) White solid (ethanol); Yield: 85%; Mp 147–
148 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 (d, J = 2.0 Hz, 
1H), 7.36–7.27 (m, 3H), 6.95 (d, J = 7.9 Hz, 2H), 6.88 (dd, 
J = 7.9, 5.0 Hz, 2H), 4.71 (dd, J = 10.0, 3.9 Hz, 1H), 3.90 
(s, 3H), 3.35–3.11 (m, 4H), 3.06–2.83 (m, 2H), 2.70–2.59 
(m, 2H), 2.57–2.45 (m, 2H); 13C NMR (101 MHz,  CDCl3) 
δ 155.12, 150.97, 135.41, 130.75, 128.99, 125.88, 119.80, 
116.01, 111.59, 111.50, 67.64, 65.91, 56.14, 52.85, 49.16; 
HRMS (ESI) m/z [M + 1]+: Calcd for  C19H24BrN2O2, 
391.1016, found, 391.1020.

2‑(4‑Benzylpiperazin‑1‑yl)‑1‑(3‑Bromo‑4‑methoxyphenyl)
ethan‑1‑ol (3b) White solid (ethanol); Yield: 82%; Mp 107–
108 °C; 1H NMR (400 MHz,  CDCl3) δ 7.56 (d, J = 2.0 Hz, 
1H), 7.32 (d, J = 4.4 Hz, 4H), 7.29–7.25 (m, 2H), 6.86 (d, 
J = 8.5 Hz, 1H), 4.64 (dd, J = 10.4, 3.7 Hz, 1H), 3.88 (s, 
3H), 3.53 (d, J = 2.5 Hz, 2H), 2.77 (br s, 2H), 2.59–2.40 
(m, 8H); 13C NMR (101 MHz,  CDCl3) δ 155.23, 138.00, 
135.79, 130.92, 129.21, 128.27, 127.13, 126.06, 111.75, 
111.64, 67.73, 66.02, 63.01, 56.31, 53.13, 29.72; HRMS 
(ESI) m/z [M + 1]+: Calcd for  C20H26BrN2O2, 405.1172, 
found, 405.1147.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑((4‑chlorophenyl)(phe-
nyl)methyl)piperazin‑1‑yl)ethan‑1‑ol (3c) Colorless oil liq-
uid; Yield: 76%; 1H NMR (400 MHz,  CDCl3) δ 7.55 (s, 
1H), 7.39–7.33 (m, 4H), 7.32–7.26 (m, 3H), 7.25–7.17 (m, 
3H), 6.86 (d, J = 8.5 Hz, 1H), 4.62 (dt, J = 10.0, 3.0 Hz, 
1H), 4.22 (s, 1H), 3.88 (s, 3H), 2.75 (br s, 2H), 2.59–2.33 
(m, 8H); 13C NMR (101 MHz,  CDCl3) δ 155.24, 142.05, 
141.28, 135.76, 132.64, 130.92, 129.18, 128.73, 128.66, 
127.82, 127.25, 126.06, 111.75, 111.64, 75.44, 67.73, 65.97, 
56.31, 51.89, 29.72; HRMS (ESI) m/z [M + 1]+: Calcd for 
 C26H29BrClN2O2, 515.1095, found, 515.1097.

2 ‑ ( 4 ‑ ( B i s ( 4 ‑ f l u o r o p h e n y l ) m e t h y l ) p i p e r -
azin‑ 1‑yl)‑1‑ (3‑bromo‑ 4‑methox yphenyl)ethan‑ 1‑ol 
(3d) Colorless oil liquid; Yield: 78%; 1H NMR (400 MHz, 
 CDCl3) δ 7.55 (d, J = 2.0 Hz, 1H), 7.37–7.33 (m, 4H), 
7.25 (dd, J = 7.9, 2.0 Hz, 1H), 7.00–6.95 (m, 4H), 6.86 (d, 
J = 8.5 Hz, 1H), 4.62 (dd, J = 10.1, 3.7 Hz, 1H), 4.23 (s, 

1H), 3.87 (s, 3H), 2.75 (br s, 2H), 2.57–2.32 (m, 8H); 13C 
NMR (101 MHz,  CDCl3) δ 163.07, 160.63, 155.25, 138.14, 
135.75, 130.91, 129.27, 129.20, 126.06, 115.57, 115.36, 
111.75, 111.65, 74.48, 67.75, 65.96, 56.31, 51.82, 29.72; 
HRMS (ESI) m/z [M + 1]+: Calcd for  C26H28BrF2N2O2, 
517.1297, found, 517.1295.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(pyridin‑2‑yl)pipera-
zin‑1‑yl)ethan‑1‑ol (3e) White solid (ethanol); Yield: 68%; 
Mp 101–102 °C; 1H NMR (400 MHz,  CDCl3) δ 8.20 (dd, 
J = 4.8, 1.2 Hz, 1H), 7.59 (d, J = 2.0 Hz, 1H), 7.49 (ddd, 
J = 8.8, 7.2, 2.0 Hz, 1H), 7.29 (dd, J = 8.4, 2.0 Hz, 1H), 
6.88 (d, J = 8.4  Hz, 1H), 6.76–6.54 (m, 2H), 4.73 (dd, 
J = 9.9, 3.6  Hz, 1H), 3.89 (s, 3H), 3.68–3.51 (m, 4H), 
2.97–2.78 (m, 2H), 2.62–2.54 (m, 2H), 2.55–2.49 (m, 2H); 
13C NMR (101 MHz,  CDCl3) δ 159.22, 155.11, 147.80, 
137.36, 135.37, 130.74, 125.88, 113.38, 111.58, 111.48, 
106.96, 67.65, 65.99, 56.12, 52.66, 45.14; HRMS (ESI) 
m/z [M + 1]+: Calcd for  C18H23BrN3O2, 392.0968, found, 
392.0970.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(o‑tolyl)piperazin‑1‑yl)
ethan‑1‑ol (3f) White solid (ethanol); Yield: 80%; Mp 116–
117 °C; 1H NMR (400 MHz,  CDCl3) δ 7.60 (d, J = 2.0 Hz, 
1H), 7.29 (dd, J = 8.4, 2.0 Hz, 1H), 7.18 (t, J = 6.8 Hz, 
2H), 7.07–6.96 (m, 2H), 6.89 (d, J = 8.4 Hz, 1H), 4.71 (dd, 
J = 10.4, 3.5 Hz, 1H), 3.89 (s, 3H), 3.13–2.79 (m, 6H), 2.67–
2.48 (m, 4H), 2.31 (s, 3H); 13C NMR (101 MHz,  CDCl3) 
δ 155.28, 151.29, 135.76, 132.61, 131.12, 130.95, 126.62, 
126.08, 123.31, 119.01, 111.79, 111.68, 67.79, 66.17, 56.33, 
51.84, 29.72, 17.89; HRMS (ESI) m/z [M + 1]+: Calcd for 
 C20H26BrN2O2, 405.1172, found, 405.1178.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(m‑tolyl)piperazin‑1‑yl)
ethan‑1‑ol (3g) Colorless oil liquid; Yield: 72%; 1H NMR 
(400 MHz,  CDCl3) δ 7.59 (d, J = 2.0 Hz, 1H), 7.29 (dd, 
J = 8.4, 2.0  Hz, 1H), 7.17 (t, J = 7.7  Hz, 1H), 6.88 (d, 
J = 8.5 Hz, 1H), 6.80–6.66 (m, 3H), 4.74 (dd, J = 9.4, 3.8 Hz, 
1H), 3.89 (s, 3H), 3.36–3.13 (m, 4H), 3.03–2.81 (m, 2H), 
2.74–2.60 (m, 2H), 2.61–2.48 (m, 2H), 2.33 (s, 3H); 13C 
NMR (101 MHz,  CDCl3) δ 155.33, 151.14, 138.90, 130.93, 
129.03, 126.07, 120.99, 117.12, 113.39, 111.79, 67.81, 
66.04, 56.33, 53.09, 49.33, 29.72, 21.79; HRMS (ESI) 
m/z [M + 1]+: Calcd for  C20H26BrN2O2, 405.1172, found, 
405.1176.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(p‑tolyl)piperazin‑1‑yl)
ethan‑1‑ol (3h) White solid (ethanol); Yield: 82%; Mp 
146–147  °C; 1H NMR (400  MHz,  CDCl3) δ 7.59 (d, 
J = 2.0 Hz, 1H), 7.29 (dd, J = 8.4, 2.0 Hz, 1H), 7.09 (d, 
J = 8.4 Hz, 2H), 6.87 (t, J = 8.6 Hz, 3H), 4.71 (dd, J = 10.1, 
3.8 Hz, 1H), 3.89 (s, 3H), 3.31–3.09 (m, 4H), 3.02–2.82 
(m, 2H), 2.78–2.58 (m, 2H), 2.58–2.44 (m, 2H), 2.28 (s, 
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3H); 13C NMR (101 MHz,  CDCl3) δ 155.30, 149.07, 135.65, 
130.94, 129.70, 129.53, 126.07, 116.54, 111.78, 111.68, 
67.83, 66.10, 56.33, 53.07, 49.91, 20.46; HRMS (ESI) 
m/z [M + 1]+: Calcd for  C20H26BrN2O2, 405.1172, found, 
405.1175.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(2‑methoxyphenyl)piper-
azin‑1‑yl)ethan‑1‑ol (3i) Colorless oil liquid; Yield: 74%; 1H 
NMR (400 MHz,  CDCl3) δ 7.60 (d, J = 1.9 Hz, 1H), 7.29 
(dd, J = 8.4, 1.9 Hz, 1H), 7.06–6.99 (m, 1H), 6.99–6.92 (m, 
2H), 6.93–6.85 (m, 2H), 4.71 (dd, J = 10.2, 3.5 Hz, 1H), 3.89 
(s, 3H), 3.87 (s, 3H), 3.14 (br s, 4H), 3.02–2.89 (m, 2H), 
2.71–2.63 (m, 2H), 2.62–2.44 (m, 2H); 13C NMR (101 MHz, 
 CDCl3) δ 155.40, 152.39, 141.21, 135.87, 131.07, 126.22, 
123.27, 121.16, 118.38, 111.91, 111.80, 111.34, 67.89, 
66.27, 56.45, 55.52, 50.88; HRMS (ESI) m/z [M + 1]+: 
Calcd for  C20H26BrN2O3, 421.1121, found, 421.1118

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(3‑methoxyphenyl)
piperazin‑1‑yl)ethan‑1‑ol (3j) White solid (ethanol); Yield: 
82%; Mp 133–134 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 
(d, J = 2.0 Hz, 1H), 7.29 (dd, J = 8.5, 2.0 Hz, 1H), 7.19 (t, 
J = 8.2 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 6.55 (dd, J = 8.2, 
2.0 Hz, 1H), 6.48 (t, J = 2.2 Hz, 1H), 6.44 (dd, J = 8.1, 
2.1 Hz, 1H), 4.71 (dd, J = 9.7, 3.6 Hz, 1H), 3.89 (s, 3H), 3.80 
(s, 3H), 3.39–3.10 (m, 4H), 3.03–2.85 (m, 2H), 2.66–2.58 
(m, 2H), 2.58–2.45 (m, 2H); 13C NMR (101 MHz,  CDCl3) 
δ 160.62, 155.31, 152.53, 135.59, 130.93, 129.86, 126.07, 
111.79, 111.69, 108.97, 104.67, 102.67, 67.84, 66.08, 56.33, 
55.22, 52.99, 49.22; HRMS (ESI) m/z [M + 1]+: Calcd for 
 C20H26BrN2O3, 421.1121, found, 421.1120

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(4‑methoxyphenyl)piper-
azin‑1‑yl)ethan‑1‑ol (3k) White solid (ethanol); Yield: 76%; 
Mp 148–149 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 (d, 
J = 2.0 Hz, 1H), 7.29 (dd, J = 8.5, 2.0 Hz, 1H), 6.96–6.85 (m, 
5H), 4.70 (dd, J = 10.0, 3.6 Hz, 2H), 3.90 (s, 3H), 3.78 (s, 
3H), 3.17–3.12 (m, 4H), 2.95–2.85 (m, 2H), 2.69–2.59 (m, 
2H), 2.59–2.49 (m, 2H); HRMS (ESI) m/z [M + 1]+: Calcd 
for  C20H26BrN2O3, 421.1121, found, 421.1116.

4‑(4‑(2,4‑Difluorophenyl)piperazin‑1‑yl)‑2H‑benzo[h]
chromen‑2‑one (3l) Colorless oil liquid; Yield: 75%; 1H 
NMR (400 MHz,  CDCl3) δ 7.60 (d, J = 2.0 Hz, 1H), 7.29 
(dd, J = 8.4, 2.0 Hz, 1H), 7.02–6.96 (m, 1H), 6.95–6.84 (m, 
4H), 4.72 (dd, J = 10.4, 3.5 Hz, 1H), 4.08 (q, J = 7.0 Hz, 2H), 
3.89 (s, 3H), 3.16 (br s, 4H), 3.07–2.89 (m, 2H), 2.82–2.63 
(m, 2H), 2.60–2.42 (m, 2H), 1.46 (t, J = 7.0 Hz, 3H); 13C 
NMR (101 MHz,  CDCl3) δ 155.27, 151.57, 141.11, 135.77, 
130.94, 126.07, 122.95, 121.02, 118.21, 112.47, 111.78, 
111.67, 67.77, 66.18, 63.58, 56.32, 50.64, 29.72, 14.96; 
HRMS (ESI) m/z [M + 1] + : Calcd for  C21H28BrN2O3, 
435.1278, found, 435.1276.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(2‑fluorophenyl)pipera-
zin‑1‑yl)ethan‑1‑ol (3m) White solid (ethanol); Yield: 78%; 
Mp 105–106 °C; 1H NMR (400 MHz,  CDCl3) δ 7.60 (d, 
J = 2.0 Hz, 1H), 7.29 (dd, J = 8.5, 2.0 Hz, 1H), 7.13–6.92 
(m, 4H), 6.88 (d, J = 8.5 Hz, 1H), 4.71 (dd, J = 10.4, 3.5 Hz, 
1H), 3.89 (s, 3H), 3.23–3.09 (m, 4H), 3.03–2.88 (m, 2H), 
2.70–2.61 (m, 2H), 2.61–2.47 (m, 2H); 13C NMR (101 MHz, 
 CDCl3) δ 156.97, 155.31, 139.98, 139.89, 135.62, 130.94, 
126.08, 124.53, 124.49, 122.70, 122.62, 118.99, 118.96, 
116.28, 116.07, 111.78, 111.70, 67.80, 66.10, 56.33, 
53.10, 50.67, 50.64; HRMS (ESI) m/z [M + 1]+: Calcd for 
 C19H23BrFN2O2, 409.0921, found, 409.0925.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(4‑fluorophenyl)pipera-
zin‑1‑yl)ethan‑1‑ol (3n) White solid (ethanol); Yield: 86%; 
Mp 126–127 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 (d, 
J = 2.0 Hz, 1H), 7.29 (dd, J = 8.4, 2.0 Hz, 1H), 7.04–6.93 (m, 
2H), 6.91–6.85 (m, 3H), 4.71 (dd, J = 9.9, 3.6 Hz, 1H), 3.89 
(s, 3H), 3.25–3.03 (m, 4H), 3.02–2.85 (m, 2H), 2.74–2.59 
(m, 2H), 2.59–2.44 (m, 2H); 13C NMR (101 MHz,  CDCl3) 
δ 156.56, 155.76, 148.23, 136.00, 131.36, 126.50, 118.45, 
118.38, 116.14, 115.92, 112.23, 112.13, 68.28, 66.47, 
56.76, 53.47, 50.77; HRMS (ESI) m/z [M + 1]+: Calcd for 
 C19H23BrFN2O2, 409.0921, found, 409.0917.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(2,4‑difluorophenyl)piper-
azin‑1‑yl)ethan‑1‑ol (3o) White solid (ethanol); Yield: 75%; 
Mp 103–104 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 (d, 
J = 2.1 Hz, 1H), 7.28 (dd, J = 8.5, 2.0 Hz, 1H), 7.02–6.86 (m, 
2H), 6.87–6.76 (m, 2H), 4.70 (dd, J = 10.4, 3.6 Hz, 1H), 3.89 
(s, 3H), 3.34–3.00 (m, 4H), 3.06–2.84 (m, 2H), 2.70–2.60 
(m, 2H), 2.59–2.45 (m, 2H); 13C NMR (101 MHz,  CDCl3) 
δ 155.32, 135.57, 130.93, 126.07, 119.44, 111.78, 111.70, 
110.87, 110.62, 105.02, 104.76, 104.52, 67.81, 66.06, 56.33, 
53.09, 51.02, 50.99; HRMS(ESI)m/z[M + 1]+: Calcd for 
 C19H22BrF2N2O2, 427.0827, found, 427.0825.

4‑(4‑(2‑(3‑Bromo‑4‑methoxyphenyl)‑2‑hydroxyethyl)piper-
azin‑1‑yl)‑3‑fluorobenzonitrile (3p) White solid (ethanol); 
Yield: 67%; Mp 132–133 °C; 1H NMR (400 MHz,  CDCl3) 
δ 7.59 (d, J = 1.9 Hz, 1H), 7.38 (dd, J = 8.4, 1.2 Hz, 1H), 
7.30 (dd, J = 3.9, 1.9 Hz, 1H), 7.27 (d, J = 2.0 Hz, 1H), 
6.98–6.84 (m, 2H), 4.71 (dd, J = 10.1, 3.7 Hz, 1H), 3.90 
(s, 3H), 3.38–3.18 (m, 4H), 3.06–2.87 (m, 2H), 2.77–2.61 
(m, 2H), 2.61–2.43 (m, 2H); 13C NMR (101 MHz,  CDCl3) 
δ 155.38, 155.26, 152.79, 143.90, 135.37, 130.92, 129.47, 
126.06, 119.88, 119.64, 118.78, 118.74, 118.37, 118.35, 
111.80, 111.73, 103.97, 67.87, 66.02, 56.33, 52.77, 
49.75, 49.70, 29.71; HRMS (ESI) m/z [M + 1]+: Calcd for 
 C20H22BrFN3O2, 434.0874, found, 434.0879.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(2‑chlorophenyl)pip-
erazin‑1‑yl)ethan‑1‑ol (3q) White solid (ethanol); Yield: 
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80%; Mp 105–106 °C; 1H NMR (400 MHz,  CDCl3) δ 7.60 
(d, J = 2.0 Hz, 1H), 7.37 (dd, J = 7.9, 1.5 Hz, 1H), 7.29 
(dd, J = 8.5, 2.0 Hz, 1H), 7.26–7.19 (m, 1H), 7.06 (dd, 
J = 8.0, 1.4 Hz, 1H), 6.99 (td, J = 7.8, 1.5 Hz, 1H), 6.88 (d, 
J = 8.5 Hz, 1H), 4.71 (dd, J = 10.5, 3.5 Hz, 1H), 3.89 (s, 
3H), 3.12 (br s, 4H), 3.01–2.87 (m, 2H), 2.75–2.62 (m, 2H), 
2.60–2.45 (m, 2H); 13C NMR (101 MHz,  CDCl3) δ 155.41, 
149.18, 135.79, 131.05, 130.81, 128.91, 127.76, 126.20, 
123.98, 120.52, 111.90, 111.81, 67.90, 66.19, 56.44, 51.42; 
HRMS (ESI) m/z [M + 1]+: Calcd for  C19H23BrClN2O2, 
425.0626, found, 425.0628.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(3‑chlorophenyl)pipera-
zin‑1‑yl)ethan‑1‑ol (3r) White solid (ethanol); Yield: 73%; 
Mp 107–108 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 (d, 
J = 2.0 Hz, 1H), 7.28 (dd, J = 8.4, 2.0 Hz, 1H), 7.17 (t, 
J = 8.1 Hz, 1H), 6.88 (dd, J = 5.4, 3.0 Hz, 2H), 6.84–6.78 (m, 
2H), 4.71 (dd, J = 9.6, 3.7 Hz, 1H), 3.89 (s, 3H), 3.33–3.12 
(m, 4H), 2.99–2.80 (m, 2H), 2.70–2.57 (m, 2H), 2.57–2.46 
(m, 2H); 13C NMR (101 MHz,  CDCl3) δ 155.34, 152.17, 
135.49, 135.01, 130.93, 130.09, 126.07, 119.57, 115.93, 
114.01, 111.79, 111.71, 67.87, 66.04, 56.33, 52.85, 48.86; 
HRMS (ESI) m/z [M + 1]+: Calcd for  C19H23BrClN2O2, 
425.0626, found, 425.0616.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(4‑chlorophenyl)pipera-
zin‑1‑yl)ethan‑1‑ol (3s) White solid (ethanol); Yield: 78%; Mp 
126–127 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 (d, J = 2.0 Hz, 
1H), 7.29 (dd, J = 8.5, 2.0 Hz, 1H), 7.24–7.18 (m, 2H), 6.95–6.80 
(m, 3H), 4.71 (dd, J = 9.8, 3.8 Hz, 1H), 3.89 (s, 3H), 3.30–3.10 
(m, 4H), 2.96–2.84 (m, 2H), 2.68–2.58 (m, 2H), 2.59–2.46 (m, 
2H); 13C NMR (101 MHz,  CDCl3) δ 155.34, 149.75, 135.49, 
130.92, 129.02, 126.06, 124.84, 117.38, 111.79, 111.71, 67.85, 
66.03, 56.33, 52.90, 49.33; HRMS (ESI) m/z [M + 1]+: Calcd 
for  C19H23BrClN2O2, 425.0626, found, 425.0608.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(2,3‑dichlorophenyl)piper-
azin‑1‑yl)ethan‑1‑ol (3t) White solid (ethanol); Yield: 68%; 
Mp 128–129 °C; 1H NMR (400 MHz,  CDCl3) δ 7.60 (d, 
J = 2.0 Hz, 1H), 7.28 (dd, J = 8.5, 2.0 Hz, 1H), 7.22–7.13 (m, 
2H), 6.97 (dd, J = 6.6, 3.0 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 
4.71 (dd, J = 10.5, 3.5 Hz, 1H), 3.89 (s, 3H), 3.11 (br s, 4H), 
2.93 (d, J = 4.3 Hz, 2H), 2.66 (d, J = 5.9 Hz, 1H), 2.61–2.46 
(m, 2H); 13C NMR (101 MHz,  CDCl3) δ 155.32, 151.05, 
135.61, 134.12, 130.94, 127.57, 127.51, 126.08, 124.79, 
118.64, 111.79, 111.71, 67.81, 66.05, 56.33, 51.43; HRMS 
(ESI) m/z [M + 1]+: Calcd for  C19H22BrCl2N2O2, 459.0236, 
found, 459.0232.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(5‑chloro‑2‑methylphenyl)
piperazin‑1‑yl)ethan‑1‑ol (3u) Colorless oil liquid; Yield: 
72%; 1H NMR (400 MHz,  CDCl3) δ 7.52 (d, J = 2.0 Hz, 
1H), 7.22 (dd, J = 8.4, 2.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 

1H), 6.95–6.85 (m, 2H), 6.81 (d, J = 8.5 Hz, 1H), 4.63 (dd, 
J = 10.4, 3.6 Hz, 1H), 3.82 (s, 3H), 3.03–2.70 (m, 6H), 2.65–
2.33 (m, 4H), 2.18 (s, 3H); 13C NMR (101 MHz,  CDCl3) 
δ 155.30, 152.35, 135.66, 132.00, 131.78, 130.94, 130.82, 
126.08, 123.14, 119.54, 111.79, 111.69, 67.80, 66.11, 56.33, 
51.66, 29.72, 17.50. HRMS (ESI) m/z [M + 1]+: Calcd for 
 C20H25BrClN2O2, 439.0782, found, 439.0776.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(4‑bromophenyl)pipera-
zin‑1‑yl)ethan‑1‑ol (3v) White solid (ethanol); Yield: 73%; 
Mp 131–132 °C; 1H NMR (400 MHz,  CDCl3) δ 7.59 (d, 
J = 2.0 Hz, 1H), 7.44–7.32 (m, 2H), 7.28 (dd, J = 8.5, 2.0 Hz, 
1H), 6.88 (d, J = 8.5 Hz, 1H), 6.85–6.76 (m, 2H), 4.71 (dd, 
J = 9.5, 3.8 Hz, 1H), 3.89 (s, 3H), 3.33–3.11 (m, 4H), 3.01–
2.82 (m, 2H), 2.72–2.59 (m, 2H), 2.57–2.45 (m, 2H); 13C 
NMR (101 MHz,  CDCl3) δ 155.33, 150.15, 135.50, 131.93, 
130.92, 126.06, 117.76, 112.12, 111.79, 111.70, 67.87, 
66.03, 56.33, 52.86, 49.14; HRMS (ESI) m/z [M + 1]+: 
Calcd for  C19H23Br2N2O2, 469.0121, found, 469.0115.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(2‑(trifluoromethyl)
phenyl)piperazin‑1‑yl)ethan‑1‑ol (3w) Colorless oil liq-
uid; Yield: 75%; 1H NMR (400 MHz,  CDCl3) δ 7.63 (d, 
J = 7.9 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.53 (t, J = 7.4 Hz, 
1H), 7.39 (d, J = 8.0 Hz, 1H), 7.28 (dd, J = 8.4, 2.0 Hz, 1H), 
7.23 (t, J = 7.7 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 4.70 (dd, 
J = 10.5, 3.6 Hz, 1H), 3.89 (s, 3H), 3.07–2.93 (m, 4H), 2.90 
(d, J = 5.1 Hz, 2H), 2.60 (d, J = 3.5 Hz, 2H), 2.59–2.41 (m, 
2H); 13C NMR (101 MHz,  CDCl3) δ 155.28, 152.33, 135.74, 
132.79, 130.93, 127.28, 127.23, 126.08, 124.94, 123.99, 
111.78, 111.70, 67.78, 66.08, 56.32, 53.52; HRMS (ESI) 
m/z [M + 1]+: Calcd for  C20H23BrF3N2O2, 459.0890, found, 
459.0888.

1‑(3‑Bromo‑4‑methoxyphenyl)‑2‑(4‑(4‑(trifluoromethyl)phe-
nyl)piperazin‑1‑yl)ethan‑1‑ol (3x) White solid (ethanol); 
Yield: 83%; Mp 125–126 °C; 1H NMR (400 MHz,  CDCl3) 
δ 7.59 (d, J = 2.0 Hz, 1H), 7.49 (d, J = 8.7 Hz, 2H), 7.29 
(dd, J = 8.5, 2.0 Hz, 1H), 6.94 (d, J = 8.5 Hz, 2H), 6.88 (d, 
J = 8.5 Hz, 1H), 4.72 (dd, J = 9.3, 3.9 Hz, 1H), 3.89 (s, 3H), 
3.41–3.24 (m, 4H), 2.95–2.84 (m, 2H), 2.67–2.59 (m, 2H), 
2.58–2.47 (m, 2H); 13C NMR (101 MHz,  CDCl3) δ 155.36, 
153.14, 135.44, 130.93, 126.47, 126.43, 126.07, 114.69, 
111.80, 111.72, 67.90, 66.05, 56.33, 52.76, 48.16; HRMS 
(ESI) m/z [M + 1]+: Calcd for  C20H23BrF3N2O2, 459.0890, 
found, 459.0892.

Biological assays

In vitro cytotoxic assay

Cell culture PC-3 and WPMY-1 cells were cultured in Dul-
becco’s modification Eagle’s medium (DMEM, Invitrogen, 
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Carlsbad, CA, USA) supplemented with 10% fetal bovine 
serum (FBS, Hyclone, Logan, UT, USA), 100 U/mL peni-
cillin and 0.1  mg/mL streptomycin (Invitrogen). LNCaP 
cells were cultured in F12 media supplemented with 10% 
fetal bovine serum (FBS, Hyclone), 100 U/mL penicillin 
and 0.1  mg/mL streptomycin (Invitrogen). The cells were 
incubated at 37 °C in a humidified atmosphere with 5%  CO2.

Assessment of antitumor activity by CCK‑8 assay Cell pro-
liferation was measured with the Cell Counting Kit-8 (CCK-
8) assay kit (Dojindo Corp., Kumamoto, Japan). Cells were 
harvested during logarithmic growth phase and seeded in 
96-well plates at a density of 1 × 105 cells/mL, and cultured 
at 37 °C in a humidified incubator (5%  CO2) for 24 h, fol-
lowed by exposure to various concentrations of compounds 
tested for 24  h. Subsequently 10  μL of CCK-8 (Dojindo) 
was added to each well, the cells were then incubated for an 
additional 1 h at 37 °C to convert WST-8 into formazan. Cell 
growth inhibition was determined by measuring the absorb-
ance (Abs) at λ = 450 nm using amicroplate reader. Three 
independent experiments were performed. Cell growth inhi-
bition was calculated according to the following equation:

The half maximal inhibitory concentrations  (IC50) were 
obtained from liner regression analysis of the concentra-
tion–response curves plotted for each tested compound.

Antagonistic activity in   a1‑ARs by  dual‑luciferase reporter 
gene assay [48] Firefly and Renilla luciferase activi-
ties, which are indicated as RLUs, were determined using 
Dual-Glo luciferase assay kits (Promega) according to the 
manufacturer’s instructions. RLUs were measured using a 
luminometer (GloMaxTM 96-Microplate Luminometer, Pro-
mega) and are reported as the mean ± SEM of three individ-
ual experiments. For agonists, fold of induction = LUinduced/
RLUuninduced. For antagonists, % of control = 100 × RLU 
(agonist + antagonist)/RLU (agonist alone). All RLUs were 
normalized against firefly RLUs/Renilla RLUs. Data are 
expressed as  EC50/IC50 values in μM, and the  IC50 of phe-
nylephrine (μM) was calculated by plotting the data using 
nonlinear regression analysis in Graph-Pad Prism 5 software.

Results

Chemistry

The synthetic route of compounds 3a–3x followed the 
general pathway outlined in Scheme 1. These compounds 
were prepared in three steps. First, α-bromination reaction 

Growth inhibition = (1 − OD of treated cells/OD

of control cells) × 100%.

between 3-bromo-4-methoxyacetophenone and trimethyl-
phenylammonium tribromide was carried out by using THF 
as the solvent to obtain intermediate 1. Second, intermedi-
ate 2 was obtained by applying the nucleophilic substitution 
reaction between intermediate 1 and arylpiperazines, adding 
4 times of  K2CO3 in acetonitrile. Lastly, the reduction of 
intermediate 2 with  NaBH4 in ethanol led to the formation 
of the final arylpiperazine derivatives containing the bromo-
phenol moiety. All of the synthesized arylpiperazine deriva-
tives were confirmed via 1H-NMR, 13C-NMR, and HRMS.

Biological evaluation

Antitumor activity

All of the target compounds were screened in terms of their 
in vitro cytotoxicity against PC-3 and LNCaP, and compared 
with their effects on WPMY-1 via the CCK-8 assay [28, 
29]. Naftopidil and finasteride [49] were used as reference 
compounds, and the results were reported in terms of  IC50. 
The results are summarized in Table 1.

As shown in Table 1, the cytotoxic activities of all the 
derivatives  (IC50 < 10 μM) except 3p, 3t, and 3u against 
PC-3 and LNCaP cells were strong, and their activities 
were also higher than those of finasteride. Among these 
compounds, 3c, 3d, 3h, 3k, 3o and 3s exhibited the most 
potent activity against PC-3 cells with  IC50 of 0.67, 0.25, 
0.16, 0.08, 0.79, and 0.55 μM, which were 26-, 71-, 111-, 
222-, 22-, and 356-fold more active than finasteride, respec-
tively. They also exhibited a weak cytotoxic effect on nor-
mal human prostate epithelial cell (WPMY-1) with  IC50 of 
> 50 μM.

Antagonistic activity in  a1‑ARs (α1a, α1b, and α1d)

PCa and BPH are common diseases in elderly males, and 
studies have shown that androgen receptor-mediated andro-
gen affects the incidence of BPH and PCa, and derivatives 
with piperazine moiety may act as potential α1a-AR- and/
or α1a-AR + α1d-AR-selective ligands for the treatment of 
BPH [48, 50–52]. Therefore, to evaluate antagonistic action 
of arylpiperazine derivatives with bromophenol moiety on 
 a1-ARs (α1a, α1b, and α1d), the derivatives with potent anti-
cancer activities were selected for further investigating their 
antagonistic activities using dual-luciferase reporter assays 
[48] to identify  a1-AR subselective antagonist candidates to 
treat BPH from arylpiperazine derivatives. The results are 
shown in Table 2.
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Discussion

The SAR of these designed arylpiperazine derivatives 
was thoroughly discussed. With 3a as the lead, the SAR 
investigation mainly focused on the variation in the phenyl 
group at the 4-position of the piperazine ring with other 
aryl groups and the substitute’s type and position on the 
phenyl group as a required group for antitumor activities. 
(1) First, the resultant compound 3b displayed an improved 
cytotoxic activity against PC-3 and LNCaP cells with  IC50 
values of 1.23 and 1.09 μM, respectively, after the phenyl 
group at the 4-position of the piperazine ring was replaced 
with the benzyl group. Especially, compounds 3c and 3d 
demonstrated potent activities against PC-3 and LNCaP 
cells. These results suggested that a larger group substi-
tuted at the 4-position of the piperazine ring was beneficial 

to the antitumor activity. (2) After the phenyl group was 
replaced with the pyridinyl group, the resultant compound 
3e displayed a comparable activity with that of 3a against 
the tested cancer cells, and these compounds also elicited a 
weak cytotoxic effect on WPMY-1 with  IC50 of > 50 μM. 
(3) The position of the substituent on the phenyl group also 
affected the cytotoxic activities. Among the compounds 
containing a methyl substituent, the order of the cytotoxic 
activities of compounds 3f (2-CH3), 3g (3-CH3), and 3h 
(4-CH3) against PC-3 and LNCaP cells could be placed as 
follows: 3h > 3g > 3f. A similar order of antitumor activity 
was observed in 3i (2-OCH3), 3j (3-OCH3), 3k (4-OCH3), 
3q (2-Cl), 3r (3-Cl), and 3s (4-Cl). Namely, the activity of 
the p-substituted phenyl group derivatives against LNCaP 
and PC-3 cells was better than that of the substituted groups 
in other positions. In addition, the same order of antitumor 
activity against PC-3 and LNCaP cells was observed in 3m 
(2-F) versus 3n (4-F) and in 3w (2-CF3) versus 3x (4-CF3). 
(4) The effectiveness of the compounds with difluorosub-
stituents on the phenyl group was higher than that of the 
compounds with monofluorosubstituents. For example, the 
cytotoxic activity of 3o (2,4-F2,  IC50 = 0.79 and 1.27 μM) 
against PC-3 and LNCaP cells was more effective than those 
of 3m and 3n. Moreover, the cytotoxic activity of 3o against 
normal WPMY-1 was weak with  IC50 of > 50 μM. However, 
the inhibitory activity of other disubstituted compounds 3p, 
3t, and 3u against cancer cells was relatively weak. (5) The 
cytotoxic activity of 3v (4-Br) against PC-3 and LNCaP 
cells was relatively lower than those of 3n (4-F) and 3s 
(4-Cl). The activity profiles indicated that the introduction 
of a bromo group at the p-position in the phenyl group was 
inauspicious for anticancer activity. (6) The activity of 3k 
(4-OCH3) with electron-donating groups against LNCaP 
and PC-3 cells was relatively better than that of 3x (4-CF3) 

Table 1  In vitro cytotoxicity of arylpiperazine derivatives 3a–3x 

a IC50 values are taken as mean ± standard deviation from three exper-
iments
b PC-3, androgen-insensitive human prostate cancer cell line; LNCaP, 
androgen-sensitive human prostate cancer cell line; WPMY-1, normal 
non-cancer human prostate epithelial cell line

Compd. IC50 (μM)a

PC-3b LNCaPb WPMY-1b

3a 3.05 ± 0.03 2.05 ± 0.12 49.2 ± 1.12
3b 1.23 ± 0.16 1.09 ± 0.15 > 50
3c 0.67 ± 0.12 0.56 ± 0.27 > 50
3d 0.25 ± 1.27 0.17 ± 0.54 > 50
3e 4.71 ± 0.16 3.62 ± 1.04 45.7 ± 0.46
3f 1.07 ± 0.32 5.73 ± 0.17 > 50
3g 0.89 ± 0.21 3.46 ± 0.26 > 50
3h 0.16 ± 0.02 1.04 ± 0.14 > 50
3i 2.73 ± 0.14 4.08 ± 1.10 32.2 ± 0.66
3j 1.45 ± 0.19 2.02 ± 0.53 42.8 ± 1.25
3k 0.08 ± 0.02 0.72 ± 0.22 > 50
3l 7.14 ± 0.13 5.47 ± 0.78 38.4 ± 1.07
3m 6.38 ± 1.09 5.42 ± 0.26 47.4 ± 0.65
3n 2.13 ± 0.15 3.42 ± 0.18 > 50
3o 0.79 ± 0.09 1.27 ± 0.34 > 50
3p 11.03 ± 0.78 9.27 ± 0.84 > 50
3q 4.03 ± 0.17 5.93 ± 0.32 37.7 ± 0.26
3r 1.32 ± 0.42 1.85 ± 0.18 > 50
3s 0.05 ± 0.04 0.18 ± 0.12 > 50
3t 15.31 ± 0.67 8.29 ± 1.04 > 50
3u 10.37 ± 0.54 12.57 ± 1.24 47.9 ± 1.05
3v 4.42 ± 0.15 5.77 ± 0.14 > 50
3w 7.38 ± 1.06 8.78 ± 0.65 > 50
3x 2.25 ± 0.15 3.25 ± 0.62 > 50
Naftopidil 42.10 ± 0.79 22.36 ± 0.61 > 50
Finasteride 17.83 14.53 –

Table 2  Antagonistic activities  (IC50) on α1-ARs (α1a, α1b, and α1d) of 
arylpiperazine derivatives

a IC50 values are taken as means from three experiments

Compd. IC50 (nM)a Selectivity ratio

α1a α1b α1d α1b/α1a α1b/α1d

3b 412.12 926.31 765.26 2.2 1.2
3c 660.36 982.46 826.57 1.5 1.1
3d 393.85 764.43 472.98 1.9 1.6
3g 62.18 892.67 347.12 14.3 2.6
3h 467.63 1132.35 92.54 2.4 12.2
3j 77.84 972.05 873.27 12.5 1.1
3k 573.92 1045.63 87.36 1.8 11.9
3o 483.29 683.45 393.25 1.4 1.7
3r 92.64 963.72 673.56 10.4 1.4
3s 473.62 1053.35 87.47 2.2 12.0
Naftopidil 555 634 55.2 1.1 11.48
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with electron-withdrawing groups in the phenyl group. The 
activity profiles indicated that the introduction of electron-
donating groups at the p-position in the phenyl group con-
tributed to anticancer activities.

SAR studies revealed that a larger group substituted at 
the 4-position of the piperazine ring and the p-substituted 
phenyl group in the arylpiperazine derivatives displayed a 
relatively improved activity against the tested cancer cells.

As shown in Table 2, although arylpiperazine derivatives 
(3b, 3c, and 3d) with a larger group substituted at the 4-posi-
tion of the piperazine ring exhibited strong cytotoxic activi-
ties against PC-3 and LNCaP cells, they demonstrated no 
 a1-ARs subtype selectivity. The o-substituted phenyl group 
arylpiperazine derivatives (3g, 3j, and 3r) showed potent 
cytotoxic activities against the tested cancer cells. Their  a1a 
subtype selectivity was better than  a1b subtype selectivity 
 (a1b/a1a ratio > 10). By contrast, the  a1d subtype selectivity 
of p-substituted phenyl group arylpiperazine derivatives (3h, 
3k, and 3s) with potent anticancer activities was better that 
the  a1b subtype (a1b/a1d ratio = 12.2, 11.9, and 12.0).

In summary, the majority of the derivatives exhib-
ited strong cytotoxic activities against PC-3 and LNCaP 
cells, and possessed higher activities than finasteride, and 
derivatives with potent anticancer activities exhibited bet-
ter  a1-ARs subtype selectivity (selectivity ratio > 10) than 
others did. Overall, the results of this study suggested that 
these derivatives could serve as candidates for the treat-
ment of PCa and BPH.
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