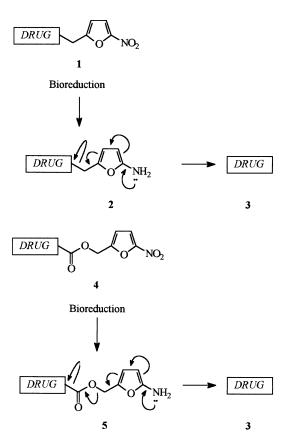
5-Nitrofuran-2-ylmethyl group as a potential bioreductively activated pro-drug system

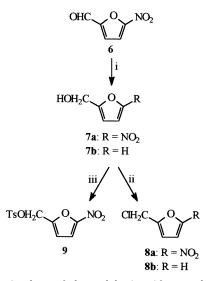

Jane M. Berry,^{*a*} Corrine Y. Watson,^{*a*} William J. D. Whish^{*b*} and Michael D. Threadgill^{*,*b*}

^a School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK

^b School of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

5-Substituted isoquinolin-1-ones have been synthesised by one-pot Curtius rearrangement of the corresponding substituted 3-phenylpropenoyl azides and cyclisation. Arylmethylation of the anions of the isoquinolinones with benzyl halides [4-methoxybenzyl chloride, 2-(chloromethyl)furan and 5-nitro-2- (tosyloxymethyl)furan] takes place exclusively at nitrogen. Nitration of 2-(furan-2-ylmethyl)isoquinolin-1- one in strongly acidic medium gives 2-(5-nitrofuran-2-ylmethyl)isoquinolin-1-one, whereas weaker acidic conditions lead to dinitration. Curtius rearrangement of 3-carboranylbutanoyl azide and trapping with 5-nitrofuran-2-ylmethyl *N*-(3-carboranylpropyl)carbamate. Biomimetic reduction of these nitrofuranylmethyl derivatives of anticancer drugs triggers release of the parent drugs. Thus, these nitrofurans have potential applications as pro-drugs for selective release of therapeutic drugs in hypoxic solid tumours.

Regions of chronic and acute hypoxia are present in most solid tumours owing to the primitive state of the tumour vasculature.¹ Viable cells in such tissue are relatively resistant to radiotherapy and to many chemotherapeutic strategies.¹ Much effort has been expended² on development of radiosensitisers with electron-affinity and bioreductively activated cytotoxins for selective therapy of this tissue, and of a variety of pro-drugs to deliver cytotoxins selectively to tumours. 1-Substituted 2-nitroimidazoles are known^{3,4} to be selectively retained in hypoxic tissue by reductive metabolism. However, relatively little attention has hitherto been focussed on exploiting the physiological difference in concentration of molecular oxygen between normal and hypoxic tumour tissue by design of biologically inactive pro-drug systems which, upon selective bioreduction in hypoxic tissue, would release known therapeutic drugs only in that tissue. This would improve greatly the selectivity of biodistribution of such agents. Sykes et al. have reported⁵ early studies on a bioreductively triggered release system based on 2-nitroarylamides, whereas 4-nitrobenzyloxycarbonyl pro-drugs have been put forward⁶ for use in the Antibody-Directed Enzyme Prodrug Therapy (ADEPT) strategy, using a bacterial nitroreductase attached to a tumourselective antibody. For the potential pro-drugs described here, 2-nitrofuran was selected as the redox-sensitive moiety. The redox potential of this heterocycle is relatively high $[E_7^i]$ = -325 mV for 2-methyl-5-nitro-N-(prop-2-enyl)furan-3-carboxamide],⁷ which would favour selective reductive metabolism in hypoxic tumour tissue effected by endogenous enzymes such as cytochrome P450 reductase.8 The general design of the prodrugs and the mechanisms of bioreductively triggered release are shown in Scheme 1. For the simpler pro-drugs 1, the 5-nitrofuran-2-ylmethyl unit is attached to a heteroatom in the drug. Reduction in hypoxic tumour tissue will give the corresponding aminofuran 2 (or the analogous hydroxylamine). The presence of an available electron pair will then promote fragmentation as shown to release the drug 3 in the tumour tissue. This fragmentation is clearly not available to the nitrofuran **1**. Where appropriate, the nitrofuranylmethyl unit could be linked to the drug by an additional readily fissile group, as in the carbamate pro-drugs 4. Bioreductively triggered fragmentation will again afford 3 according to the mechanism shown. Here

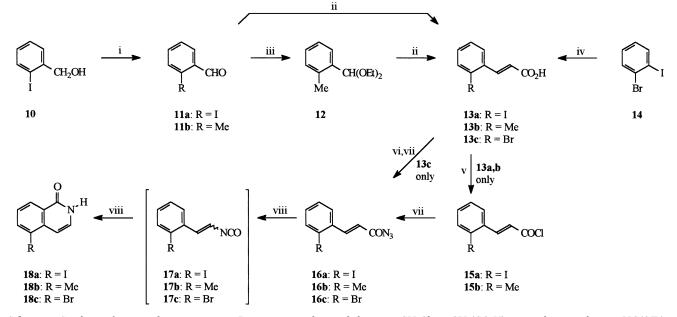

Scheme 1 Proposed mechanisms of bioreductively triggered release of drugs from general nitrofuranylmethyl pro-drugs **1** and **4**

we report syntheses of examples of pro-drugs of each type (1 and 4) and biomimetic studies on the release of parent drugs 3.

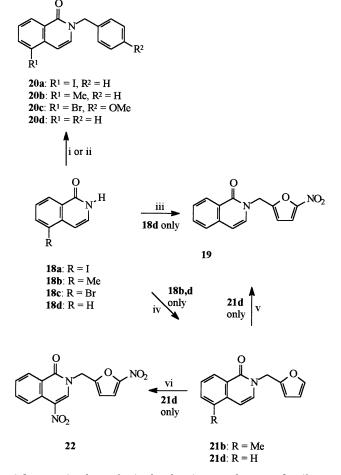
Isoquinolin-1-one **18d** and several 5-substituted analogues are potent inhibitors⁹ of poly(ADP-ribose)polymerase (PARP), an enzyme with a central role in initiating excision repair of DNA following damage by radiation or electrophilic drugs. Thus inhibitors of PARP are potentiators of these therapeutic strategies. Prodrugs which selectively release isoquinolinones in hypoxic tumour tissue would therefore act as tumour-selective radiosensitisers. In the design of these prodrugs, it is necessary to conceal the arylcarboxamide motif, with the N–H held *syn* to the carbonyl oxygen, which is essential for enzyme inhibitory activity.^{9,10} Within the context of the nitrofuranylmethyl system, this could be achieved through either 1-(5-nitrofuran-2-ylmethoxy)isoquinolines or 2-(5-nitrofuran-2-ylmethyl)isoquinolin-1-ones, pro-drugs of general type **1**.

To form examples of pro-drugs of type **4**, with the carbamate link, 2-phenylethylamine was selected as a model and a carboranylalkylamine was selected as a drug for delivery. Boron neutron capture therapy (BNCT) is under active investigation for the treatment of various cancers, notably gliomas and melanomas.¹¹ When the ¹⁰B isotope is irradiated with slow ('thermal') neutrons, an $[n,\alpha]$ reaction ensues, giving ⁷Li and ⁴He nuclei with kinetic energy (2.31 MeV). With this energy, the α -particle has a range of *ca*. one cell diameter in biological tissue and damage is limited to the cell containing the boron. Early clinical failures of BNCT were attributed 12,13 to inadequate concentrations of ¹⁰B in the tumour tissue or to lack of selectivity of disposition of ¹⁰B, leading to damage of normal tissue. Carboranes have been linked to nucleosides,14 to porphyrins¹⁵ and to nitroimidazoles^{4,16,17} in attempts to target boron selectively to tumours. Where a 5-nitrofuran-2-ylmethyl N-(carboranylalkyl)carbamate forms pro-drug 4, selective bioreduction in a hypoxic tumour cell would release a carboranylalkylamine, which, at the relatively acidic pH of a tumour cell, would be protonated and hence unable to diffuse out through the cell membrane. Boron would therefore accumulate in the tumour tissue.

To provide nucleophilic and electrophilic reagents to introduce the nitrofuranylmethyl group into the pro-drugs, the alcohol **7a** and the nitrofuranylmethyl electrophiles **8a** and **9** were prepared (Scheme 2). Attempts to reduce 5-nitrofuran-2-


Scheme 2 Synthesis of electrophilic (nitro)furan-2-ylmethyl reagents **8a,b** and **9**. *Reagents:* i, Al(OPrⁱ)₃, PrⁱOH; ii, SOCl₂, pyridine, CHCl₃; iii, TsCl, KOH, THF.

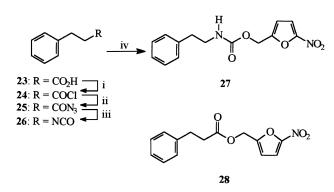
carbaldehyde **6** selectively at the aldehyde using sodium borohydride were unsuccessful, leading only to products of degradation, in contrast to a previous report.¹⁸ However, Meerwein– Ponndorf–Verley reduction gave the required nitrofuranylmethanol **7a** almost quantitatively. Activation of the methylene as an electrophile was attempted through conversion into the corresponding chloromethylnitrofuran **8a** and the tosylate **9**, respectively. Replacement of OH with Cl to give **8a** was achieved by treatment of **7a** with thionyl chloride and pyridine in a modification of the method of Wang *et al.*¹⁹ Reaction of **7a** with tosyl chloride in the presence of powdered potassium hydroxide afforded the tosylate **9** in modest isolated yield.


1-Alkoxyisoquinolines have been prepared by substitution in the corresponding 1-chloroisoquinolines using sodium alkoxides under vigorous conditions, although the range of 1-alkoxy substituents reported to have been introduced in this way has been restricted to simple examples,²⁰ such as methoxy and ethoxy. 1-Benzyloxyisoquinoline has not been reported. Treatment of 1-chloroisoquinoline²¹ with 5-nitrofuran-2-ylmethanol **7a** and furan-2-ylmethanol **7b** alkoxides gave only products of furan degradation under a variety of reaction conditions, making the corresponding pro-drugs unavailable by this route.

The usual route for preparation of 2-substituted isoquinolin-1-ones has been oxidation of 2-substituted isoquinolinium salts in the presence of hydroxide ion.²² However, this is inappropriate for preparation of the proposed pro-drugs, owing to the harsh reaction conditions required. Routes employing N-alkylation of isoquinolin-1-ones were therefore investigated. A convenient synthesis of isoquinolin-1-ones by Curtius rearrangement of cinnamyl azides and thermal cyclisation, in a one-pot process, has been described by Eloy and Deryckere,²¹ although this is limited to isoquinolinones without electronwithdrawing substituents. 2-Iodobenzyl alcohol 10 was oxidised to the corresponding aldehyde 11a with pyridinium dichromate and a direct condensation with malonic acid afforded the iodocinnamic acid 13a (Scheme 3). 2-Methylbenzaldehyde 11b had to be converted into its diethyl acetal 12 for efficient condensation under the Knoevenagel-Doebner conditions²⁴ to give the methylcinnamic acid 13b. The corresponding bromocinnamic acid 13c was prepared from 2-bromoiodobenzene in a convenient modification of the iodine-selective Heck reaction conditions used by Plevyak et al.25 Use of boiling propionitrile as the reaction solvent obviated the need for the sealed tube required to conduct the reaction at 100 °C in acetonitrile. Various modifications of the original conditions of Eloy and Deryckere²³ were investigated for the Curtius rearrangement and cyclisation sequence. The iodocinnamic acid 13a was converted into its acid chloride 15a and treatment with sodium azide furnished the acid azide 16a. For ease of isolation of the product 5-iodoisoquinolin-1-one 18a from the reaction mixture by precipitation with water, the Curtius rearrangement and cyclisation were effected in boiling dry tetraglyme. The acid chloride 15b and acid azide 16b of the methylcinnamic acid were prepared similarly, but the original boiling diphenyl ether was found to be the optimum solvent for the high-yielding synthesis and isolation of 5-methylisoquinolin-1-one 18b. The bromoisoquinolinone 18c was prepared similarly but in poor yield, using the acid azide 16c formed from a mixed anhydride.

The relatively few reports²⁶ of alkylation of isoquinolinones indicate that alkylation of isoquinolin-1-ones with simple halogeno alkanes occurs predominantly at the nitrogen of the conjugate anion under a variety of conditions. Two sets of conditions were used in a series of model experiments designed to establish the site of reaction of isoquinolinone anions with halogenomethyl arenes and to optimise the reaction conditions. The anion formed from 5-iodoisoquinolinone 18a and lithium hexamethyldisilazide was benzylated in high yield by benzyl chloride, giving 20a. The 5-bromo analogue 18c was also converted into the N-(4-methoxybenzyl) derivative 20c under these conditions. Benzylation of the sodium anion of isoquinolinone 18d with benzyl bromide in DMF was also highly efficient in forming **20d**, although the yield in the corresponding benzylation of 5-methylisoquinolinone 18b to give 20b was poor. However, treatment of the anion derived from reaction of isoquinolin-1-one 18d with sodium hydride and with lithium hexamethyldisilazide with the chloromethylnitrofuran 8a failed to give the required N-(nitrofuranylmethyl)isoquinolinone 19. Compound 19 was formed in poor isolated yield (24%) when the sodium salt of 18d was treated with the more reactive tosylate 9 in

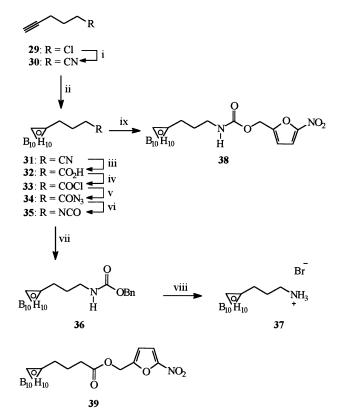
Scheme 3 Synthesis of isoquinolin-1-ones **18a–c**. *Reagents:* i, pyridinium dichromate, CH_2Cl_2 ; ii, $CH_2(CO_2H)_2$, piperidine, pyridine; iii, $HC(OEt)_3$, SOCl₂, EtOH; iv, $H_2C=CHCO_2H$, $Pd(OAc)_2$, Et_3N , EtCN; v, SOCl₂, DMF; vi, EtO_2CCl , Et_3N , Me_2CO ; vii, NaN_3 , water, 1,4-dioxane or acetone; viii, heat, Ph_2O or ($MeOCH_2CH_2OCH_2CH_2)_2O$.


Scheme 4 Synthesis of 1-(arylmethoxy)isoquinolines **20a–d**, 2-(furan-2-ylmethyl)isoquinolin-1-ones **21b,d** and 2-(5-nitrofuran-2-ylmethyl)isoquinolin-1-one **19**. *Reagents:* i, LiN(SiMe₃)₂, BnCl, THF or NaH, BnBr, DMF; ii, LiN(SiMe₃)₂, 4-MeOC₆H₄CH₂Cl, THF; iii, NaH, **9**, DMF; iv, LiN(SiMe₃)₂, **8b**, THF; v, CF₃CO₂H, HNO₃ or Cu(NO₃)₂; vi, *e.g.* HNO₃, HOAc.

DMF. Assignment of the structures of **20a,b,d** and **21b,d** as being the N-(arylmethyl)isoquinolin-1-ones rather than the 1-(arylmethoxy)isoquinolines was made by ¹³C NMR spectro-

scopy and, in the case of **20a**, by IR spectroscopy. The CH_2 groups resonated at δ 51.90, 51.68, 51.59, 44.33 and 44.16, respectively, values which correspond closely to those typical for Ar CH_2 N but not Ar CH_2 O. The IR spectrum of **20a** contained a band at 1650 cm⁻¹, indicating a carbonyl group. The structure of **20c** was assigned by analogy. Since the target nitrofuran **19** prepared by alkylation of **18d** with **9** was identical with material formed by selective nitration of **21d**, the nitrofuranyl-methylation must also have taken place at *N*, rather than at *O*.

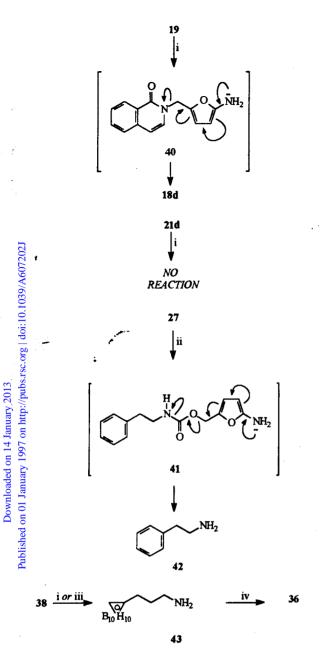
As the combined yield over two steps $7a \rightarrow 9 \rightarrow 19$ was very low (6%), an alternative longer route was developed. Reaction of the lithium salt of isoquinolin-1-one 18d with freshly prepared unstable chloromethylfuran 8b27 in THF gave a moderate yield of the N-furanylmethylisoquinoline 21d. The 5-methyl analogue 21b was formed similarly. Selective nitration at the furan 5-position was then required to form 19. The usual conditions for nitration of furans and related heterocycles are relatively mild, e.g. acetyl nitrate or nitric acid in acetic acid. However, all applications of these and other relatively weakly acidic nitrating conditions gave only the dinitrated product 22 where the isoquinolinone 4-position has also reacted. In an extensive study of substitution of isoquinolin-1-ones, Horning et al.²⁸ reported that the principal site of reaction of various electrophiles was the 4-position. However, Kawazoe and Yoshioka²⁹ noted that, on treatment of 18d with potassium nitrate in concentrated sulfuric acid, nitration took place at the 5- and 7-positions, presumably owing to deactivation of the heterocyclic ring by protonation. Adopting this approach to selective deactivation of the nitrogen heterocycle, the reaction of a solution of **21d** in trifluoroacetic acid with nitric acid or, preferably, copper(II) nitrate at low temperature effected selective mononitration on the furan, giving the target N-(nitrofuranylmethyl)isoquinolinone 19. Traces of the dinitro compound 22 were also isolated but the major by-product was the parent isoquinolinone 18d resulting from dealkylation under the acidic conditions. The 5-methyl analogue 21b gave the parent 5-methylisoquinolinone 18b as the only isolable product. Thus the sequence 7b→8b→21d→19 proceeded in higher overall yield (16%) than the more direct sequence above.


Since it was planned to form the carbamate link in the target carborane-nitrofuran **38** by addition of 5-nitrofuran-2ylmethanol **7a** to an appropriate isocyanate, model reactions for the Curtius rearrangement and addition were investigated. The model sequence, in which phenyl replaces carboranyl, also provides another target compound in which the biomimetic reductively triggered release from a pro-drug **4** can be studied. 3-Phenylpropanoic acid **23** was converted into its acid chloride **24** and hence to the acid azide **25** (Scheme 5). Curtius

Scheme 5 Synthesis of nitrofuranylmethyl *N*-(2-phenylethyl)carbamate 27. *Reagents:* i, (COCl)₂; ii, Me₃SiN₃, PhMe; iii, heat, PhMe; iv, 7a.

rearrangement in boiling toluene gave the isocyanate **26** which was not isolated but was trapped by reaction with **7a** under basic conditions, giving the nitrofuranylmethyl carbamate **27**. From some runs of this reaction, significant yields of the ester **28** were also isolated, indicating incomplete Curtius rearrangement.

Scheme 6 shows the application of this sequence to the syn-



thesis of the nitrofuranylmethyl *N*-(carboranylalkyl)carbamate **38**. Although the carboranebutanoic acid **32** has been reported ³⁰ to be formed by carboxylation of the Grignard reagent derived from 1-(3-bromopropyl)-1,2-dicarba*closo*-dodecaborane(12), the yield is low, owing to a competing cyclisation to give cyclopentano[1,2]-1,2-dicarba-*closo*dodecaborane(12). An alternative method, in which all the required carbon atoms were present as the carborane was formed, was therefore developed. Hex-5-ynenitrile 30 was prepared straightforwardly from 5-chloropentyne 29. Following the standard method for synthesis of carboranes from alkynes and decaborane(14) at elevated temperature in the presence of a Lewis base,^{16,17,31} the cyanopropylcarborane **31** was prepared in excellent yield. Acidic hydrolysis afforded the carboranebutanoic acid 32. Formation of the acid chloride 33, substitution with sodium azide and Curtius rearrangement of 34 in warm chloroform afforded the isocyanate 35. This was not isolated but was treated with benzyl alcohol under basic conditions to give the Z-protected carboranylpropylamine 36. This sequence served both as a model for the reaction of 35 with arylmethanols and as an entry into the synthesis of the hitherto unreported carboranylpropylamine. Interestingly, treatment of 36 with hydrogen in the presence of palladium did not effect deprotection and it was necessary to remove the Z group with hydrogen bromide to give the salt 37. With the carboranylpropylamine 'drug' 37 now available, the corresponding pro-drug 38 was prepared by addition of nitrofuranylmethanol 7a to the isocyanate 35. As with the phenylethyl series above, quantities of the analogous nitrofuranylmethyl ester 39 were obtained from some runs, again indicating incomplete Curtius rearrangement.

A mild method for selective chemical reduction of the nitro group was needed to test release of 'drugs' from the two types of pro-drug 1 and 4. In particular, the conditions must not permit hydrogenolysis of the 'benzylic' CH2-O or CH2-N bonds, which would not be biomimetic for the nitroreductases and the cytochrome P450 reductase enzymes. Sodium borohydride in the presence of palladium fulfils these criteria.^{17,32} although the usual solvent, methanol, was replaced by propan-2-ol in these studies to minimise any alcoholysis. Firstly, isoquinolinone 18d was released in 67% yield by this method from pro-drug 19, through the intermediacy of the aminofuran 40 (Scheme 7). The failure of the furanylmethyl analogue 21d to release 18d under the same conditions serves to validate the selectivity of the reduction by excluding a benzylic hydrogenolysis mechanism. An analogous selective reduction of the nitro group in the nitrofuranylmethyl carbamate 27 caused release of 2-phenylethylamine 42 in satisfactory yield, via the aminofuran 41. The physical properties of the carboranylpropylamine were not conducive to easy isolation from boroncontaining by-products in this reaction mixture. Therefore, after reductively triggered cleavage, the amine 43 was trapped as its Z derivative 36 by treatment with benzyl chloroformate. The Z-trapped drug was obtained in 26% yield, the relatively low yield being probably due to the isolation procedure. As a final positive control experiment, the pro-drug 38 was subjected to selective reduction of the nitro group by tin(II) chloride.³³ After the tin complex had been decomposed with sodium hydroxide, the carboranylpropylamine 43 was isolated in 40% yield.

A preliminary evaluation of the biological activities of the pro-drug **19** and the corresponding delivered drug **18d** was made to check that the pro-drug is indeed a less potent inhibitor of the target enzyme, PARP, than is the 2-unsubstituted isoquinolin-1-one drug. PARP was extracted with aqueous sodium chloride (0.4 m) from nuclei isolated from L929 murine areolar cells. The enzyme activity was measured in the presence and absence of test compounds by the rate of incorporation of radioactivity from NAD⁺ labelled with ³H in the adenosine into acid-insoluble material. At the test concentration, 10 μ M, the pro-drug **19** inhibited the enzyme by 60% whereas isoquinolin-1-one **18d** inhibited the activity by >95% at the same concentration.

In conclusion, it can be seen that a potential bioreductively triggered pro-drug system has been developed, based on reduction of 5-nitrofuran-2-ylmethyl derivatives. The nitrofuranylmethyl group has been linked directly to the 2-position of iso-

Scheme 7 Reductively activated release of isoquinolinone 18d and amines 42 and 43 from nitrofuranylmethyl ether 19 and carbamates 27 and 38, respectively. *Reagents:* i, NaBH₄, Pd-C, Pr'OH, water; ii, NaBH₄, Pd-C, MeOH, water; iii, SnCl₂, HCl, water; iv, ZCl, Et₃N, 4-pyrrolidinylopyridine, CH₂Cl₂.

quinolinone and through a carbamate to a carboranylalkylamine. Efficient syntheses of isoquinolinones 18a-c and arylmethylations of these isoquinolinones have been developed. New selective methods for nitration of a furan in the competing presence of an isoquinolinone have been identified. Biomimetic reduction of the nitro group initiated efficient expulsion of isoquinolinone 18d from pro-drug 19 and of the carboranylpropylamine 43 and carbon dioxide from the nitrofuranylmethyl carbamate pro-drug 38. This pro-drug strategy could be extended into use of nitroheterocycles of different redox potentials carrying other functionalities to modify the physical properties and biodistribution of the pro-drugs.

Experimental

NMR Spectra were obtained of solutions in deuteriochloroform, unless otherwise stated; J values are given in Hz. Solutions in organic solvents were dried with anhydrous magnesium sulfate, unless otherwise noted. Solvents were evaporated under reduced pressure. The stationary phase for chromatography was silica gel. Brine refers to saturated aqueous sodium chloride. Ether refers to diethyl ether, unless otherwise stated. DMF refers to dry dimethylformamide, THF refers to dry tetrahydrofuran and EtOAc refers to ethyl acetate.

5-Nitrofuran-2-ylmethanol 7a

5-Nitrofuran-2-carbaldehyde 6 (3.8 g, 27 mmol) was boiled under reflux with aluminium isopropoxide (5.5 g, 27 mmol) in propan-2-ol (50 cm³) for 4 h and the solvent was then evaporated. After the mixture had been treated with hydrochloric acid (1 M; 50 cm³) and diluted with ether, it was washed (water), dried and evaporated. Chromatography (EtOAc-hexane, 1:1) of the residue gave the alcohol 7a (3.8 g, 99%) as a pale yellow oil (lit., ^{18,34} oil); $\delta_{\rm H}$ 2.72 (1 H, br s, OH), 4.73 (2 H, s, CH₂), 6.57 (1 H, d, J 3.7, furan 3-H) and 7.30 (1 H, d, J 3.7, furan 4-H).

2-Chloromethyl-5-nitrofuran 8a

Thionyl chloride (383 mg, 2.8 mmol) in chloroform (1.2 cm³) was added during 5 min to 7a (220 mg, 1.5 mmol) in chloroform (1.2 cm³) and pyridine (0.30 cm³) at -10 °C and the mixture was stirred at -10 °C for 3 h. It was then washed twice with hydrochloric acid (1 M) and once with aqueous sodium hydroxide (3%), dried and evaporated. Chromatography (EtOAc-hexane, 1:1) of the residue gave the chloromethylnitrofuran 8a (40 mg, 16%) as a yellow oil (lit., ^{35,36} oil); $\delta_{\rm H}$ 4.61 (2 H, s, CH₂), 6.64 (1 H, d, J 3.7, furan 3-H) and 7.29 (1 H, d, J 3.7, furan 4-H); m/z (EI) 163/161 (M) and 126 (M - Cl).

2-(4-Methylphenylsulfonyloxymethyl)-5-nitrofuran 9

A mixture of 4-methylbenzenesulfonyl chloride (2.7 g, 14 mmol), **7a** (2.0 g, 14 mmol) and potassium hydroxide powder (2.0 g, 35 mmol) in THF (75 cm³) was stirred for 4 h after which it was evaporated. The residue was dissolved in EtOAc, and the solution was washed twice with water, dried and evaporated. Chromatography (dichloromethane–hexane, 1:1) of the residue gave the tosylate 9 (1.06 g, 25%) as a yellow wax (compound reported by Adams *et al.*³⁷); $\delta_{\rm H}$ 2.45 (3 H, s, Me), 5.10 (2 H, s, CH₂), 6.64 (1 H, d, J 3.7, furan 3-H), 7.20 (1 H, d, J 3.7, furan 4-H), 7.35 (2 H, d, J 8.0, Ar 3,5-H₂) and 7.78 (2 H, d, J 8.0, Ar 2,6-H₂); *m/z* (CI) 298 (M + H).

2-Iodobenzaldehyde 11a

2-Iodophenylmethanol **10** (20.0 g, 85.5 mmol) was stirred with pyridinium dichromate (49.2 g, 130 mmol) in dichloromethane (195 cm³) for 3 h, after which the mixture was diluted with ether (60 cm³), filtered and distilled to give the aldehyde **11a** (12.33 g, 62%) as a pale yellow wax, bp 109 °C/1.5 mmHg (lit.,³⁸ bp 129 °C/1.5 mmHg, lit.,³⁹ mp 37 °C); $\delta_{\rm H}$ 7.29 (1 H, dt, J 1.8, 7.7, 5-H), 7.46 (1 H, t, J 7.7, 4-H), 7.88 (1 H, dd, J 7.7, 1.8, 3-H), 7.96 (1 H, d, J 7.7, 6-H) and 10.08 (1 H, s, CHO).

2-(Diethoxymethyl)methylbenzene 12

Thionyl chloride (5 cm³) was added to dry ethanol (50 cm³) at 5 °C, followed by **11b** (10.0 g, 83 mmol) and triethyl orthoformate (100 g, 676 mmol). The mixture was boiled under reflux for 5 h, after which it was cooled and treated with sodium carbonate (10 g). After 15 min the mixture was diluted with ether (150 cm³) and filtered. After evaporation of the filtrate, the residue was dissolved in EtOAc, washed with aqueous potassium metabisulfite (10%) and water, dried and evaporated to give the acetal **12** (12.3 g, 76%) as a colourless oil (lit.,⁴⁰ oil); $\delta_{\rm H}$ 1.23 (6 H, t, J 7.0, 2 × CH₂CH₃), 3.53 (2 H, dq, J 9.3, 7.0, CH₂CH₃), 3.60 (2 H, dq, J 9.3, 7.0, CH₂CH₃), 5.56 [1 H, s, CH(OEt)₂], 7.15–7.25 (3 H, m, Ar 3,4,5-H₃) and 7.56 (1 H, m, Ar 6-H). This compound was taken forward without further characterisation.

(E)-3-(2-Iodophenyl)propenoic acid 13a

2-Iodobenzaldehyde 11a (5.00 g, 21.5 mmol) was boiled under reflux with propanedioic acid (4.89 g, 47 mmol) and piperidine (0.2 cm^3) in pyridine (10 cm^3) for 1 h. The cooled mixture was

added to hydrochloric acid (2 M; 150 cm³) to give a precipitate. This was washed with water and dried to give the acid 13a (4.86 g, 82%) as colourless needles, mp 218–220 °C (lit.,⁴¹ mp 212–214 °C); $\delta_{\rm H}$ 6.48 (1 H, d, J 15.8, 2-H), 7.16 (1 H, t, J 8.1, Ar 4-H), 7.44 (1 H, t, J 8.1, Ar 5-H), 7.63 (1 H, d, J 15.8, 3-H), 7.83 (2 H, m, Ar 3,6-H₂) and 12.67 (1 H, br, CO₂H).

(E)-3-(2-Methylphenyl)propenoic acid 13b

The acetal 12 was treated with propanedioic acid, pyridine and piperidine as for the synthesis of 13a from 11a, except that the reaction time was 3.5 h. Chromatography (EtOAc-hexane, 1:1) of the crude product gave the acid 13b (3.62 g, 86%) as a white solid, mp 178 °C (lit.,²⁴ 180 °C); $\delta_{\rm H}$ 2.47 (3 H, s, Me), 6.39 (1 H, d, J 15.9, 2-H), 7.20–7.35 (3 H, m, Ar 3,4,5-H₃), 7.59 (1 H, ca. d, J ca. 7.5, Ar 6-H), 8.10 (1 H, d, J 15.9, 3-H) and 11.5 (1 H, br, CO₂H).

(E)-3-(2-Bromophenyl)propenoic acid 13c

2-Bromoiodobenzene 14 (14.05 g, 50 mmol) was boiled under reflux with propenoic acid (4.73 g, 66 mmol), palladium(II) acetate (111 mg, 490 µmol) and triethylamine (12.55 g, 124 mmol) in propanenitrile (20 cm³) for 1.5 h. Hydrochloric acid (2 M; 800 cm³) was added to the cooled mixture. A solution of the resulting precipitate, in hot ethanol, was filtered and cooled to give the acid 13c (8.53 g, 76%) as white crystals, mp 202–204 °C (decomp.) (lit.,⁴² mp 212–212.5 °C); $\delta_{\rm H}[(\rm CD_3)_2SO]$ 6.57 (1 H, d, J 16.1, 2-H), 7.35 (1 H, dt, J 1.5, 7.7, Ar 4-H), 7.44 (1 H, t, J 7.7, Ar 5-H), 7.71 (1 H, dd, J 7.7, 1.5, Ar 6-H), 7.83 (1 H, d, J 16.1, 3-H), 7.90 (1 H, dd, J 7.7, 1.5, Ar 3-H) and 12.66 (1 H, br, CO₂H).

5-Iodoisoquinolin-1-one 18a

The acid 13a (4.00 g, 14.6 mmol) was stirred with thionyl chloride (10 cm³) and DMF (0.05 cm³) for 16 h and then evaporated. The residue (crude 15a), in 1,4-dioxane (5 cm³), was added to sodium azide (2.85 g, 44 mmol) in water (6 cm³) and 1,4dioxane (6 cm³) during 15 min. After the mixture had been stirred for 45 min, it was diluted with water (11 cm³) and extracted thrice with dichloromethane. The dried extract was evaporated to give a residue (crude 16a) which, in dichloromethane (10 cm³), was added to boiling dry bis[2-(2-methoxyethoxy)ethyl] ether (12 cm³) in portions. The solution was boiled under reflux for 1 h and then cooled. The resulting solid was recrystallised (acetone) to give 5-iodoisoquinolin-1-one 18a (1.65 mg, 42%) as white needles, mp 238-244 °C (decomp.) (Found: C, 39.8; H, 2.32; N, 5.06. C₀H₆INO requires C, 39.9; H, 2.23; N, 5.17%); $\delta_{H}[(CD_{3})_{2}SO]$ 6.55 (1 H, d, J 7.3, 4-H), 7.23 (1 H, t, J 7.7, 7-H), 7.31 (1 H, d, J 7.3, 3-H), 8.22 (2 H, m, 6,8-H₂) and 11.52 (1 H, br, NH); m/z (EI) 270.9492 (M, 100%. C₉H₆INO requires *M*, 270.9494).

5-Methylisoquinolin-1-one 18b

Compound 13b (1.4 g, 8.6 mmol) was stirred with thionyl chloride (15 cm³) and DMF (0.05 cm³) for 16 h and then evaporated. The residue (crude 15b) was stirred with sodium azide (2.0 g, 30 mmol) in acetone (14 cm³), water (4 cm³) and acetone (4 cm³) for 50 min at 5 °C after which it was treated with diphenyl ether (10 cm^3) . The suspension was washed with water, dried $(CaCl_2)$ and evaporated. The residual solution of crude 16b was added to boiling diphenyl ether (15 cm³) during 15 min and the mixture was heated at reflux for 2 h. It was then evaporated and the residue was chromatographed (EtOAc) to give the isoquinolinone 18b (900 mg, 66%) as a white solid, mp 180-181 °C (lit.,43 mp 182–183 °C); δ_H 2.55 (3 H, s, Me), 6.71 (1 H, d, J 7.3, 4-H), 7.25 (1 H, d, J 7.3, 3-H), 7.40 (1 H, dd, J 7.9, 7.0, 7-H), 7.51 (1 H, d, J 7.0, 6-H), 8.31 (1 H, d, J 7.9, 8-H) and 12.16 (1 H, br, NH); $\delta_{\rm C}$ 19.17 (CH₃), 103.47 (CH), 125.18 (CH), 125.95 (C_a), 126.10 (C_q), 126.39 (CH), 127.47 (CH), 133.45 (CH), 137.18 (C_a) and 164.90 (C_a); m/z (EI) 160.0712 (M. C₉¹³CH₉NO requires M, 160.0718) and 159.0682 (100%, M. $C_{10}H_9NO$ requires M, 159.0684).

5-Bromoisoquinolin-1-one 18c

Triethylamine (1.6 g, 16 mmol) was added to 13c (3.00 g, 13 mmol) in dry acetone (35 cm³) at 0 °C followed by ethyl chloroformate (1.72 g, 16 mmol) in dry acetone (3 cm³). The mixture was stirred at 0 °C for 30 min, after which it was treated with sodium azide (1.2 g, 18.5 mmol) in water (3 cm³), added during 15 min. The mixture was poured onto ice and extracted with dichloromethane. The extract was dried (CaCl₂) and then added carefully to boiling diphenyl ether (10 cm³). The solution was boiled under reflux for 1 h after which it was evaporated and the residue was chromatographed (ether). Recrystallisation (acetonitrile) of the crude product gave the title compound 18c (305 mg, 10%) as white needles, mp 242-244 °C (Found: C, 47.9; H, 2.59; N, 6.14. C₉H₆BrNO requires C, 48.2; H, 2.70; N, $(6.25\%); \delta_{H}[(CD_{3})_{2}SO]$ 6.65 (1 H, d, J 7.3, 4-H), 7.36 (1 H, t, J 7, 3.4), 7.36 (1 H 7-H), 7.42 (1 H, d, J 7.3, 3-H), 8.02 (1 H, d, J 7, 6-H), 8.21 (1 H, d, J 7, 8-H) and 11.55 (1 H, br, NH); m/z (EI) 224.9628 (M. C₉H₆⁸¹BrNO requires *M*, 224.9612) and 222.9635 (M. $C_{0}H_{6}^{79}BrNO$ requires *M*, 222.9633).

2-(5-Nitrofuran-2-ylmethyl)isoquinolin-1-one 19

Method A. Sodium hydride (60% in oil; 6.0 mg, 153 μ mol) was stirred with 18d (22 mg, 153 μ mol) in DMF (1.0 cm³) for 1 h and the mixture was then cooled to 5 °C. Compound 9 (50 mg, 168 μ mol) was added to the mixture which was then stirred for 2 d at 20 °C. Evaporation of the mixture and chromatography (EtOAc) of the residue gave the *title compound* 19 (10 mg, 24%), the properties of which are described below.

Method B. Conc. nitric acid (60%; 0.10 cm³) was stirred with 21d (118 mg, 520 µmol) in trifluoroacetic acid (1.0 cm³) at -10 °C for 1 h and at 20 °C for 16 h. The mixture was adjusted to pH 5 with aqueous sodium hydroxide (2 M) and was then extracted with EtOAc. The extract was washed with water, aqueous sodium hydrogen carbonate and brine, dried and evaporated. Chromatography (first column using EtOAchexane, 1:1; and then a second column using dichloromethane) of the residue afforded the nitrofuran 19 (21 mg, 17%) as a yellow solid, mp 77-79 °C; δ_H 5.23 (2 H, s, CH₂), 6.58 (1 H, d, J 7.3, isoquinoline 4-H), 6.66 (1 H, d, J 3.6, furan 3-H), 7.24 (1 H, d, J7.3, isoquinoline 3-H), 7.25 (1 H, d, J 3.6, furan 4-H), 7.5 (2 H, m, isoquinoline 5,7-H₂), 7.57 (1 H, br t, J 7.5, isoquinoline 6-H) and 8.39 (1 H, br d, J 7.9, isoquinoline 8-H); m/z (EI) 270.0637 (M. C₁₄H₁₀N₂O₄ requires M, 270.0641) and 224 $(M - NO_2).$

Method C. Copper(II) nitrate (118 mg, 480 μ mol) was added to 21d (55 mg, 240 μ mol) in trifluoroacetic acid (2.0 cm³) at -20 °C and the mixture was stirred at 20 °C for 2 d. Work-up as for Method B afforded the *nitrofuran* 19 (28 mg, 42%) with properties as described above.

5-Iodo-2-phenylmethylisoquinolin-1-one 20a

Lithium hexamethyldisilazide (1.0 M in THF; 0.6 cm³, 600 µmol) was stirred with 18a (100 mg, 370 µmol) in THF (10 cm³) for 2 h, after which chloromethylbenzene (60 mg, 480 µmol) in THF (10 cm³) was added to the mixture, followed by sodium iodide (5 mg). After the mixture had been stirred for 5 d, it was evaporated and the residue, in EtOAc, was washed with water and brine, dried and evaporated. Chromatography (EtOAchexane, 3:7) of the residue gave the N-benzylisoquinolinone 20a (123 mg, 92%) as a white solid, mp 118-120 °C (Found: H, 3.46; N, 3.82. C₁₆H₁₂INO requires H, 3.35; N, 3.88%); v_{max}(KBr disc)/ cm $^{-1}$ 1650, 1620 and 1585; $\delta_{\rm H}$ 5.22 (2 H, s, CH₂), 6.72 (1 H, d, J 7.3, isoquinoline 4-H), 7.19 (2 H, m, isoquinoline 3,7-H₂), 7.33 (5 H, m, Ph-H₅), 8.15 (1 H, dd, J7.7, 1.3, isoquinoline 6-H) and 8.47 (1 H, dd, J 8.1, 1.3, isoquinoline 8-H); $\delta_{\rm C}$ 51.90 (CH₂), 96.29 (C_q), 109.91 (CH), 127.21 (C_q), 127.96 (CH), 128.14 (CH + C_q), 128.69 (CH), 128.86 (CH), 132.55 (CH), 136.41

(C_q), 139.02 (C_q), 143.01 (CH) and 161.45 (C_q); m/z (EI) 360.9960 (M. C₁₆H₁₂INO requires M, 360.9964) and 91 (100%, Bn).

5-Methyl-2-phenylmethylisoquinolin-1-one 20b

Sodium hydride (60% in oil; 13 mg, 320 µmol) was stirred with 18b (50 mg, 314 µmol) in DMF (3.0 cm³) for 1 h after which bromomethylbenzene (59 mg, 350 µmol) was added to the mixture; stirring was then continued for 20 h. Evaporation of the mixture gave a residue, which, as a solution in EtOAc, was washed with water, dried and evaporated. Chromatography (dichloromethane-dichloromethane-methanol 49:1) of the residue furnished the N-benzylisoquinolinone 20b (15 mg, 19%) as a white solid, mp 84–86 °C; $\delta_{\rm H}$ 2.51 (3 H, s, Me), 5.23 (2 H, s, CH₂), 6.61 (1 H, d, J 7.6, isoquinoline 4-H), 7.12 (1 H, d, J 7.6, isequinoline 3-H), 7.30-7.35 (5 H, m, Ph-H₅), 7.38 (1 H, t, J7.6, isoquinoline 7-H), 7.47 (1 H, br d, J 7.5, isoquinoline 6-H) and 8.34 (1 H, br d, J 7.5, isoquinoline 8-H); $\delta_{\rm C}$ 18.93 (CH₃), 51.68 (CH₂), 103.13 (CH), 126.07 (CH), 126.58 (C_q), 127.80 (CH), 127.93 (CH), 128.39 (C_q), 128.79 (CH), 130.90 (CH), 133.03 (CH), 133.16 (CH), 135.91 (Cq), 136.91 (Cq) and 162.50 (Cq); mt (EI) 249.1153 (M. C₁₇H₁₅NO requires M, 249.1154) and 91 (100%, Bn).

-5-Bromo-2-(4-methoxyphenylmethyl)isoquinolin-1-one 20c

Compound 18c was treated with lithium hexamethyldisilazide, sodium iodide and 1-chloromethyl-4-methoxybenzene in THF as for the synthesis of 20a to give the *title compound* 20c (156 mg, 100%) as a white solid, mp 98–100 °C (Found: C, 59.4; H, 448; N, 3.88. $C_{17}H_{14}BrNO$ requires C, 59.3; H, 4.10; N, 4.07%); 50H 3.78 (3 H, s, Me), 5.15 (2 H, s, CH₂), 6.84 (3 H, m, isoquinoline 4-H + Ar 3,5-H₂), 7.18 (1 H, d, J7.7, isoquinoline 3-H), 7.3 (3H, m, isoquinoline 7-H + Ar 2,6-H₂), 7.87 (1 H, d, J 7.7, isoquinoline 6-H) and 8.43 (1 H, d, J 8, isoquinoline 8-H); *mlz* (CI) 345/343 (M + H) and 121 (100%, MeOBn).

2 Phenylmethylisoquinolin-1-one 20d

Sodium hydride (60% in oil; 15 mg, 340 µmol) was stirred with 18d (50 mg, 340 µmol) in DMF (3.0 cm³) for 1 h after which bromomethylbenzene (65 mg, 380 µmol) was added to the mixture; stirring was continued for 2 h. Evaporation of the mixture gave a residue which, as a solution in EtOAc, was washed with water, dried and evaporated. Chromatography (dichloromethane-methanol, 19:1) of the residue gave the title compound 20d (77 mg, 96%) as a colourless oil (lit.,44 mp 67-69 °C); δ_H 5.20 (2 H, s, CH₂), 6.46 (1 H, d, J 7.5, isoquinoline 4-H), 7.06 (1 H, d, J 7.4, isoquinoline 3-H), 7.30 (5 H, m, Ph-H₅), 7.49 (2 H, m, isoquinoline 5,7-H₂), 7.61 (1 H, dt, J 1.5, 7.5, isoquinoline 6-H) and 8.42 (1 H, br d, J 7.5, isoquinoline 8-H); $\delta_{\rm C}$ 51.59 (CH₂), 106.37 (CH), 125.85 (CH), 126.20 (C_q), 126.80 (CH), 127.73 (CH), 127.86 (CH), 127.96 (CH), 128.70 (CH), 131.20 (CH), 132.14 (CH), 136.81 (C_q), 136.91 (C_q) and 162.16 (C_q); m/z (EI) 236.1031 (M. C₁₅¹³CH₁₃NO requires M, 236.1031) and 235.0995 (M. C₁₆H₁₃NO requires M, 235.0997); m/z (FAB positive ion) 236 (100%, M + H) and 91 (Bn).

2-(Furan-2-ylmethyl)-5-methylisoquinolin-1-one 21b

Lithium hexamethyldisilazide (1.0 M in THF; 6.0 cm³, 6.0 mmol) was stirred with **18b** (450 mg, 2.8 mmol) in THF (40 cm³) for 2 h. Crude **8b** (as in the synthesis of **21d**) (3.3 g, 28 mmol) in THF (30 cm³) was added to this solution at 0 °C and the mixture was boiled under reflux for 3 d. Evaporation of the mixture gave a residue which, dissolved in EtOAc, was washed with water and brine, dried and evaporated. Chromatography (EtOAc-hexane, 1:1) and further chromatography (EtOAc-hexane, 1:5) of the residue gave the *title compound* **21b** (84 mg, 12%) as a pale yellow solid, mp 85–87 °C (lit.,⁴⁵ mp 84–86 °C for 2-([¹⁸O]furan-2-ylmethyl)-5-methylisoquinolin-1-one (8% isotopic enrichment); $\delta_{\rm H}$ 2.51 (3 H, s, Me), 5.20 (2 H, s, CH₂), 6.34 (1 H, dd, J 3.1, 1.8, furan 4-H), 6.42 (1 H, d, J 3.1, furan 3-H),

6.62 (1 H, d, J 7.5, isoquinoline 4-H), 7.21 (1 H, d, J 7.5, isoquinoline 3-H), 7.37 (2 H, m, furan 5-H + isoquinoline 7-H), 7.46 (1 H, br d, J 7.2, isoquinoline 6-H) and 8.32 (1 H, br d, J 8.0, isoquinoline 8-H); $\delta_{\rm C}$ 18.91 (CH₃), 44.33 (CH₂), 103.04 (CH), 109.42 (CH), 110.64 (CH), 125.95 (CH), 126.37 (C_q), 126.54 (CH), 130.54 (CH), 133.06 (CH), 133.17 (CH), 135.90 (C_q), 142.76 (CH), 149.78 (C_q) and 162.14 (C_q); m/z (EI) 240.0980 (M. C₁₄¹³CH₁₃NO₂ requires M, 240.0980), 239.0945 (M. C₁₅H₁₃NO₂ requires M, 239.0946) and 81 (furanCH₂).

2-(Furan-2-ylmethyl)isoquinolin-1-one 21d

Thionyl chloride (4.05 g, 35 mmol) in chloroform (5 cm³) was added during 10 min to 7b (2.0 g, 2 mmol) in chloroform (5 cm³) and pyridine (3 cm³) at -10 °C. The mixture was stirred at this temperature for 3 h and then poured into hydrochloric acid (1 M) at 0 °C. The organic phase was separated, washed rapidly with cold hydrochloric acid (1 M) and cold aqueous sodium hydroxide (3%), dried (K_2CO_3) and was evaporated to give crude 2-chloromethylfuran 8b (1.08 g, 45%) as an unstable pale yellow oil; $\delta_{\rm H}$ 4.63 (2 H, s, CH₂), 6.4 (2 H, m, furan 3,4-H₂) and 7.46 (1 H, dd, J 1.8, 0.9, furan 5-H). Lithium hexamethyldisilazide (1.0 m in THF; 7.0 cm³, 7.0 mmol) was stirred with 18d (500 mg, 3.4 mmol) in THF (50 cm³) for 1.5 h after which crude 8b (1.08 g, 9.3 mmol) in THF (50 cm³) was added to it at -10 °C, followed by sodium iodide (50 mg). The mixture was stirred at 20 °C for 24 h after which it was evaporated to give a residue, which, dissolved in EtOAc, was washed with water and brine, dried and evaporated. Chromatography (EtOAc-hexane, 1:2) gave the title compound 21d (646 mg, 83%) as a pale yellow oil; δ_H 5.17 (2 H, s, CH₂), 6.31 (1 H, dd, J 3.0, 2.0, furan 4-H), 6.40 (1 H, br d, J 3.0, furan 3-H), 6.45 (1 H, d, J 7.3, isoquinoline 4-H), 7.14 (1 H, d, J 7.3, isoquinoline 3-H), 7.35 (1 H, dd, J 2.0, 1.0, furan 5-H), 7.44 (1 H, dt, J 1.0, 6.8, isoquinoline 7-H), 7.45 (1 H, d, J 7.8, isoquinoline 5-H), 7.57 (1 H, dt, J 1.0, 7, isoquinoline 6-H) and 8.42 (1 H, br d, J 7.8, isoquinoline 8-H); δ_c 44.16 (CH₂), 106.19 (CH), 109.28 (CH), 110.49 (CH), 125.77 (CH), 125.99 (Cq), 126.71 (CH), 127.77 (CH), 130.79 (CH), 132.10 (CH), 136.86 (C_q), 142.62 (CH), 149.62 (C_q) and 161.75 (C_a); m/z (EI) 226.0819 (M. C₁₃¹³CH₁₁NO₂ requires M, 226.0823), 225.0788 (M. C₁₄H₁₁NO₂ requires M, 225.0790) and 81 (furanCH₂).

4-Nitro-2-(5-nitrofuran-2-ylmethyl)isoquinolin-1-one 22

Fuming nitric acid (90%; 0.09 cm³, 2.0 mmol) was added to acetic anhydride (0.2 cm³) at -30 °C. The mixture was stirred with 21d (92 mg, 410 μ mol) in acetic anhydride (1.0 cm³) at -10 °C for 1 h and then poured onto ice. After adjustment to pH 5 with aqueous sodium hydroxide (2 M), the mixture was extracted with EtOAc. The extract was washed with aqueous sodium hydrogen carbonate and brine, dried and evaporated. Chromatography (EtOAc-hexane, 1:1) of the residue gave the dinitro compound 22 (26 mg, 20%) as a yellow oil; $\delta_{\rm H}$ 5.34 (2 H, s, CH₂), 6.78 (1 H, d, J 3.8, furan 3-H), 7.29 (1 H, d, J 3.7, furan 4-H), 7.66 (1 H, ca. t, J ca. 8, isoquinoline 6-H or 7-H), 7.88 (1 H, ca. t, J ca. 8, isoquinoline 7-H or 6-H), 8.46 (1 H, dd, J 8.1, 1.2, isoquinoline 5-H or 8-H), 8.68 (1 H, br d, J 8.5, isoquinoline 8-H or 5-H) and 8.77 (1 H, s, isoquinoline 3-H); $\delta_{\rm C}$ 45.94 (CH₂), 112.12 (CH), 113.62 (CH), 123.99 (CH), 124.30 (C_q), 128.93 (CH), 129.02 (CH), 129.15 (C_q), 134.75 (CH), 135.00 (C_q), 135.95 (CH), 150.88 ($2 \times C_q$) and 161.08 (C_q); m/z (EI) 315.0487 (M. C14H9N3O6 requires M, 315.0491), 270 $(M - NO_2)$ and 190 (4-nitroisoquinolin-1-one).

5-Nitrofuran-2-ylmethyl N-(2-phenylethyl)carbamate 27 and 5-nitrofuran-2-ylmethyl 3-phenylpropanoate 28

3-Phenylpropanoic acid 23 (100 mg, 670 μ mol) was stirred with oxalyl chloride (1.0 cm³) for 2 h after which it was evaporated. The resulting residue (crude 24) was boiled under reflux with toluene (1 cm³) and azidotrimethylsilane (87 mg, 730 μ mol) for 24 h after which compound 7a (95 mg, 670 mmol), in toluene (1 cm³), was added to it; boiling was continued for 4 h. After evaporation of the mixture, the residue, dissolved in EtOAc, was washed with water and brine and evaporated. Chromatography (dichloromethane-hexane, 1:1) gave the ester 28 (66 mg, 34%) as a yellow oil; $\delta_{\rm H}$ 2.70 (2 H, t, J 7.1, CH₂CO), 2.96 (2 H, t, J 7.1, PhCH₂), 5.09 (2 H, s, OCH₂), 6.54 (1 H, d, J 3.7, furan 3-H) and 7.1–7.3 (6 H, m, Ph-H₅ + furan 4-H); m/z (CI) 276.0872 (M + H. C₁₄H₁₄NO₅ requires MH, 276.0872) and 133 (100%, PhCH₂CH₂CO). Further elution gave the carbamate 27 (62 mg, 32%) as a colourless gum; $\delta_{\rm H}$ 2.82 (2 H, t, J 7.0, PhCH₂), 3.46 (2 H, q, J 7.1, NCH₂), 4.90 (1 H, br, NH), 5.08 (2 H, s, OCH₂), 6.60 (1 H, d, J 3.7, furan 3-H) and 7.1–7.3 (6 H, m, Ph-H₅ + furan 4-H); m/z (CI) 291 (M + H) and 122 (Ph-CH₂CH₂NH₂); m/z (FAB positive ion) 291.1002 (M + H. C₁₄H₁₅N₂O₅ requires MH, 291.0981).

Hex-5-ynenitrile 30

A mixture of 5-chloropent-1-yne **29** (10.0 g, 97 mmol), potassium cyanide (**CAUTION**) (9.8 g, 150 mmol), ethanol (100 cm³) and water (30 cm³) was boiled under reflux for 2 d after which it was diluted with water (50 cm³) and extracted with ether. The extract was dried and evaporated and the residue was chromatographed (EtOAc-hexane, 1:1 \rightarrow EtQAc) to give the nitrile **30** (3.2 g, 36%) as a colourless oil (lit.,⁴⁶ oil, lit.,⁴⁷ liquid); v_{max}/cm^{-1} 3300, 2260 and 2040; $\delta_{\rm H}$ 1.88 (2 H, quintet, J 7.0, 3-H₂), 2.09 (1 H, t, J 2.6, 6-H), 2.38 (2 H, dt, J 2.6, 7.0, 4-H₂) and 2.52 (2 H, t, J 7.0, 2-H₂).

⁵Decaborane(14) (B₁₀H₁₄; 328 mg, 2.7 mmol) was stirred with dry acetonitrile (5.0 cm³) for 3 h, after which compound **30** (250 mg, 2.7 mmol) was added to the mixture. After being boiled under reflux for 5 d, the mixture was evaporated and the residue was chromatographed (pentane-dichloromethane, 2:1) to give the cyanopropylcarborane 31 (420 mg, 74%) as a colourless Egum (lit.,¹³ mp 81–82 °C); v_{max}/cm^{-1} 2560 and 2260; $\delta_{H}(CDCl_{3})$ [2]1.86 (2 H, m, CH₂CH₂CH₂), 2.2 (10 H, br q, J_{BH} ca. 150, 10 × BH), 2.35 (2 H, m, carborane-CH₂), 2.39 (2 H, t, J 6.7, CH₂CN) and 3.67 (1 H, br, carborane 2-H); $\delta_{\rm H}[(\rm CD_3)_2\rm CO]$ 1.87 $(2 \text{ H}, \text{ m}, \text{CH}_2\text{CH}_2\text{CH}_2), 2.2 (10 \text{ H}, \text{ br q}, J_{BH} ca. 150, 10 \times \text{BH}),$ 2.50 (2 H, m, carborane-CH₂), 2.49 (2 H, t, J 7.0, CH₂CN) and 4.69 (1 H, br, carborane 2-H); $\delta_{B}[(CD_{3})_{2}CO] = 14.09$ (2 B, J_{BH} 135), -12.80 (4 B, J_{BH} 145), -10.71 (2 B, J_{BH} 149), -7.04 (1 B, J_{BH} 146) and -3.95 (1 B, J_{BH} 146); m/z (EI) cluster centred at 211 (M).

1,2-Dicarba-closo-dodecaboran(12)-1-ylbutanoic acid 32

Compound 31 (1.54 g, 7.3 mmol) was boiled under reflux with conc. sulfuric acid (35 cm³) and water (7 cm³) for 30 h, after which it was diluted with water (200 cm³). The resulting precipitate, dissolved in dichloromethane, was washed with water and brine, dried and evaporated to give the acid 32 (1.45 g, 87%) as a white solid, mp 155–157 °C (lit.,⁴⁸ mp 158–159 °C); $\delta_{\rm H}$ 1.81 (2 H, m, CH₂CH₂CH₂), 2.2 (10 H, br q, $J_{\rm BH}$ ca. 150, 10 × BH), 2.27 (2 H, m, carborane-CH₂), 2.37 (2 H, t, J 7.0, CH₂CO), 3.58 (1 H, br, carborane 2-H) and 10.5 (1 H, br, CO₂H); *mlz* (EI) cluster centred at 230 (M), cluster centred at 213 (M – OH).

Phenylmethyl N-[3-(1,2-dicarba-closo-dodecaboran-1-yl)propy]]carbamate 36

The isocyanate **35** (90 mg, 0.4 mmol) (as in the synthesis of **38**) was boiled under reflux with phenylmethanol (42 mg, 0.4 mmol) and triethylamine (5 mg) in chloroform (5 cm³) for 24 h. The mixture was evaporated and the residue, dissolved in EtOAc, was washed with water and brine, dried and evaporated. Chromatography (dichloromethane-hexane, 1:1) of the residue gave the *carbamate* **36** (62 mg, 48%) as a pale yellow oil; $\delta_{\rm H}$ 1.69 (2 H, m, CH₂CH₂CH₂), 2.2 (10 H, br q, $J_{\rm BH}$ ca. 150, 10 × BH), 2.22 (2 H, m, carborane-CH₂), 3.17 (2 H, q, J 6.6, NCH₂), 3.58 (1 H, br, carborane 2-H), 4.78 (1 H, br, NH), 5.09

(2 H. s. PhCH₂) and 7.35 (5 H, s. Ph-H₅); $\delta_{\rm C}$ 29.97 (CH₂), 35.19 (CH₂), 39.96 (CH₂), 61.27 (CH), 66.91 (CH₂), 74.52 (C_q), 128.15 (CH), 128.30 (CH), 128.59 (CH), 136.26 (C_q) and 156.42 (C_q); $\delta_{\rm B}$ ⁽¹H-decoupled) –11.77 (6 B, m), -9.30 (2 B, s), -5.69 (1 B, s) and -2.25 (1 B, s); *m/z* (EI) 337.2822 (M. C₁₃H₂₅¹¹B₁₀NO₂ requires 337.2816), 336.2844 (M. C₁₃H₂₅¹¹B₉¹⁰BNO₂ requires *M*, 336.2852), 335.2874 (M. C₁₃H₂₅¹¹B₉¹⁰B₂NO₂ requires *M*, 335.2888), 334.2898 (M. C₁₃H₂₅¹¹B₇¹⁰B₃NO₂ requires *M*, 334.2925), 333.2923 (M. C₁₃H₂₅¹¹B₁⁰B₄NO₂ requires *M*, 333.2961) and 332.2946 (M. C₁₃H₂₅¹¹B₅¹⁰B₅NO₂ requires *M*, 332.2997).

1-(3-Aminopropyl)-1,2-dicarba-*closo*-dodecaborane(12) hydrobromide 37

The carbamate 36 (60 mg, 180 µmol) was stirred with hydrogen bromide in acetic acid (5%; 6 cm³) for 30 min, after which the mixture was evaporated. The residue was triturated with dry ether (5 × 10 cm³) and dried to afford the *aminopropylcarborane* salt 37 (39 mg, 98%) as a white solid, mp 295–297 °C; $\delta_{\rm H}(\rm D_2O)$ 1.86 (2 H, *ca.* quintet, *J ca.* 7, CH₂CH₂CH₂), 2.2 (10 H, br q, *J*_{BH} *ca.* 150, 10 × BH), 2.38 (2 H, *ca.* t, *J ca.* 7, carborane-CH₂), 2.95 (2 H, t, *J* 7.5, NCH₂) and 4.38 (1 H, br, carborane 2-H); *m/z* (EI) 203.2436 (M. C₅H₁₉¹¹B₁₀N requires *M*, 203.2448).

5-Nitrofuran-2-ylmethyl *N*-[3-(1,2-dicarba-*closo*-dodecaboran-(12)-1-yl)propyl]carbamate 38 and 5-nitrofuran-2-ylmethyl 4-[1,2-dicarba-*closo*-dodecaboran(12)-1-yl]butanoate 39

Compound 32 (500 mg, 2.2 mmol) was boiled under reflux with thionyl chloride (25 cm³) and DMF (0.05 cm³) for 16 h. After the evaporation of the solvent, the residue (crude 33) was stirred with sodium azide (CAUTION) (495 mg, 7.6 mmol) in acetone (25 cm³) and water (5 cm³) at 0 °C for 45 min, after which it was diluted with chloroform (100 cm³). The suspension was washed with water and brine, dried and evaporated to give crude 1,2-dicarba-closo-dodecaboran-1-ylbutanoyl azide 34; v_{max}/cm^{-1} 2600, 2150 and 1725. This material was stirred in chloroform (10 cm³) at 40 °C for 27 h to give a solution of crude 1-(3-isocyanatopropyl)-1,2-dicarba-closo-carborane(12) 35; v_{max}/cm^{-1} 2600 and 2280. This solution was boiled under reflux with 7a (310 mg, 2.2 mmol) and triethylamine (10 mg) for 2 d after which it was evaporated. The residue, dissolved in EtOAc, was washed with water and brine, dried and evaporated. Chromatography (dichloromethane-methanol, 40:1) of the residue gave the ester 39 (90 mg, 14%) as a pale yellow wax; $\delta_{\rm H}$ 1.82 (2 H, m, CH₂CH₂CH₂), 2.2 (10 H, br q, J_{BH} ca. 150, $10 \times BH$), 2.25 (2 H, m, carborane-CH₂), 2.38 (2 H, t, J 7.0, CH₂CO), 3.60 (1 H, br, carborane 2-H), 5.12 (2 H, s, furan-CH₂), 5.25 (1 H, br, NH), 6.63 (1 H, d, J 3.7, furan 3-H) and 7.29 (1 H, d, J 3.7, furan 4-H); m/z (CI) cluster centred at 355 (M + H), cluster centred at 213 [carborane(CH₂)₃CO] and 143 (nitrofuranmethanol); m/z (FAB positive ion) 357.2477 (M. C₁₁H₂₂¹¹B₉¹⁰BNO₅ requires M, 357.2465). Further elution gave the carbamate 38 (289 mg, 36%) as a pale yellow oil; $\delta_{\rm H}$ 1.40 (2 H, m, CH₂CH₂CH₂), 2.2 (10 H, br q, J_{BH} ca. 150, 10 × BH), 2.48 (2 H, m, carborane-CH₂), 3.37 (2 H, ca. q, J ca. 7, NCH₂), 3.68 (1 H, br, carborane 2-H), 4.73 (2 H, s, furan-CH₂), 5.25 (1 H, br, NH), 6.56 (1 H, d, J 3.6, furan 3-H) and 7.29 (1 H, d, J 3.6, furan 4-H); $\delta_{\rm C}$ 29.74 (CH₂), 35.13 (CH₂), 40.12 (CH₂), 57.96 (CH₂), 61.35 (CH), 74.39 (C_q), 112.11 (CH), 113.05 (CH), 153.00 (C_q) and 155.43 (C_q) (one C_q was not observed); $\delta_{B}(^{1}\text{H-decoupled}) = 11.83 (6 \text{ B, m}), -9.30 (2 \text{ B, s}),$ -5.69 (1 B, s) and -2.31 (1 B, s); m/z (CI) cluster centred at 371 (M + H); m/z (FAB positive ion) 372.2599 (M + H. $C_{11}H_{23}^{11}B_9^{10}BN_2O_5$ requires MH^+ , 372.2574) and 369.2704 (M + H. $C_{11}H_{23}^{11}B_6^{10}B_4N_2O_5$ requires MH^+ , 369.2683).

Reductively activated release of isoquinolin-1-one 18d from 2-(5-nitrofuran-2-ylmethyl)isoquinolin-1-one 19 (sodium borohydride-palladium method)

Sodium borohydride (16 mg, 410 µmol) in water (0.3 cm³) was

stirred with 19 (37 mg, 140 µmol) and palladium-on-charcoal (10%; 4 mg) in propan-2-ol (2.0 cm³) for 16 h after which the suspension was filtered through Celite[®]. Evaporation of the mixture gave a residue, which, dissolved in dichloromethane, was washed with water and brine, dried and evaporated to give isoquinolin-1-one 18d (13 mg, 67%) with properties as described above.

Control experiment for sodium borohydride-palladium method of reductively activated release

Sodium borohydride (15 mg, 400 µmol) in water (0.3 cm³) was stirred with 21d (30 mg, 133 µmol) and palladium-on-charcoal (10%; 3 mg) in propan-2-ol (1.0 cm³) for 2 d. After the suspension had been filtered through Celite®, it was evaporated and the residue, dissolved in dichloromethane, was washed with water and brine, dried and evaporated to give recovered 21d (28 mg, 94%).

Reductively activated release of 2-phenylethylamine 42 from 5-hitrofuran-2-ylmethyl N-(2-phenylethyl)carbamate 27 (sodium borohydride-palladium method)

Sodium borohydride (18 mg, 470 µmol) in water (0.15 cm³) was stirred with 27 (30 mg, 100 µmol) and palladium-on-charcoal (10%; 3 mg) in methanol (2.0 cm³) for 2 d. After the suspension had been filtered through Celite[®], it was evaporated and the residue, dissolved in dichloromethane, was washed with water mand brine, dried and evaporated to give 2-phenylethylamine 42 50 mg, 41%), the properties of which were identical with those confea commercial sample.

Reductively activated release of 1-(3-aminopropyl)-1,2-dicarbacloso-dodecaborane(12) 43 from 5-nitrofuran-2-ylmethyl N-{3-[1,2-dicarba-closo-dodecaboran(12)-1-yl]propyl}carbamate 38

Sodium borohydride-palladium method. Sodium borohydride $\frac{3}{3}$ mg, 870 µmol) in water (1.0 cm³) was stirred with 38 (100 mg, 270 µmol) and palladium-on-charcoal (10%; 10 mg) in propan-2col (5.0 cm³) for 16 h. Filtration (Celite[®]) and evaporation of the mixture gave crude 1-(3-aminopropyl)-1,2-dicarba-closododecaborane(12) 43. This material, dissolved in dichloromethane (10 cm³), was stirred with phenylmethyl chloroformate (76 mg, 450 µmol), triethylamine (75 mg, 750 µmol) and 4-pyrrolidinylpyridine (2 mg) for 16 h. The solution was washed with water, aqueous citric acid (5%) and brine, dried and evaporated. Chromatography of the residue gave the Z-protected carboranylpropylamine 36 (14 mg, 26%), the properties of which were identical with those reported above.

Tin(II) chloride method. Tin(II) chloride (74 mg, 390 µmol) and 38 (19 mg, 65 µmol) were boiled under reflux in hydrochloric acid (1.5 cm³) for 90 min. The cooled mixture was basified to pH 9 by the addition of aqueous sodium hydroxide (10 M) and extracted with dichloromethane. The extract was washed with water, dried and evaporated to give the amine 43 (3 mg, 40%) as a pale yellow gum, chromatographically identical with the free base of 37.

Acknowledgements

The authors thank Mr R. R. Hartell and Mr D. Wood (University of Bath) for the NMR spectra, Mr C. Cryer (University of Bath) for the mass spectra and Mrs J. Whish (School of Biology and Biochemistry, University of Bath) for discussions and help with the PARP inhibitory assays. We also thank the Biotechnology and Biological Sciences Research Council for a project grant under the Seed Corn Initiative and the Royal Pharmaceutical Society of Great Britain for a studentship (to C. Y. W.).

References

1 P. Vaupel, F. Kallinowski and P. Okunieff, Cancer Res., 1989, 49, 6449; P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop and P. Vaupel, Int. J. Radiat. Oncol. Biol. Phys., 1993, 26, 631.

- 2 K. A. Kennedy, B. A. Teicher, S. Rockwell and A. C. Sartorelli, Biochem. Pharmacol., 1980, 29, 1; S. R. Keyes, P. M. Fracasso, D. C. Heimbrook, S. Rockwell, S. G. Sligar and A. C. Sartorelli, Cancer Res., 1985, 45, 3642; M. A. Naylor, M. A. Stephens, S. Cole, M. D. Threadgill, I. J. Stratford, P. O'Neill, E. M. Fielden and G. E. Adams, J. Med. Chem., 1990, 33, 2508; T. C. Jenkins, M. A. Naylor, P. O'Neill, M. D. Threadgill, S. Cole, I. J. Stratford, G. E. Adams, E. M. Fielden, M. J. Suto and M. J. Steir, J. Med. Chem., 1990, 33, 2603; A. K. Sinhababu and D. R. Thakker, Adv. Drug Delivery Rev., 1996, 19, 241.
- 3 M. B. Parliament, J. D. Chapman, R. C. Urtasun, A. J. McEwan, L. Golberg, J. R. Mercer, R. H. Mannan and L. I. Wiebe, Br. J. Cancer, 1992, 65, 90; R. J. Maxwell, P. Workman and R. J. Griffiths, Int. J. Radiat. Oncol. Biol. Phys., 1989, 16, 925,
- 4 P. J. Wood, M. Scobie and M. D. Threadgill, Int. J. Radiat. Biol., 1996, 70, 587; D. H. Swenson, B. H. Laster and R. L. Metzger, J. Med. Chem., 1996, 39, 1540.
- 5 B. M. Sykes, G. J. Atwell, W. A. Denny and C. J. O'Connor, J. Phys. Org. Chem., 1995, 8, 587; B. M. Sykes, G. J. Atwell, W. A. Denny, D. J. McLennan and C. J. O'Connor, J. Chem. Soc., Perkin Trans. 2, 1995. 337.
- 6 A. B. Mauger, P. J. Burke, H. H. Somani, F. Friedlos and R. J. Knox, J. Med. Chem., 1994, 37, 3452; M. P. Hay, W. R. Wilson and W. A. Denny, Bioorg. Med. Chem. Lett., 1995, 5, 2829.
- 7 M. A. Naylor, M. A. Stephens, S. Cole, M. D. Threadgill, I. J. Stratford, P. O'Neill, E. M. Fielden and G. E. Adams, J. Med. Chem., 1990, 33, 2508.
- 8 P. Workman and I. J. Stratford, Cancer Metastasis Rev., 1993, 12, 73.
- 9 M. J. Suto, W. R. Turner, C. M. Arundel-Suto, L. M. Werbel and J. S. Sebolt-Leopold, Anti-Cancer Drug Des., 1991, 7, 107; C. M. Arundel-Suto, S. V. Scavone, W. R. Turner, M. J. Suto and J. S. Sebolt-Leopold, Radiat. Res., 1991, 126, 367.
- 10 I. R. Judson and M. D. Threadgill, Lancet, 1993, 342, 632; R. J. Griffin, L. C. Pemberton, D. Rhodes, C. Bleasdale, K. Bowman, N. J. Curtin, B. W. Durkacz, D. R. Newell, J. K. Porteous and B. T. Golding, Anti-Cancer Drug Des., 1995, 10, 507; R. J. Griffin, N. J. Curtin, D. R. Newell, B. T. Golding, B. W. Durkacz and A. H. Calvert, Biochimie, 1995, 77, 408.
- 11 M. F. Hawthorne, Angew. Chem., Int. Ed. Engl., 1993, 32, 950; R. F. Barth, A. H. Soloway and R. G. Fairchild, Cancer Res., 1990, 50, 1061; B. F. Spielvogel, A. Sood, B. F. Shaw and I. H. Shaw, Pure Appl. Chem., 1991, 63, 415; J. H. Morris, Chem. Br., 1991, 331
- 12 A. H. Soloway, R. L. Wright and J. R. Messner, J. Pharmacol. Exp. Ther., 1961, 134, 117; H. Hatanaka, in Boron Neutron Capture Therapy for Tumors, ed. H. Hatanaka, Nishimura Co. Ltd., Niigata, 1986
- 13 H. S. Wong, E. I. Tolpin and W. N. Lipscomb, J. Med. Chem., 1974,
- 17, 785. 14 Y. Yamamoto, T. Seko, H. Nakamura, H. Nemoto, H. Hojo, N. Nukai and Y. Hashimoto, J. Chem. Soc., Chem. Commun., 1992, 157; W. Tjarks, A. K. M. Anisuzzaman, L. Liu, A. H. Soloway, R. F. Barth, D. J. Perkins and D. M. Adams, J. Med. Chem., 1992, 35. 1628.
- 15 M. Miura, D. Gabel, G. Oenbrink and R. G. Fairchild, Tetrahedron Lett., 1992, 33, 7489.
- 16 M. Scobie, M. F. Mahon and M. D. Threadgill, J. Chem. Soc., Perkin Trans. 1, 1994, 203; M. Scobie, S. P. Bew and M. D. Threadgill, J. Labelled Compd. Radiopharm., 1994, 34, 881; M. Scobie and M. D. Threadgill, J. Org. Chem., 1994, 59, 7008.
- 17 M. Scobie and M. D. Threadgill, J. Chem. Soc., Perkin Trans. 1, 1994, 2059.
- 18 M. Berklava and S. Hilliers, Latv. PSR Zinat. Akad. Vestis, Kim. Ser., 1963, 349 (Chem. Abstr., 1964, 60, 1674g).
- 19 C.-T. Wang, C.-T. Chang and W.-C. Chen, K'o Hsueh T'ung Pao, 1959, 493 (Chem. Abstr., 1960, 54, 8773g).
- 20 M. M. Robison and B. L. Robison, J. Am. Chem. Soc., 1958, 80, 3443; E. Ochiai and Y. Kawazoe, Chem. Pharm. Bull., 1957, 5, 289; E. Ochiai and Y. Kawazoe, Chem. Pharm. Bull., 1960, 8, 24; H. Win and K. Koshinuma, J. Org. Chem., 1967, 32, 59.
- 21 M. M. Robison and B. L. Robison, J. Org. Chem., 1958, 23, 1071.
- 22 S. Ruchirawat, S. Sunkul, Y. Thebtaranonth and N. Thirasasna. Tetrahedron Lett., 1977, 2335; J. W. Bunting, P. A. Lee-Young and D. J. Norris, J. Org. Chem., 1978, 43, 1132; F. Kröhnke and I. Vogt, Liebigs Ann. Chem., 1956, 600, 211.
- 23 F. Eloy and A. Deryckere, Helv. Chim. Acta, 1969, 52, 1755.
- 24 J. Klein and E. D. Bergmann, J. Am. Chem. Soc., 1957, 79, 3452.
- 25 J. E. Plevyak, J. E. Dickerson and R. F. Heck, J. Org. Chem., 1979, 44, 4078.
- 26 L. W. Deady, W. L. Finlayson and C. H. Potts, Aust. J. Chem., 1977, 30, 1349; G. Tarrago, C. Marzin, O. Najimi and V. Pellegrin, J. Org. Chem., 1990, 55, 420; S. Kamiya and K. Koshinuma, Chem. Pharm. Bull., 1967, 15, 1985; K. T. Potts and S. Yao, J. Org. Chem., 1979, 44,

977; T. Matsui, T. Sugiura, H. Nakai, S. Iguchi, S. Shigeoka, H. Takada, Y. Odagaki, Y. Nagao, Y. Ushio, K. Ohmoto, H. Iwamura, S. Yamazaki, Y. Arai and M. Kawamura, J. Med. Chem., 1992, 35, 3307.

- 27 G. Tarrago, C. Marzin, O. Najimi and V. Pellegrin, J. Org. Chem., 1990, 55, 420.
- 28 D. E. Horning, G. Lacase and J. M. Muchowski, Can. J. Chem., 1971, 49, 2785.
- 29 Y. Kawazoe and Y. Yoshioka, Chem. Pharm. Bull., 1968, 16, 715.
- 30 V. I. Stanko and G. A. Anorova, Zh. Obshch. Khim., 1966, 36, 946;
- V. I. Stanko, G. A. Anorova and T. P. Klimova, Zh. Obshch. Khim., 1966, 36, 1774.
- 31 A. H. Soloway and D. N. Butler, J. Med. Chem., 1966, 9, 411.
- 32 T. Neilson, H. C. S. Wood and A. G. Wylie, J. Chem. Soc., 1962, 371.
- 33 J. S. Buck and W. S. Ide, Org. Synth., 1943, Coll. Vol. 2, 130.
- 34 R. F. Raffauf, J. Am. Chem. Soc., 1950, 72, 653.
- 35 H. Gilman and R. R. Burtner, *Iowa State Coll. J. Sci.*, 1932, 6, 389 (*Chem. Abstr.*, 1933, 27, 288⁸).
- 36 K. Y. Novitskii, G. T. Khachaturova and Y. K. Yur'ev, Zh. Obshch. Khim., 1964, 34, 1807.
- 37 G. E. Adams, E. M. Fielden, M. A. Naylor and I. J. Stratford, Canadian Patent 2092616, 1995 (*Chem. Abstr.*, 1955, 121, 134161).

1

- 38 W. S. Rapson and R. G. Shuttleworth, J. Chem. Soc., 1941, 487.
- 39 R. G. R. Bacon and W. S. Lindsay, J. Chem. Soc., 1958, 1375.
- 40 H. W. Post, J. Org. Chem., 1940, 5, 244.
- 41 S. Gabriel and M. Herzberg, Ber. Dtsch. Chem. Ges., 1883, 16, 2036.
- 42 W. Miersch, Ber. Dtsch. Chem. Ges., 1882, 25, 2109.
- 43 T. Izumi, Y. Nishimoto, K. Kohei and A. Kasahara, J. Heterocycl. Chem., 1990, 27, 1419.
- 44 M. Noguchi, S. Kakimoto, H. Kawakami and S. Kajigaeshi, Bull. Chem. Soc. Jpn., 1986, 59, 1355.
- 45 J. M. Berry and M. D. Threadgill, J. Labelled Compd. Radiopharm., 1996, 38, 935; J. M. Berry and M. D. Threadgill, J. Labelled Compd. Radiopharm., in the press.
- 46 R. J. Ferrier and J. M. Tedder, J. Chem. Soc., 1957, 1435.
- 47 J. A. Gaultier, M. Miocque and L. Mascrier-Demagny, C. R. Acad. Sci., 1961, 253, 1971.
- 48 L. I. Zakharkin, Y. A. Chapovskii, V. A. Brathev and V. I. Stanko, Zh. Obshch. Khim., 1966, 36, 878.

Paper 6/07202J Received 22nd October 1996

Accepted 28th November 1996