

Note

Subscriber access provided by EASTERN KENTUCKY UNIVERSITY

One-step Synthesis of Isocoumarins and 3-Benzylidenephthalides via Ligandless Pd–catalyzed Oxidative Coupling of Benzoic Acids and Vinylarenes

Debkumar Nandi, Debalina Ghosh, Shih-Ji Chen, Bing-Chiuan Kuo, Nancy M. Wang, and Hon Man Lee

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo400174w • Publication Date (Web): 18 Mar 2013

Downloaded from http://pubs.acs.org on March 18, 2013

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A straight-forward synthetic method for the preparation of isocoumarins and 3-benzylidenephthalides via C–H olefination and oxidative coupling of readily available benzoic acids and vinylarenes was developed. The directing effect of the substituents on the benzoic acid allows for the synthesis of both types of lactone in pure form.

Isocoumarins¹⁻⁶ and 3-benzylidenephthalides⁴⁻⁷ are naturally occurring lactones which exhibit a broad range of biological activities. They are also important in medicinal chemistry as building blocks for the synthesis of bioactive compounds.^{8,9} Because of their wide-range of biological activities, a number of methods have been developed for the construction of isocoumarins¹⁰⁻¹² and 3-benzylidenephthalide frameworks.^{3,13} For isocoumarins, the most popular method is based on the catalytic cyclization of *in situ*¹⁴⁻¹⁸ or preformed¹⁹⁻²⁴ *o*-alkynylbenzoic acid derivatives. For instance, Youn recently reported the oxidative cyclization of 2-alkynylbenzaldehyde catalyzed by *N*-heterocyclic carbene (Scheme 1a).¹⁸ Synthetic methods avoiding alkyne-based substrates have also been ACS Paragon Plus Environment

5 6

developed, including cyclization of 2-alkenyl or 2-allylbenzoic acid derivatives,^{3,25,26} microwave-assisted reaction of homophthalic acid with acid chlorides or esters,²⁷ Cu(I)-catalyzed intramolecular sequential C-C coupling and rearrangement of 1-(2-halophenyl)-1,3-diones,²⁸ and Cu(I)-catalyzed intermolecular domino reactions from 2-halobenzoic acids or 2-halobenzoic acid derivatives with 1,3-diketones.²⁹⁻³¹ Despite the efficiency of these synthetic strategies for isocoumarins, they are significantly limited by substrate availability. Most often, these methods involve multistep sequences, harsh conditions, or expensive catalysts and ligands. Also in some of these syntheses, mixtures of isocoumarin and 3-benzylidenephthalide are obtained.^{14,18} Comparatively, the synthesis of 3-benzylidenephthalides has received less attention and reported procedures generally require multistep synthesis via 5-exo cyclization of *o*-alkynylbenzoic acids.³ Recently, Yu reported the tandem Pd-catalyzed hydroxyl-directed C-H olefination reaction/oxidative cvclization.³² In his study, mono-N-protected amino acid ligands effectively promoted C-H olefination and the olefinated intermediates of electron-deficient alkenes underwent Pd(II)-catalyzed intramolecular oxidative cyclization to give pyrans (Scheme 1b). Since ortho C-H activation directed by a carboxylate group is well-known, ³³⁻³⁶ we envisioned the feasibility of a similar Pd-catalyzed C-H olefination between benzoic acid and vinylarene (Scheme 1c).³⁷⁻⁴⁰ A subsequent Pd-catalyzed intramolecular ring-closing process via attack of the carboxylate O atom on the olefin moiety should give isocoumarins or 3-benzylidenephthalides. This strategy is challenging because kinetically significant aryl C-H activation is involved. Desirably, extra synthetic steps to remove the directing group would not be required since it is part of the product.³²

The Journal of Organic Chemistry

Scheme 1. Lactone and Benzopyran Synthesis

Herein, we report a straight-forward strategy to selectively obtain isocoumarins and 3-benzylidenephthalides. Unlike aforementioned syntheses, our method based on Pd-catalyzed tandem C–H olefination and oxidative cyclization is a simple one-step procedure that avoids lengthy prefunctionalization of substrates since both benzoic acid and vinylarenes are cheap and widely accessible. The practicability of this method is further manifested by the ligandless and mild reaction conditions.

The reaction between benzoic acid and styrene yielding isocoumarins **1a** was chosen for the optimization of conditions (Table 1). The best solvent was determined to be DMF (entries 1–3). The optimal temperature was 110 $^{\circ}$ C (entries 4–6), as higher temperature resulted in an inferior yield. A moderate 5 mol% Pd loading was necessary to give the product in reasonable yield (entries 5 and 7). Theoretically four H atoms were released and therefore 1–2 equiv of Ag₂O were required. Thus, reducing Ag₂O to sub-stoichiometric amount lowered the yield. However, excess Ag₂O also decreased the yield drastically (entries 5 and 9–11). Oxidants other than Ag salts were not effective (entries 12–13). Since 1 equiv of water also formed in the reaction, the addition of 4 Å molecular sieves improved the yield (entry 5 vs. 8).

Table 1. Reaction O	ptimization ^a
---------------------	--------------------------

	C	OH + Pd(OAc); <u>oxidant/additive</u> solvent, 20 h	o o 1a	\bigcirc	
entry	Pd mol%	Oxidant	solvent	temp.	yield ^b
		/additive		(°C)	(%)
1	5	Ag ₂ O (1 equiv)	DCE	100	0
2	5	Ag ₂ O (1 equiv)	NMP	100	34
3	5	Ag ₂ O (1 equiv)	DMF	100	39
4	5	Ag ₂ O (1 equiv)	DMF	60	0
5	5	Ag ₂ O (1 equiv)	DMF	110	41
6	5	Ag ₂ O (1 equiv)	DMF	130	15
7	2.5	Ag ₂ O (1 equiv)	DMF	110	28
8	5	Ag ₂ O (1 equiv)/	DMF	110	56
		MS 4 Å (0.5 g)			
9	5	Ag ₂ O (15 mol%)	DMF	110	11
10	5	Ag ₂ O (50 mol%)	DMF	110	26
11	5	Ag ₂ O (2 equiv)	DMF	110	32
12	5	CuOAc (1 equiv)	DMF	110	0
13	5	PhI(OAc) ₂ (1 equiv)	DMF	110	0

^{*a*}Reaction conditions: 2.0 mmol benzoic acid, 2.0 mmol vinylarene, 15–200 mol% oxidant/additive, 2.5 or 5 mol% Pd(OAc)2, 5 mL dry solvent, heating, 20 h. ^{*b*} isolated yield.

Using the optimized conditions, the substrate scope of the reaction was investigated (Table 2). In general, the use of unsubstituted, para-, and meta-substituted benzoic acids afforded isocoumarins as single products. Benzoic acids with electron-donating groups (EDGs) gave higher yields than unsubstituted substrate (1a vs. 4a and 1b vs. 4b). This reactivity pattern, together with the fact that C-H activation is disfavored when an electron-withdrawing group (EWG) is present on the benzoic acid (vide infra), is consistent with an electrophilic aromatic substitution mechanism (S_EAr). The reactions also went smoothly with EDGs on the vinylarene, producing 4b and 4e, in 70 and 56% yields, respectively. However, attempts to use vinylarenes with EWGs failed. The formation of pure 2a-c from 3-toluic acid indicates that C-H cleavage on the benzoic acid ring selectively occurred at the less hindered ortho site. Sterically hindered 3-methylstyrene also successfully produced 2c, 3c and 4c in satisfactory yields. The X-ray structure of **2a** was obtained (Figure S1 in supporting information).

The Journal of Organic Chemistry

Table 2. Synthesis of 3-Substituted Isocoumarins^{a,b}

1-methyl-3-indolecarboxylic acid with arylarenes afforded 7a and b in good yields (Scheme 2b). However, the

reaction between isomeric 1-methyl-2-indolecarboxylic acid and styrene failed perhaps owing to the less acidic

57 C3H of the indole.

Scheme 2. Preparation of Lactone Derivatives

When *ortho*-substituted benzoic acids were employed in the reaction with vinylarenes under identical conditions, isomeric (*z*)-3-benzylidenephthalides **8–10** were isolated instead of isocoumarins in 47–80% yields (Table 3). EDGs on the benzoic acids were essential and the yields also significantly improved if methyl or methoxy-substituted styrenes were employed (**8b** vs. **8a**). These results reveals an intriguing directing effect of the benzene ring substituents on the regioselective nucleophilic attack of the carboxylate O atom on the olefin (*vide infra*). Notably, the reactions failed with 4-acetylstyrene bearing a EWG.

Table 3. Synthesis of 3-Benzylidenephthalide^{*a,b*} 5 mol% Pd(OAc)2 1 equiv. Ag₂O COOH DMF, MS 4Å 110°C, 20h R -R² yield^b (%) entry R product 8a Me 8b OMe 8d 8c Η 9a 9b Me 9c 10e

^aReaction conditions: 2.0 mmol benzoic acid, 2.0 mmol vinylarene, 1 equiv. Ag₂O, 5 mol% Pd(OAc)₂, 5 mL DMF, 110 °C, 20 h, MS 4 Å (0.5 g). ^bisolated yield.

ACS Paragon Plus Environment

The Journal of Organic Chemistry

To confirm the aryl C–H activation via the $S_{\rm E}Ar$ mechanism, we carried out reactions between vinylarenes and benzoic acids with EWGs. Various substrates including 2-acetylbenzoic acid was tested; however, mixtures of unidentified products resulted. Intriguingly, in the case of 2-nitrobenzoic acid, instead of the formation of lactone products, decarboxylative Heck coupling reaction occurred, ^{41,42} affording compounds **11a**, **b**, and **d** in good yields (Scheme 3). This reactivity pattern can be explained by the fact that nucleophilic attack of the phenyl ring on Pd(II) via the S_EAr mechanism is strongly disfavored. Thus, instead of ortho aryl C-H activation, decarboxylation occurred preferentially. A competitive experiment was also performed (Scheme S1 in supporting information). The reaction of a mixture of o- and p-toluic acids with 3-methylstyrene revealed a slight preference for the formation of 3-benzylidenephthalides. Further mechanistic information was obtained from kinetic isotopic experiments (Scheme S2 in supporting information), which gave a $k_{\rm H}/k_{\rm D}$ value of 2.8, indicating that any C–H activation may be a rate-controlling step.

Scheme 3. Decarboxylative Heck Coupling Reaction

On the basis of the above results, we propose the mechanistic cycle (Scheme 4). Upon coordination to Pd(II), the carboxylate group directs the ortho C-H bond toward the metal center. A five-membered palladacycle was formed via S_EAr. Such palladacycles are common intermediates in Pd-catalyzed C–H functionalization.^{37,39} Next, a Heck-type mechanism involving β -H elimination at C1 of the vinyl group produces intermediate A with a new C-C bond formed regioselectively. For *ortho*-substituted benzoic acids, intramolecular attack of the coordinated O atom on C1 of the vinyl group affords intermediate **B**. Subsequently, β -H elimination furnishes the ACS Paragon Plus Environment

The Journal of Organic Chemistry

and 3,4-dimethoxystyrene reacted to give 9e. Deprotection of the OH groups afforded pure thunberginol F in an overall 58% yield. The X-ray structure of 9e was established (Figure S2 in supporting information). Our preliminary biological studies showed that thunberginol F exhibited similar cytotoxicity effect as paclitaxel. It can inhibit growth of human cancer cells above 75% at 30 μ M (Figure S3 in supporting information). mol% Pd(OAc)₂ BBr. 1 equiv. Ag₂O DMF MS 4Å OMe 9e: 60% Thunberginol F ÒMe Scheme 5. Total Synthesis of Thunberginol F In summary, we have developed a straightforward synthetic method for the preparation of isocoumarins and 3-benzylidenephthalides via C-H olefination and oxidative coupling of aromatic carboxylic acids and vinylarenes. The directing effect of the substituents on benzoic acids allows the preparation of both types of lactones in pure forms. Based on easily available substrates and a simple one-step procedure, this method should receive interest in natural product synthesis and medicinal chemistry. **Experimental Section** All manipulations were performed under a dry nitrogen atmosphere using standard Schlenk techniques. Solvents were dried with standard procedures. Starting chemicals were purchased from commercial source and used as received. ¹H and ¹³C{¹H} NMR spectra were recorded at 300.13 and 75.48 MHz, respectively. HRMS was carried out on a sector field mass spectrometer. Typical Procedure for the Preparation of Coupling Products. To a 50 mL flask fitted with magnetic stirrer arene carboxylic acid (2.0 mmol), Ag₂O (2.0 mmol), Pd(OAc)₂ (0.023 g, 0.1 mmol) (5 mol%) and oven activated ACS Paragon Plus Environment

1 2 3	molecular sieves 4 Å (0.5 g) were added under nitrogen. Styrene (2.00 mmol) and dry DMF (5 mL) were then
4 5 6	added to it. The reaction mixture was stirred at 110 °C for 20 h and then was allowed to cool at room temperature
7 8 9	and filtered through celite bed and mother liquor was collected. After dilution with 20 mL of distilled water, the
10 11 12	solution was extracted with ethyl acetate (3x15 mL). The organic layer was separated washed with saturated
13 14 15	NaHCO ₃ solution and dried over anhydrous MgSO ₄ . Removal of the solvent resulted in a residual mass which was
16 17 18	subjected to column chromatography over silica gel using hexane and an increasing proportion of ethyl acetate as
19 20 21	eluent to provide the corresponding products.
22 23 24	3-Phenyl-1 <i>H</i> -isochromen-1-one (1a). ⁴³ Yellow solid (249 mg, 56% yield); $R_f = 0.43$ (9:1 hexane: EtOAc), synthesized
25 26 27	following the general procedure from benzoic acid (244 mg, 2.0 mmol) and styrene (208 mg, 2.0 mmol); mp = 82.2 °C;
28 29 30	¹ H NMR (CDCl ₃ , 300 MHz): δ 8.26 (d, J = 7.5 Hz, 1H), 7.83 (dd, J = 7.8, 1.5 Hz, 2H), 7.67 (td, J = 7.5, 1.1 Hz, 1H),
31 32 33	7.47-6.90 (m, 5H), 6.91 (s, 1H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 162.3, 153.5, 137.5, 134.9, 131.9, 129.9, 129.6, 128.8,
34 35 36	128.1, 126.0, 125.2, 120.5, 101.8; HRMS (ESI): $m/z [M]^+$ calcd for C ₁₅ H ₁₀ O ₂ 222.0680, found 222.0683.
37 38 39	3-p-Tolyl-1H-isochromen-1-one (1b). ⁴³ White solid (307 mg, 65% yield); $R_f = 0.66$ (8:2 hexane: EtOAc),
40 41 42 42	synthesized following the general procedure from benzoic acid (244 mg, 2.0 mmol) and 1-methyl-4-vinylbenzene (236
43 44 45 46	mg, 2.0 mmol); mp = 109.1 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 8.24 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.73-7.68 (m, 2H), 7.64 (d, J
47 48 49	$J = 7.5$ Hz, 1H), 7.45-7.40 (m, 2H), 7.21(d, $J = 8.4$ Hz, 2H), 6.84 (s, 1H), 2.36 (s, 3H); ¹³ C NMR (75 MHz): δ
50 51 52	162.5, 153.7, 140.3, 137.7, 134.8, 130.1, 129.5, 129.1, 127.9, 125.9, 125.1, 120.3, 101.1, 21.4; HRMS (ESI) <i>m/z</i>
53 54 55	$[M]^+$ calcd for $C_{16}H_{12}O_2$ 236.0837, found 236.0835.
56 57 58 59	3-(4-Methoxyphenyl)-1 <i>H</i> -isochromen-1-one (1d). ⁴⁴ Pale yellow solid (343 mg, 68% yield); $R_f = 0.25$ (9:1

hexane: EtOAc), synthesized following the general procedure from benzoic acid (244 mg, 2.0 mmol) and **ACS Paragon Plus Environment**

The Journal of Organic Chemistry

1	1 mother 4 vinulhanzana (268 mg 2.0 mmal): mn = 100.1 °C ¹ H NMD (CDC1 200 MHz): $\$$ 8.24 (d. $I = 8.2$ Hz
2	1-methoxy-4-vinyidenzene (268 mg, 2.0 mmol); mp = 109.1 °C. H NMR (CDCI ₃ , 500 MHz): 0 8.24 (d, $J = 8.2$ Hz,
3	
4	1H), 7.76 (d, J = 9.0 Hz, 2H), 7.64 (m, 1H), 7.41 (td, J = 5.6 Hz, 3.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 6.77 (s,
5 6	
7	111 2.92 (211) 13 C NMP (CDC1 75 MIL) \$ 1(45 1(11 1527 1270 1249 1205 127 (1262 1257
8	1H), 3.82 (s, $3H$); [*] C NMR (CDCl ₃ , /5 MHZ): $0.164.5$, 161.1 , 153.7 , 137.9 , 134.8 , 129.5 , 127.6 , 126.3 , 125.7 ,
9	
10	124.5 120.1 144.2 100.2 55.4 HRMS (ESI) m/z caled for C ₁₆ H ₁₂ O ₂ [M] ⁺ 252.0786 found 252.0783
11	$121.3, 120.1, 111.2, 100.2, 35.1. 111005 (151) m/2 curcu for C_{10}11_{2}C_{3} [11] 252.0705, round 252.0705.$
12	
14	7-Methyl-3-phenyl-1 <i>H</i> -isochromen-1-one (2a). ⁴³ White solid (273 mg, 58% yield); $R_f = 0.44$ (9:1 hexane:
15	
16	
17	EtOAC), synthesized following the general procedure from <i>m</i> -toluic acid (2/2 mg, 2.0 mmol) and styrene (208 mg, 2.0
18	
19	mmol): mn = 143.7 °C: ¹ H NMR (CDCl ₂ 300 MHz): δ 8.07 (s. 1H) 7.83 (dd. J = 8.1, 1.5 Hz, 2H) 7.49 (d. J = 9.0
20 21	(a, b) ($a, b)$ (
22	
23	Hz, 1H), 7.42-7.35 (m, 4H), 6.89 (s, 1H), 2.43 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 162.5, 152.6, 138.4, 136.1,
24	
25	
26	134.9, 130.0, 129.7, 129.2, 128.7, 125.9, 125.0, 120.3, 101.7, 21.4; HRMS (ESI) m/z calcd for $C_{16}H_{12}O_2$ [M]
21 28	
29	236 0837 found 236 0838
30	250.0057, 10ulu 250.0050.
31	
32	7-Methyl-3-p-tolyl-1 <i>H</i> -isochromen-1-one (2b). ⁴³ White solid (350 mg, 70% yield); $R_f = 0.91$ (8:2 hexane:
33	
34 35	
36	EtOAC); synthesized following the general procedure from 3-methylbenzoic acid (2/2 mg, 2.0 mmol) and
37	
38	1-methyl-4-vinylbenzene (236 mg 2.0 mmol): mp = 159.2 °C· ¹ H NMR (CDCl ₂ 300 MHz): δ 8.04 (s. 1H) 7.70 (d.
39	
40	
41 42	<i>J</i> = 8.4 Hz, 2H), 7.46 (dd, <i>J</i> = 7.5, 1.5 Hz, 1H), 7.31 (d, <i>J</i> = 8.1 Hz, 1H), 7.20 (d, <i>J</i> = 8.1 Hz, 2H), 6.81 (s, 1H),
42	
44	2.41 (210 2.26 (210 130 100 (CDC) 75 101 5.1620 1520 1400 1200 1261 1260 1250 1200
45	2.41 (s, 3H), 2.36 (s, 3H); ¹⁴ C NMR (CDCl ₃ , 75 MHz): 8 162.9, 153.0, 140.0, 138.2, 136.1, 136.2, 135.2, 129.5,
46	
47	129.3 129.3 125.0 120.3 101.0 21.4 HRMS (ESI) m/z calcd for $C_{1z}H_{14}O_2$ [M] ⁺ 250.0993 found 250.0997
48	$129.5, 129.5, 125.0, 120.5, 101.0, 21.1, 11000 (101) m/2 calca for C_1/11_4O_2 [10] 250.0995, round 250.0997.$
49 50	
51	7-Methyl-3-m-tolyl-1H-isochromen-1-one (2c). Off-white solid (380 mg, 76% yield); $R_f = 0.53$ (9:1 hexane:
52	
53	
54	EtOAc); synthesized following the general procedure from 3-methylbenzoic acid (2/2 mg, 2.0 mmol) and
55	
56 57	1-methyl-3-yinylbenzene (236 mg 2.0 mmol): mn = $125.4 {}^{\circ}\text{C} \cdot {}^{1}\text{H}$ NMR (CDCl ₂ 300 MHz): $\delta 8.06$ (s. 1H) 7.66 (s.
58	$1 \mod 125$, $5 \mod 1012$, $5 \mod 13$, 111 , $7 \mod 13$,
59	
60	1H), 7.60 (d, J = 7.8 Hz, 1H), 7.48 (dd, J = 7.9, 1.6 Hz, 1H), 7.36-7.32 (m, 1H), 7.28 (d, J = 7.5, 1H), 7.18 (d, J =
	ACS Paragon Plus Environment

7.5, 1H), 6.87 (s, 1H), 2.42 (s, 3H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 162.7, 152.3, 136.6, 136.2, 135.1, 130.6, 129.3, 128.7, 125.9, 125.7, 122.2, 120.3, 115.0, 101.7, 21.5, 21.4. HRMS (ESI) m/z calcd for C₁₇H₁₄O₂ [M]⁺ 250.0993, found: 250.1003. **6-Methyl-3-phenyl-1***H***-isochromen-1-one (3a).**¹⁸ White solid (240 mg, 51% yield); $R_f = 0.67$ (8:2 hexane: EtOAc); synthesized following the general procedure from 4-methylbenzoic acid (272 mg, 2.0 mmol) and styrene (208 mg, 2.0 mmol); mp = 102.5 °C; ¹H NMR (CDCl₃, 300 MHz): δ 8.17 (d, J = 7.8 Hz, 1H), 7.86 (dd, J = 8.1, 1.8 Hz, 2H), 7.46-7.41 (m, 3H), 7.41-7.31 (m, 2H), 6.88 (s, 1H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz); δ 153.6, 150.5, 147.0, 137.6, 132.0, 129.9, 129.6, 129.6, 128.8, 125.9, 125.2, 118.1, 101.8, 29.7; HRMS (ESI) m/z calcd for C₁₆H₁₂O₂ [M]⁺ 236.0837, found 236.0837. **6-Methyl-3**-*p*-tolyl-1*H*-isochromen-1-one (3b). White solid (360 mg, 72% yield); $R_f = 0.51$ (9:1 hexane: EtOAc); synthesized following the general procedure from 4-methylbenzoic acid (272 mg, 2.0 mmol) and 1-methyl-4-vinylbenzene (236 mg, 2.0 mmol); mp = 155.4 °C; ¹H NMR (CDCl₃, 300 MHz): δ 8.16 (d, J = 8.1 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.28-7.23 (m, 4H), 6.81 (s, 1H), 2.47 (s, 3H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 75) MHz): δ 162.5, 153.8, 145.9, 140.1, 137.8, 130.1, 129.5, 129.3, 129.3, 125.8, 125.1, 118.0, 101.0, 22.0, 21.4; HRMS (ESI) m/z calcd for C₁₇H₁₄O₂ [M]⁺250.0993, found 250.0997. **6-Methyl-3**-*m*-tolyl-1*H*-isochromen-1-one (3c). Off white solid (360 mg, 72% yield); $R_f = 0.57$ (9:1 hexane: EtOAc); synthesized following the general procedure from 4-methylbenzoic acid (272 mg, 2.0 mmol) and 1-methyl-3-vinylbenzene (236 mg, 2.0 mmol); mp = 112.5 °C; ¹H NMR (CDCl₃, 300 MHz): δ 8.14 (d, J = 6.0 Hz, 1H), 7.67 (s, 1H), 7.62 (d, J = 9.0 Hz, 1H), 7.33-7.30 (m, 1H), 7.28 (d, J = 3.0 Hz, 1H), 7.24-7.18 (m, 2H), 6.83 (s, 1H), 7.67 (s, 1H), 7.62 (d, J = 9.0 Hz, 1H), 7.33-7.30 (m, 1H), 7.28 (d, J = 3.0 Hz, 1H), 7.24-7.18 (m, 2H), 6.83 (s, 1H), 7.67 (s, 1H), 7.62 1H), 2.44 (s, 3H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 162.5, 153.8, 147.0, 138.6, 137.7, 131.9, 130.7, ACS Paragon Plus Environment

1 2 2	129.5, 128.7, 126.0, 126.0, 125.8, 122.3, 118.1, 101.7, 22.0, 21.5. HRMS (ESI) m/z calcd for $C_{17}H_{14}O_2$ [M] ⁺
3 4 5	250.0993, found: 250.0995.
7 8 0	6-Methoxy-3-phenyl-1 <i>H</i> -isochromen-1-one (4a). ⁴⁵ White solid (304 mg, 60% yield); $R_f = 0.30$ (9:1 hexane:
5 10 11 12	EtOAc); synthesized following the general procedure from 4-methoxybenzoic acid (304 mg, 2.0 mmol) and styrene
13 14 15	(208 mg, 2.0 mmol); mp = 133.1 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 8.19 (d, J = 9.0 Hz, 1H), 7.84 (dd, J = 7.6, 1.6
16 17 18	Hz, 2H), 7.42 (d, J = 7.2 Hz, 3H), 6.99 (dd, J = 7.5, 2.4 Hz, 1H), 6.86 (s, 1H), 6.84 (d, J = 3.0 Hz, 1H), 3.90 (s,
19 20 21	3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 164.7, 154.1, 139.8, 132.0, 131.8, 130.1, 130.0, 128.8, 125.3, 116.5, 113.6,
22 23 24	107.9, 101.8, 55.8; HRMS (ESI) <i>m/z</i> calcd for $C_{16}H_{12}O_3$ [M] ⁺ 252.0786, found 252.0789.
25 26 27	6-Methoxy-3- <i>p</i> -tolyl-1 <i>H</i> -isochromen-1-one (4b). White solid (372 mg, 70% yield); $R_f = 0.60$ (8:2 hexane:
28 29 30	EtOAc); synthesized following the general procedure from 4-methoxybenzoic acid (304 mg, 2.0 mmol) and
31 32 33	1-methyl-4-vinylbenzene (236 mg, 2.0 mmol); mp = 148.3 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 8.21 (d, J = 8.7 Hz,
34 35 36	1H), 7.78 (s, 1H), 7.75 (s, 1H), 1.26 (d, <i>J</i> = 8.7 Hz, 2H), 7.01 (dd, <i>J</i> = 8.7, 2.4 Hz, 1H), 6.86 (d, <i>J</i> = 3.0 Hz, 1H),
37 38 39	6.84 (s, 1H), 3.93 (s, 3H), 2.41 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 164.7, 162.3, 140.3, 140.1, 131.8, 129.5,
40 41 42	129.2 125.2, 116.4, 113.6, 107.8, 101.2, 55.7, 21.4; HRMS (ESI) m/z calcd for $C_{17}H_{14}O_3$ [M] ⁺ 266.0942, found
43 44 45	266.0948.
40 47 48 40	6-Methoxy-3- <i>m</i> -tolyl-1 <i>H</i> -isochromen-1-one (4c). White solid (370 mg, 69% yield); $R_f = 0.59$ (8:2 hexane:
49 50 51 52	EtOAc); synthesized following the general procedure from 4-methoxybenzoic acid (304 mg, 2.0 mmol) and
53 54 55	1-methyl-3-vinylbenzene (236 mg, 2.0 mmol); mp = 136.7 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 8.18 (d, J = 9.0 Hz,
56 57 58	1H), 7.68 (s, 1H), 7.63-7.60 (m, 1H), 7.30-7.21 (m, 2H), 6.98 (dd, <i>J</i> = 8.9, 2.6 Hz, 1H), 6.84 (s, 1H), 6.83 (d, <i>J</i> =
59 60	2.4 Hz, 1H), 3.89 (s, 3H), 2.38 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 164.8, 152.3, 139.9, 138.6, 131.9, 130.8, ACS Paragon Plus Environment

128.7, 126.0, 122.4, 116.5, 113.7, 107.9, 102.6, 101.8, 56.7, 21.5. HRMS (ESI) m/z calcd for $C_{17}H_{14}O_3$ $[M]^+$ 266.0942, found: 266.0946. 3-(3,4-Dimethoxyphenyl)-6-methoxy-1*H*-isochromen-1-one (4e). White solid (350 mg, 56% yield); $R_f = 0.41$ (7:3 hexane: EtOAc); synthesized following the general procedure from 4-methoxybenzoic acid (304 mg, 2.0 mmol) and 1,2-dimethoxy-4-vinylbenzene (328 mg, 2.0 mmol); mp = 118.2 °C; ¹H NMR (CDCl₃, 300 MHz): δ 8.16 (d, J = 8.7 Hz, 1H), 7.42 (dd, J = 8.5, 1.9 Hz, 1H), 7.33 (d, J = 2.1 Hz, 1H), 6.96 (dd, J = 8.8, 2.2 Hz, 1H), 6.91-6.88 (m, 1H), 6.81 (d, J = 2.4 Hz, 1H), 6.75 (s, 1H), 3.96 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz); δ 164.8, 162.3, 158.7, 154.2, 150.7, 149.1, 140.1, 131.8, 124.9, 118.5, 116.3, 111.1, 108.1, 107.6, 100.7, 56.1, 56.0, 55.7. HRMS (ESI) m/z calcd for C₁₈H₁₆O₅ [M]⁺ 312.0997, found: 312.1003. (Z)-3-Phenyl-1*H*-anthra[9,1-cd]oxepin-1-one (6a). Red solid (412 mg, 64% yield); $R_f = 0.71$ (8:2 hexane: EtOAc); synthesized following the general procedure from anthracene-9-carboxylic acid (444 mg, 2.0 mmol) and styrene (208 mg, 2.0 mmol); mp = 195.9 °C; ¹H NMR (CDCl₃, 300 MHz): δ 9.65 (d, J = 9.0 Hz, 1H), 8.60 (s, 1H), 7.97-7.94 (m, 3H), 7.91 (d, J = 2.7 Hz, 1H), 7.75-7.69 (m, 1H), 7.57-7.50 (m, 2H), 7.47-7.41 (m, 3H), 7.31-7.29(m, 1H), 6.49 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ 160.2, 146.8, 143.8, 138.5, 135.6, 134.4, 132.4, 130.2, 129.8, 129.8, 128.8, 128.7, 127.5, 126.7, 126.5, 125.7, 124.9, 121.9, 112.9, 108.1; HRMS (ESI) m/z calcd for C₂₃H₁₄O₂ [M]⁺ 322.0993, found 322.0996. (Z)-3-p-Tolyl-1H-anthra[9,1-cd]oxepin-1-one (6b). Red solid (457 mg, 68% yield); $R_f = 0.40$ (9:1 hexane: EtOAc); synthesized following the general procedure from anthracene-9-carboxylic acid (444 mg, 2.0 mmol) and 1-methyl-4-vinylbenzene (236 mg, 2.0 mmol); mp = 150.8 °C; ¹H NMR (CDCl₃, 300 MHz): δ 9.63 (d, J = 9.0 Hz, 1H), 8.54 (s, 1H), 7.93 (d, J = 7.2 Hz, 1H), 7.88 (d, J = 1.8 Hz, 1H), 7.86-7.83 (m, 3H), 7.73-7.67 (m, 1H), 7.54 **ACS Paragon Plus Environment**

1 2 2	(dd, $J = 6.8$, 1.4 Hz, 1H), 7.50-7.44 (m, 1H), 7.25 (m, 1H), 7.22 (s, 1H), 6.44 (s, 1H), 2.39 (s, 3H); ¹³ C NMR
5 4 5 6	(CDCl ₃ , 75 MHz): δ 160.3, 146.2, 137.5, 135.5, 132.0, 131.6, 130.0, 129.7, 129.4, 129.2, 128.5, 126.7, 126.4,
7 8 0	125.7, 125.1, 124.9, 121.6, 112.9, 108.1, 21.4; HRMS (ESI) m/z calcd for $C_{24}H_{16}O_2$ $[M]^+$ 336.1150, found
9 10 11	336.1153.
12 13 14 15	3-(4-Methoxyphenyl)-1 <i>H</i> -anthra [9,1- <i>cd</i>] oxepin-1-one (6d). Red solid (457 mg, 65% yield); $R_f = 0.64$ (8:2
16 17 18	hexane: EtOAc); synthesized following the general procedure from anthracene-9-carboxylic acid (444 mg, 2.0 mmol)
19 20 21	and 1-methoxy-4-vinylbenzene (268 mg, 2.0mmol); mp = 174.5 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 9.74 (d, J = 8.7
22 23 24	Hz, 1H), 8.71 (s, 1H), 8.06 (d, J = 8.4 Hz, 1H), 8.01-7.94 (m, 3H), 7.78 (dd, J = 6.6, 1.5 Hz, 1H), 7.60-7.55 (m,
25 26 27	2H), 7.28 (s, 1H), 7.01 (d, <i>J</i> = 9.0 Hz, 2H), 6.53 (s, 1H), 3.89 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 165.0, 159.0,
28 29 30	145.4, 135.5, 132.2, 131.2, 130.1, 129.6, 129.2, 128.2, 127.3, 126.7, 126.4, 125.8, 121.3, 114.1, 113.9, 113.6,
31 32 33	107.9, 55.3. HRMS (ESI) <i>m/z</i> calcd for $C_{24}H_{16}O_3$ [M] ⁺ 352.1099, found 352.1092.
34 35 36	5-Methyl-3-phenylpyrano [4,3- <i>b</i>]indol-1(5 <i>H</i>)-one (7a). Pale yellow solid (364 mg, 66% yield); $R_f = 0.33$ (8:2
37 38 39	hexane: EtOAc); synthesized following the general procedure from 1-methyl-1H-indole-3-carboxylic acid (350 mg,
40 41 42 43	2.0 mmol) and styrene (208 mg, 2.0 mmol); mp = 217.1 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 8.16 (d, J = 3.6 Hz, 1H),
44 45 46	7.86-7.83 (m, 2H), 7.43-7.39 (m, 3H), 7.31-7.25 (m, 3H), 6.84 (s, 1H), 3.73 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz):
47 48 49	δ 158.3, 146.2, 139.1, 132.2, 130.3, 128.8, 125.6, 124.6, 124.1, 122.59, 121.1, 109.33, 99.8, 90.8, 29.8; HRMS
50 51 52	(ESI) m/z calcd for C ₁₈ H ₁₃ NO ₂ [M] ⁺ 275.0946, found 275.0942.
53 54 55	5-Methyl-3 - <i>p</i> -tolylpyrano[4,3- <i>b</i>]indol-1(5 <i>H</i>)-one (7b). Pale yellow solid (398 mg, 69% yield); $R_f = 0.41(8:2)$
56 57 58	hexane: EtOAc); synthesized following the general procedure from 1-methyl-1H-indole-3-carboxylic acid (350 mg,
59 60	2.0 mmol) and 1-methyl-4-vinylbenzene (236 mg, 2.0 mmol); mp = 205.8 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 8.14 ACS Paragon Plus Environment

(dd, J = 7.5, 2.1 Hz, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.30-7.25 (m, 3H), 7.18 (d, J = 8.1 Hz, 2H), 6.78 (s, 1H), 3.72 (s, 3H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 159.2, 158.5, 140.7, 139.1, 129.5, 129.5, 129.4, 125.5, 125.5, 124.5, 124.2, 122.5, 121.1, 109.3, 90.0, 29.8, 21.4.; HRMS (ESI) m/z calcd for C₁₉H₁₅NO₂ [M]⁺ 289.1103, found 289.1107. (Z)-3-Benzylidene-7-methylisobenzofuran-1(3H)-one (8a). White solid (222 mg, 47% yield); $R_f = 0.64$ (9:1 hexane: EtOAc); synthesized following the general procedure from o-toluic acid (272 mg, 2.0 mmol) and styrene (208 mg, 2.0 mmol); mp = 125.2 °C; ¹H NMR (CDCl₃, 300 MHz); δ 7.79 (d, J = 9.0 Hz, 2H), 7.54 (m, 2H), 7.43-7.36 (m, 2H), 7.31-7.25 (m, 2H), 6.35 (s, 1H), 2.69 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 167.2, 149.1, 144.5, 141.0, 139.6, 134.1, 133.3, 131,3, 130.0, 128.7, 128.2, 121.1, 117.2, 106.2, 17.5; HRMS (ESI) m/z calcd for C₁₆H₁₂O₂ [M]⁺236.0837, found 236.0831. (Z)-7-Methyl-3-(4-methylbenzylidene)isobenzofuran-1(3H)-one (8b). White solid (401 mg, 80% yield); $R_f =$ 0.68 (9:1 hexane: EtOAc); synthesized following the general procedure from 2-methylbenzoic acid (272 mg, 2.0 mmol) and 1-methyl-4-vinylbenzene (236 mg, 2.0 mmol); mp = 153.7 °C; ¹H NMR (CDCl₃, 300 MHz): δ 7.72 (d, J = 8.1 Hz, 2H), 7.52 (d, J = 5.7 Hz, 2H), 7.25-7.19 (m, 3H), 6.32 (s, 1H), 2.69 (s, 3H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 167.3, 143.9, 141.1, 139.5, 138.3, 134.1, 131.1, 130.5, 130.0, 129.4, 121.0, 117.1, 106.4, 21.4,

17.5; HRMS (ESI) m/z calcd for C₁₇H₁₄O₂ [M]⁺ 250.0993, found 250.0990.

(Z)-7-Methyl-3-(3-methylbenzylidene)isobenzofuran-1(3H)-one (8c). Off white solid (310 mg, 62% yield); $R_f =$ 0.48 (9:1 hexane: EtOAc); synthesized following the general procedure from 2-methylbenzoic acid (272 mg, 2.0 mmol) and 1-methyl-3-vinylbenzene (236 mg, 2.0 mmol); mp = 168.4 °C; ¹H NMR (CDCl₃, 300 MHz): δ 7.64 (s, 1H), 7.62 (s, 1H), 7.54 (s, 1H), 7.52 (s, 1H), 7.30-7.24 (m, 2H), 7.10 (d, J = 6.0 Hz, 1H), 6.32 (s, 1H), 2.68 (s, 3H), **ACS Paragon Plus Environment**

1 2 3	2.38 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 167.4, 144.4, 141.1, 139.6, 138.3, 134.1, 133.2, 131.4, 130.6, 129.1,
4 5 6	128.7, 127.3, 117.2, 106.5, 21.5, 17.6. HRMS (ESI) m/z calcd for $C_{17}H_{14}O_2$ [M] ⁺ 250.0993, found: 250.0985.
7 8 9	(Z)-3-(4-Methoxybenzylidene)-7-methylisobenzofuran-1(3H)-one (8d). Light yellow solid (280 mg, 53% yield);
10 11 12	$R_{f} = 0.61$ (8:2 hexane: EtOAc); synthesized following the general procedure from 2-methylbenzoic acid (272 mg, 2.0
13 14 15	mmol) and 1-methoxy-4-vinylbenzene (268 mg, 2.0 mmol); mp = 137.1 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 7.76 (d,
16 17 18	<i>J</i> = 9.0 Hz, 2H), 7.51 (d, <i>J</i> = 3 Hz, 1H), 7.50 (s, 1H), 7.23-7.22 (m, 1H), 6.91 (d, <i>J</i> = 9.0 Hz, 2H), 6.30 (s, 1H),
19 20 21	3.82 (s, 3H), 2.67 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 167.5, 159.6, 143.0, 139.6, 134.1, 131.5, 130.9, 126.1,
22 23 24	123.1, 116.9, 114.3, 113.7, 106.2, 55.3, 17.6. HRMS (ESI) m/z calcd for $C_{17}H_{14}O_3$ $[M]^+$ 266.0942, found:
25 26 27	266.0934.
28 29 30	(Z)-3-Benzylidene-7-methoxyisobenzofuran-1(3H)-one (9a). Pale yellow solid (312 mg, 62% yield); $R_f = 0.33$
31 32 33	(8:2 hexane: EtOAc); synthesized following the general procedure from 2-methoxybenzoic acid (304 mg, 2.0 mmol)
34 35 36	and styrene (208 mg, 2.0 mmol); mp = 144.2°C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 7.79 (d, J = 9.0 Hz, 2H), 7.59 (t, J
37 38 39	= 9.0 Hz, 1H) 7.38-7.33 (m, 2H), 7.29-7.27 (m, 2H), 6.87 (d, <i>J</i> = 9.0 Hz, 1H), 6.33 (s, 1H), 3.96 (s, 3H); ¹³ C NMR
40 41 42	(CDCl _{3,} 75 MHz): δ 166.1, 158.4, 144.2, 142.9, 136.6, 133.1, 130.1, 128.7, 128.3, 111.6, 111.1, 110.8, 107.0, 56.1;
43 44 45 46	HRMS (ESI) <i>m/z</i> calcd for $C_{16}H_{12}O_3 [M]^+ 252.0786$, found 252.0783.
40 47 48 49	(<i>Z</i>)-7-Methoxy-3-(4-methylbenzylidene)isobenzofuran-1(3 <i>H</i>)-one (9b). White solid (393 mg, 74% yield); $R_f =$
50 51 52	0.54 (8:2 hexane: EtOAc); synthesized following the general procedure from 2-methoxybenzoic acid (304 mg, 2.0
53 54 55	mmol) and 1-methyl-4-vinylbenzene (236 mg, 2.0 mmol); mp = 188.1 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 7.72 (d, J
56 57 58	= 6.6 Hz, 2H), 7.61 (td, <i>J</i> = 8.2, 3.0 Hz, 1H), 7.25 (dd, <i>J</i> = 7.9, 1.6 Hz, 1H), 7.18 (d, <i>J</i> = 7.2 Hz, 2H), 6.88 (dd, <i>J</i> =
59 60	8.1, 1.5 Hz, 1H), 6.33 (s, 1H), 3.98 (s, 3H), 2.38 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 165.3, 158.5, 143.6, 143.1, ACS Paragon Plus Environment

138.6, 136.5, 130.4, 130.2, 129.5, 115.0, 111.5, 110.9, 110.7, 107.2, 56.1, 21.5; HRMS (ESI) m/z calcd for $C_{17}H_{14}O_3$ [M]⁺ 266.0942, found 266.0945.

(Z)-7-Methoxy-3-(3-methylbenzylidene)isobenzofuran-1(3H)-one (9c). Light yellow solid (310 mg, 59% yield); $R_f = 0.55$ (8:2 hexane: EtOAc); synthesized following the general procedure from 2-methoxybenzoic acid (304 mg, 2.0 mmol) and 1-methyl-3-vinylbenzene (236 mg, 2.0 mmol); mp = 196.3 °C; ¹H NMR (CDCl₃, 300 MHz): δ 7.65-7.60 (m, 3H), 7.28 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 6.0 Hz, 1H), 6.92 (d, J = 9.0 Hz, 1H), 6.34 (s, 1H), 4.00 (s, 1 3H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 165.3, 158.6, 144.1, 143.1, 138.4, 136.6, 133.1, 130.7, 129.3, 128.7, 127.4, 111.6, 111.1, 107.3, 56.2, 21.5. HRMS (ESI) m/z calcd for $C_{17}H_{14}O_3$ [M]⁺ 266.0942, found: 266.0937. (Z)-3-(3,4-Dimethoxybenzylidene)-7-methoxyisobenzofuran-1(3H)-one (9e).⁴⁶ Yellow solid (370 mg, 60% yield); $R_f = 0.48$ (1:1 hexane: EtOAc); synthesized following the general procedure from 2-methoxybenzoic acid (304) mg, 2.0 mmol) and 1,2-dimethoxy-4-vinylbenzene (328 mg, 2.0 mmol); mp = $118.8 \,^{\circ}$ C; ¹H NMR (CDCl₃, 300 MHz): δ 7.58 (t, J = 3.9 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.33 (dd, J = 8.4, 2.1 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 6.85 $(dd, J = 8.2, 5.5 Hz, 2H), 6.29 (s, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H); {}^{13}C NMR (CDCl_3, 75 MHz): \delta$ 165.2, 158.5, 149.4, 148.9, 143.2, 142.9, 136.5, 123.3, 123.8, 122.2, 112.6, 111.4, 111.1, 110.7, 107.1, 56.1, 56.0, 55.9. HRMS (ESI) m/z calcd for C₁₈H₁₆O₅ [M]⁺ 312.0997, found 312.0994. (Z)-3-(3,4-Dimethoxybenzylidene)-5,7-dimethoxyisobenzofurane-1(3H)-one (10e).⁴⁶ Yellow solid (349 mg, 51% yield); $R_f = 0.39$ (3:7 hexane: EtOAc); synthesized following the general procedure from 2,4-dimethoxybenzoic acid (364 mg, 2.0 mmol) and 1,2-dimethoxy-4-vinylbenzene (328 mg, 2.0 mmol); mp = 118.4 °C; ¹H NMR (CDCl₃, 300 MHz): δ 7.41 (d, J = 1.8 Hz, 1H), 7.33 (dd, J = 8.4, 1.8 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.67 (d, J = 1.8 Hz, 1H)

ACS Paragon Plus Environment

1 2 3	1H), 6.39 (s, 1H), 6.25 (s, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz):
4 5 6	δ 166.9, 149.3, 148.9, 145.0, 143.1, 126.3, 123.7, 112.6, 111.0, 106.7, 104.3, 99.7, 94.4, 56.0, 57.0, 56.8. HRMS
7 8 9	(ESI) m/z calcd for C ₁₉ H ₁₈ O ₆ [M] ⁺ 342.1103, found 342.1106.
10 11 12	(<i>E</i>)-1-Nitro-2-styrylbenzene (11a). ⁴⁷ Orange oil (364 mg, 81% yield); $R_f = 0.66$ (9:1 hexane: EtOAc); synthesized
13 14 15	following the general procedure from 2-nitrobenzoic acid (334 mg, 2.0 mmol) and styrene (208 mg, 2.0 mmol); ${}^{1}\text{H}$
16 17 18	NMR (CDCl ₃ , 300 MHz): δ 7.92 (d, <i>J</i> = 7.8 Hz, 1H), 7.72 (d, <i>J</i> = 7.8 Hz, 1H), 7.61-7.51 (m, 4H), 7.40-7.31 (m,
19 20 21	4H), 7.06(d, $J = 16.2$ Hz, 1H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 147.9, 136.5, 133.8, 133.2, 132.9, 128.8, 128.6,
22 23 24	128.1, 130.0, 127.1, 124.8, 123.4; HRMS (ESI) m/z calcd for $C_{14}H_{11}NO_2 [M]^+$ 225.0789, found 225.0786.
25 26 27	(<i>E</i>)-1-(2-Nitrostyryl)-4-methylbenzene (11b). ⁴⁸ Orange oil (325 mg, 78% yield); $R_f = 0.68$ (9:1 hexane: EtOAc);
28 29 30	synthesized following the general procedure from 2- nitrobenzoic acid (334 mg, 2.0 mmol) and
31 32 33	1-methyl-4-vinylbenzene (236 mg, 2.0 mmol); ¹ H NMR (CDCl ₃ , 300 MHz): δ 7.92 (dd, J = 8.1, 1.2 Hz, 1H), 7.73
35 36 37	(dd, <i>J</i> = 7.9, 1.1 Hz, 1H), 7.59-7.51 (m, 2H), 7.42 (d, <i>J</i> = 8.1 Hz, 2H), 7.38-7.33 (m, 1H), 7.17(d, <i>J</i> = 8.1 Hz, 2H),
38 39 40	7.05(d, $J = 16.2$ Hz, 1H), 2.36 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 148.0, 138.7, 133.9, 133.8, 133.2, 138.1,
41 42 43	129.6, 128.1, 127.8, 127.1, 124.8, 122.4, 21.4; HRMS (ESI) m/z calcd for $C_{15}H_{13}NO_2$ $[M]^+$ 239.0946, found
44 45 46	239.0943.
47 48 49	(<i>E</i>)-1-(4-Methoxystyryl)-2-nitrobenzene (11d). ⁴⁹ Orange solid (357 mg, 70% yield); $R_f = 0.48$ (9:1 hexane:
50 51 52	EtOAc); synthesized following the general procedure from 2- nitrobenzoic acid (334 mg, 2.0 mmol) and
53 54 55	1-methoxy-4-vinylbenzene (268 mg, 2.0mmol); mp = 69.9 °C; ¹ H NMR (CDCl ₃ , 300 MHz): δ 7.91 (dd, J = 8.1, 1.2
56 57 58	Hz, 1H), 7.72 (dd, <i>J</i> = 7.9, 1.5 Hz, 1H), 7.55 (t, <i>J</i> = 7.5 Hz, 1H), 7.48-7.43 (m, 3H), 7.35 (d, <i>J</i> = 9 Hz, 1H), 7.04
59 60	(d, $J = 16.2, 1$ H), 6.90 (d, $J = 9.0$ Hz, 2H), 3.82 (s, 3H); ¹³ C NMR (CDCl ₃ , 75 MHz): δ 160.1, 147.9, 133.5, 133.3, ACS Paragon Plus Environment

133.0, 129.3, 128.5, 127.9, 127.5, 124.8, 121.1, 114.3, 56.4; HRMS (ESI) m/z calcd for C₁₅H₁₃NO₃ [M]⁺ 255.08954, found 255.08951.

Thunberginol F.⁵⁰ Compound **9e** (100 mg, 0.32 mmol) of was taken in 2 mL of dry DCM in a 50 mL of reaction flask and the temperature of the reaction flask was allowed to cool down at -60° C. Then a 1M DCM solution of BBr₃ (5.2 equiv., 1.66 mL, 1.66 mmol) was dropewise added to it under nitrogen. The temperature of the reaction mixture slowly increased to room temperature and allowed to stir for another 2 h. The solution was then poured to ice cold water (20 mL), and the mixture was extracted with EtOAc (4×15 mL). The organic extract was washed with brine solution and dried over MgSO₄ and concentered under reduced pressure. The crude mass was washed several times with DCM to give the pure compound as light yellow solid (0.084g, 97%); $R_f = 0.78$ (100% EtOAc); mp = 208.9 °C; ¹H NMR (DMSO- d_6 , 300 MHz): δ 7.76 (t, J = 8.0 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 7.5 H 3.0 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 7.05 (m, 1H), 6.79 (dd, J = 7.8, 2.1, 1H), 6.68 (s, 1H); ¹³C NMR (DMSO- d_6 , 75 MHz): 8 164.6, 158.4, 147.0, 145.9, 143.2, 141.6, 137.6, 126.5, 125.2, 123.1, 117.1, 116.3, 112.3, 111.8, 108.1; HRMS (ESI) m/z calcd for C₁₅H₁₀O₅ [M]⁺ 270.0528, found 270.0526. Acknowledgements. We are grateful to the National Science Council of Taiwan for financial support of this work.

Supporting Information. Crystallographic data, additional experimental details, and NMR spectra for all products. This material is available free of cost via the Internet at http://pubs.acs.org.

Notes. The authors declare no competing financial interest

References

(1) Matsuda, H.; Shimoda, H.; Yoshikawa, M. Bioorg. Med. Chem. 1999, 7, 1445.

ACS Paragon Plus Environment

1 2	(2) Umehara, K.; Matsumoto, M.; Nakamura, M.; Miyase, T.; Kuroyanagi, M.; Noguchi, H. Chem. Pharm.
2 3 4	Bull. 2000, 48, 566.
5 6	(3) Rossi, R.; Carpita, A.; Bellina, F.; Stabile, P.; Mannina, L. Tetrahedron 2003, 59, 2067.

- (4) Zhang, H.; Matsuda, H.; Kumahara, A.; Ito, Y.; Nakamura, S.; Yoshikawa, M. *Bioorg. Med. Chem. Lett.*2007, 17, 4972.
- (5) Kurume, A.; Kamata, Y.; Yamashita, M.; Wang, Q.; Matsuda, H.; Yoshikawa, M.; Kawasaki, I.; Ohta, S. *Chem. Pharm. Bull.* **2008**, *56*, 1264.
- (6) Yoshikawa, M.; Uchida, E.; Chatani, N.; Murakami, N.; Yamahara, J. Chem. Pharm. Bull. 1992, 40, 3121.
 - (7) Bader, A.; De Tommasi, N.; Cotugno, R.; Braca, A. J. Nat. Prod. 2011, 74, 1421.
 - (8) Devon, T. K.; Scott, A. I. *Handbook of Naturally Occurring Compounds*; Academic Press: New York, 1975; Vol. 1.
 - (9) Elderfield, R. C.; Wiley: New York: 1951; Vol. 2.
 - (10) Pal, S.; Chatare, V.; Pal, M. Curr. Org. Chem. 2011, 15, 782.
 - (11) Napolitano, E. Org. Prep. Proced. Int. 1997, 29, 631.
 - (12) Guo, X.-X. J. Org. Chem. 2013, 78, 1660.
 - (13) Yoshikawa, M.; Harada, E.; Yagi, N.; Okuno, Y.; Muraoka, O.; Aoyama, H.; Murakami, N. Chem.

Pharm. Bull. 1994, 42, 721.

- (14) Liao, H.-Y.; Cheng, C.-H. J. Org. Chem. 1995, 60, 3711.
- (15) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.
- (16) Zhou, L.; Jiang, H.-F. Tetrahedron Letts. 2007, 48, 8449.
- (17) Inack-Ngi, S.; Rahmani, R.; Commeiras, L.; Chouraqui, G.; Thibonnet, J.; Duchêne, A.; Abarbri, M.;
- Parrain, J.-L. Adv. Synth. Catal. 2009, 351, 779.
 - (18) Park, J. H.; Bhilare, S. V.; Youn, S. W. Org. Lett. 2011, 13, 2228.
- (19) Uchiyama, M.; Ozawa, H.; Takuma, K.; Matsumoto, Y.; Yonehara, M.; Hiroya, K.; Sakamoto, T. Org. Lett. 2006, 8, 5517.
 - (20) Kanazawa, C.; Terada, M. Tetrahedron Letts. 2007, 48, 933.
- (21) Marchal, E.; Uriac, P.; Legouin, B.; Toupet, L.; van de Weghe, P. *Tetrahedron* 2007, 63, 9979.
- (22) Hellal, M.; Bourguignon, J.-J.; Bihel, F. J. J. Tetrahedron Letts. 2008, 49, 62.
 - (23) Verma, A. K.; Aggarwal, T.; Rustagi, V.; Larock, R. C. *Chem. Commun.* **2010**, *46*, 4064. ACS Paragon Plus Environment

- (24) Verma, A. K.; Rustagi, V.; Aggarwal, T.; Singh, A. P. J. Org. Chem. 2010, 75, 7691.
- (25) Shahzad, S. A.; Venin, C.; Wirth, T. Eur. J. Org. Chem. 2010, 2010, 3465.
- (26) Cherry, K.; Parrain, J.-L.; Thibonnet, J.; Duchêne, A.; Abarbri, M. J. Org. Chem. 2005, 70, 6669.
- (27) Khan, K. M.; Ahmed, S.; Khan, Z. A.; Rani, M.; Perveen, S.; Voelter, W. Nat. Prod. Res. 2008, 22, 1120.
- (28) Ge, Z.-Y.; Fei, X.-D.; Tang, T.; Zhu, Y.-M.; Shen, J.-K. J. Org. Chem. 2012, 77, 5736.
- (29) Kavala, V.; Wang, C.-C.; Barange, D. K.; Kuo, C.-W.; Lei, P.-M.; Yao, C.-F. J. Org. Chem. 2012, 77,
- 5022.

- (30) Cai, S.; Wang, F.; Xi, C. J. Org. Chem. 2012, 77, 2331.
- (31) Fan, X.; He, Y.; Cui, L.; Guo, S.; Wang, J.; Zhang, X. Eur. J. Org. Chem. 2012, 2012, 673.
- (32) Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916.
- (33) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.
- (34) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem.
- Soc. 2007, 129, 3510.
 - (35) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879.
 - (36) Cornella, J.; Righi, M.; Larrosa, I. Angew. Chem. Int. Ed. 2011, 50, 9429.
 - (37) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 14137.
 - (38) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2010, 49, 6169.
- (39) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 132, 460.
- (40) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315.
- (41) Fu, Z.; Huang, S.; Su, W.; Hong, M. Org. Lett. 2010, 12, 4992.
- (42) Hu, P.; Kan, J.; Su, W.; Hong, M. Org. Lett. 2009, 11, 2341.
- (43) Speranca, A.; Godoi, B.; Pinton, S.; Back, D. F.; Menezes, P. H.; Zeni, G. J. Org. Chem. 2011, 76, 6789.
- (44) Hashmi, A. S. K.; Lothschütz, C.; Döpp, R.; Ackermann, M.; De Buck Becker, J.; Rudolph, M.; Scholz,
- C.; Rominger, F. Adv. Synth. Catal. 2012, 354, 133.
 - (45) Kümmerle, A. E.; Vieira, M. M.; Schmitt, M.; Miranda, A. L. P.; Fraga, C. A. M.; Bourguignon, J.-J.;
- Barreiro, E. J. Bioorg. Med. Chem. Lett. 2009, 19, 4963.
 - (46) Mali, R. S.; Massey, A. P.; Talele, M. I. J. Chem. Res. (S) 1998, 68.
 - (47) Husemoen, G.; Olsson, R.; Andersson, C.-M.; Hervey, S. C.; Hansen, H. C. J. Comb. Chem. 2003, 5, 606.

(48) Gooβen, K. J.; Zimmermann, B.; Knauber, T. Beilstein J. Org. Chem 2010, 6, 1. ACS Paragon Plus Environment

- (49) Oda, N.; Yoshida, Y.; Nagai, S.-I.; Ueda, T.; Sankakibara, J. Chem. Pharm. Bull. 1987, 35, 1796.
- (50) Matsuda, H.; Shimoda, H.; Yamahara, J.; Yoshikawa, M. Biol. Pharm. Bull. 1999, 22, 870.